Universal coefficient theorems for Kirchberg’s bivariant K-theory II

Ralf Meyer
Vanderbilt
Sixth Annual Spring Institute on Noncommutative Geometry and Operator Algebras
May 5 to May 14, 2008

1 The bootstrap class

Locally closed subsets

Ideals for open subsets
Recall that the continuous map \(\text{Prim}(A) \to X \) that is part of a \(C^* \)-algebra over \(X \) yields a lattice morphism \(\mathcal{O}(X) \to \mathcal{O}(\text{Prim } A) \cong \mathbb{I}(A) \), mapping \(U \in \mathcal{O}(X) \) to the ideal \(A(U) \) of elements of \(A \) that vanish outside \(U \).

Definition 1. \(Y \subseteq X \) locally closed: \(Y = U \setminus V \) with \(U, V \in \mathcal{O}(X) \), \(V \subseteq U \)

Definition and Lemma
Let \(Y \subseteq X \) be locally closed, write \(Y = U \setminus V \) as above. Let \(A \) be a \(C^* \)-algebra over \(X \).

\[
A(Y) := A(U)/A(V)
\]

does not depend on the choice of \(U \) and \(V \).

Proof. Use that \(U \mapsto A(U) \) is a lattice morphism. \(\square \)

Fibres of \(C^* \)-algebra bundles

Example 2 (Fibres of a \(C^* \)-algebra bundle). Let \(X \) be finite and let \(U_x \) for \(x \in X \) be the minimal open neighbourhood of \(x \). Then \(U_x \setminus \{x\} \) is open, so that \(\{x\} \) is locally closed.

View \(A(x) = A_x := A(\{x\}) \) as the fibre of \(A \) at \(x \).

Example 3 (A space over which bundles have no fibres). Let \(X = [0, 1] \) with the topology \(\mathcal{O}(X) = \{(t, 1) \mid t \in [0, 1]\} \).

Then the locally closed subsets are of the form \((a, b] \) with \(0 \leq a \leq b \leq 1 \). Hence \(\{x\} \) is not locally closed for any \(x \in [0, 1] \).

\(C^* \)-algebra bundles over this space have no well-defined fibres.
1.1 The complement of the bootstrap class

Definition and Lemma
The following conditions for a C^*-algebra A over X are equivalent and define $\mathcal{B}(X)^{\perp}$:

- $K_*(A(Y)) = 0$ for all locally closed $Y \subseteq X$,
- $K_*(A(U)) = 0$ for all open $U \subseteq X$,
- each $x \in X$ has an open neighbourhood U such that $K_*(A(V)) = 0$ for all open $V \subseteq U$.

If X is finite, these are also equivalent to

- $K_*(A(U_x)) = 0$ for all $x \in X$;
- $K_*(A(x)) = 0$ for all $x \in X$.

Important ingredient in the proof. There is a filtration $\emptyset = \mathcal{F}_0 X \subset \mathcal{F}_1 X \subset \cdots \subset \mathcal{F}_\ell X = X$ by open subsets such that the differences $X_j := \mathcal{F}_j X \setminus \mathcal{F}_{j-1} X$ are all discrete. \hfill \Box

1.2 Generators of the bootstrap class

Definition 4. Given $x \in X$ and a C^*-algebra A, let $i_x(A)$ be A together with the constant map $x: \text{Prim}(A) \to X$ with value x. This is a C^*-algebra over X with

$$i_x(A)(U) = \begin{cases} A & \text{for } x \in U, \\ 0 & \text{for } x \notin U. \end{cases}$$

Lemma 5. Let X be finite. Then $KK_*^X(i_x(A), B) \cong KK_*^X(A, B(U_x))$.

Proof. Since $i_x(A)(U) = A$ for $U \supseteq U_x$ open $i_x(A)(V) = 0$ for other open subsets, a cycle for $KK_*^X(i_x(A), B)$ determines one for $KK_*^X(i_x(A)(U_x), B(U_x)) = KK_*^X(A, B(U_x))$, and the latter does not have to satisfy any further conditions. \hfill \Box

The bootstrap class over finite spaces

Lemma 6. For finite X, the bootstrap class is (equivalent to) the localising subcategory of $KK(X)$ generated by $i_x\mathbb{C}$ for $x \in X$.

- More precisely, let $\mathcal{B}(X)$ be the smallest class of separable C^*-algebras that contains $i_x\mathbb{C}$ for $x \in X$ and is closed under suspensions, KK^X-equivalence, countable direct sums, and mapping cones.
- $KK^X_*^X(A, B) = 0$ if $A \in \mathcal{B}(X)$ and $B \in \mathcal{B}(X)^{\perp}$ because $KK^X_*^X(i_x\mathbb{C}, B) = 0$ for $B \in \mathcal{B}(X)^{\perp}$.
- $\mathcal{B}(X)$ and $\mathcal{B}(X)^{\perp}$ together “generate” all of $KK(X)$. (They form a complementary pair of localising subcategories.)
- The last statement is non-trivial, but it follows easily from some general machinery.
Characterisation of the bootstrap class

Theorem 7. Let X be a finite T_0-space. For a nuclear separable C^*-algebra A over X, the following are equivalent:

- A belongs to the bootstrap class over X;
- $A(U_x)$ belongs to the bootstrap class for all $x \in X$;
- $A(x) := A(U_x)/A(U_x \setminus \{x\})$ belongs to the bootstrap class in KK for all $x \in X$;
- $A(U)$ belongs to the bootstrap class for all $U \in \mathcal{O}(X)$.

1.3 Connection to the C^*-algebra classification programme

Making the fibres simple

Theorem 8 (Kirchberg). Any exact C^*-algebra is KK-equivalent to a simple one. The latter can be assumed $\mathcal{O}_\infty \otimes \mathbb{K}$-stable, that is, purely infinite and C^*-stable.

Theorem 9. Let X be finite. Any object of the bootstrap class $\mathcal{B}(X)$ is KK^X-equivalent to a separable, nuclear, $\mathcal{O}_\infty \otimes \mathbb{K}$-stable one for which the map $\text{Prim}(A) \to X$ is a homeomorphism. Then the $A(x)$ for $x \in X$ are the simple subquotients of A.

Theorem 10 (Kirchberg). Let A and B be separable, nuclear, $\mathcal{O}_\infty \otimes \mathbb{K}$-stable C^*-algebras with homeomorphisms $\text{Prim}(A) \cong X \cong \text{Prim}(B)$. Then any invertible element in $\text{KK}^X(A,B)$ lifts to a *-isomorphism $A \to B$ over X.

Hence the representative in the previous theorem is unique up to isomorphism over X.

Summary from the classification viewpoint

Classifying separable, nuclear, purely infinite, stable C^*-algebras with finite primitive ideal space X and simple subquotients in the bootstrap class up to isomorphism over X \iff classifying objects of $\mathcal{B}(X)$ up to KK^X-equivalence.

Open question

Is there a K-theoretic complete invariant that achieves this classification?

2 The Universal Coefficient Theorem

Question

Can we compute $\text{KK}^*_s(A,B)$ from $K^*_s(A)$ and $K^*_s(B)$?

Theorem 11. Let A and B be separable C^*-algebras, suppose that A belongs to the bootstrap class.

Then there is a natural short exact sequence of $\mathbb{Z}/2\mathbb{Z}$-graded Abelian groups

$$\text{Ext}\left(K^*_{s+1}(A), K^*_s(B)\right) \to \text{KK}^*_s(A,B) \to \text{Hom}\left(K^*_s(A), K^*_s(B)\right).$$

- $I := \ker K^*_s$
Naturality implies that the Kasparov product
\[KK(A, B) \otimes \text{Ext}(K_*(C, A)) \to \text{Ext}(K_*(C, B)) \]
descends to \(\text{Hom}(K_*(A), K_*(B)) \), that is, \(\mathcal{I} \circ \mathcal{I} = 0 \) in the bootstrap class.

Some applications

Corollary 12. If both \(A \) and \(B \) belong to the bootstrap category, then

- \(\alpha \in KK_0(A, B) \) is a KK-equivalence if and only if \(K_*(\alpha): K_*(A) \to K_*(B) \) is invertible.
- Any grading preserving group homomorphism \(K_*(A) \to K_*(B) \) lifts to an element of \(KK_*(A, B) \).
- An isomorphism \(K_*(A) \cong K_*(B) \) lifts to a KK-equivalence \(A \cong B \).

Theorem 13. Any pair of countable Abelian groups is the K-theory of some \(C^* \)-algebra in the bootstrap class.

Summary

K-theory is a complete invariant for KK-equivalence classes of \(C^* \)-algebras in the bootstrap class.

2.1 Proof of the UCT

\(\mathcal{T} \) Kasparov theory, viewed as a category
\(\mathcal{C} \) category \(\mathbb{Ab}_{Z/2} \) of countable \(Z/2 \)-graded Abelian groups
\(F \) functor \(F := K_*: \mathcal{T} \to \mathcal{C} \)
\(A \in \mathcal{C} \) \(A \) is an object of the category \(\mathcal{C} \)

Basic Lemma

If \(A \in \mathcal{C} \) is projective (free), there is \(F^+(A) \in \mathcal{T} \) with
\[\mathcal{T}(F^+(A), B) \cong \text{Hom}(A, F(B)) \]
Moreover, \(F \circ F^+(A) \cong A \).

Equivalently: the left adjoint of \(F \) is defined on all projective objects of \(\mathcal{C} \).

Proof.

- Since \(F^+ \) is compatible with suspensions and direct sums, it suffices to check this for \(A = \mathbb{Z} \).
- Take \(F^+(\mathbb{Z}) = \mathbb{C} \) and use
\[\text{Hom}(\mathbb{Z}, K_*(B)) \cong K_0(B) \cong KK_0(\mathbb{C}, B) \]
and \(K_*(\mathbb{C}) = \mathbb{Z} \). \(\square \)
Exact chain complexes and projective objects

Definition 14. A chain complex \((C_n, d_n)\) with entries in \(\mathcal{T}\) is \(F\)-exact if the chain complex \(F(C_n), F(d_n)\) is exact.

Definition 15. A separable \(C^\ast\)-algebra \(A \in \mathcal{T}\) is \(F\)-projective if the chain complex
\[
\cdots \rightarrow \mathcal{T}_n(A, C_n) \xrightarrow{\mathcal{T}_n(A, d_n)} \mathcal{T}_n(A, C_{n-1}) \rightarrow \cdots
\]
is exact for any \(F\)-exact chain complex \((C_n, d_n)\).

Lemma 16. Objects of the form \(F \triangleright (A)\) for projective \(A \in \mathcal{C}\) are \(F\)-projective.

Proof. \(\mathcal{T}(F^\ast(A), B) \cong \mathcal{C}(A, F(B))\) and \(\mathcal{C}(A, \cup)\) is exact. \(\square\)

Description of projective objects

Theorem 17. The functors \(F\) and \(F^\ast\) restrict to an equivalence of categories
\[
\{F\text{-projective objects in } \mathcal{T}\} \rightleftharpoons \{\text{projective objects in } \mathcal{C}\}.
\]

Proof.

- \(F^\ast\) is a functor and \(F \circ F^\ast(A) \cong A\).
- Let \(B \in \mathcal{T}\) be \(F\)-projective, let \(\alpha : A \rightarrow F(B)\) be a quotient map with projective \(A\).
- \(\mathcal{C}(A, F(B)) \cong \mathcal{T}(F^\ast(A), B)\) maps \(\alpha \mapsto \alpha^\ast\)
- \(\alpha^\ast\) is split epimorphism because \(B\) is \(F\)-projective and \(F(\alpha^\ast)\) is surjective.
- \(B = F^\ast(eA)\) for an idempotent map \(e : A \rightarrow A\) because \(F^\ast\) is fully faithful.
- \(eA\) is again projective. \(\square\)

Lifting projective resolutions

Definition 18. An \(F\)-projective resolution of \(A \in \mathcal{T}\) is an \(F\)-exact chain complex
\[
\cdots \rightarrow P_2 \rightarrow P_1 \rightarrow P_0 \rightarrow A \rightarrow 0 \rightarrow \cdots
\]
with \(F\)-projective \(P_n\) for \(n \in \mathbb{N}\).

Theorem 19 (Geometric resolutions). A projective resolution of \(F(A)\) in \(\mathcal{C}\) lifts uniquely up to isomorphism to an \(F\)-projective resolution in \(\mathcal{T}\).

Proof. Let \(P_n := F^\ast(B_n)\) for a projective resolution \((B_n)\), use \(\mathcal{C}(B_0, F(A)) \cong \mathcal{T}(P_0, A)\) to get the map \(P_0 \rightarrow A\). \(\square\)
Proof of the UCT for plain Kasparov theory

Crucial fact

Any object of \(\mathcal{C} = \mathbb{A}b_{\mathbb{Z}/2} \) has a free resolution of length 1.

- For \(A \in \mathfrak{T} \), choose a free resolution of \(F(A) \) of length 1 and lift it to an \(F\)-projective resolution \(0 \to P_1 \xrightarrow{d_1} P_0 \to A \) in \(\mathfrak{T} \).

- Since \(\mathfrak{T} \) is triangulated, the map \(d_1 \) embeds in an exact triangle \(P_1 \xrightarrow{d_1} P_0 \to A' \to P_1[1] \).

To get this for \(\mathfrak{T} = \text{KK} \), view \(d_1 \in \text{KK}_1(\mathcal{C}_0(\mathbb{R}) \otimes P_1, P_0) \) as the equivalence class of a \(C^* \)-algebra extension \(P_0 \to A' \to \mathcal{C}_0(\mathbb{R}) \otimes P_1 \) with a completely positive contractive section.

- An analysis of the long exact sequence for this exact triangle yields a short exact sequence

\[
\text{Ext}(K_{s+1}(A), K_s(B)) \to \text{KK}_s(A', B) \to \text{Hom}(K_s(A), K_s(B)).
\]

because \(\text{KK}_s(P_0, B) \cong \text{Hom}(F(P_0), F(B)) \).

Proof of the UCT continued

- There is \(f \in \mathfrak{T}(A', A) \) making the following diagram commute:

\[
\begin{array}{ccc}
P_1 & \xrightarrow{d_1} & P_0 \\
\| & & \| \\
P_1 & \xrightarrow{d_1} & P_0 \\
\end{array}
\]

\[
\begin{array}{ccc}
P_1 & \xrightarrow{d_1} & P_0 \\
\| & & \| \\
\| & & \| \\
A & \xrightarrow{f} & A' \\
\end{array}
\]

- \(f \) induces an isomorphism on K-theory.

- The class of \(X \in \mathfrak{T} \) for which \(f \) induces an isomorphism on \(\mathfrak{T}_s(X, _ _ _) \) contains \(\mathbb{C} \) and is closed under isomorphism, suspensions, direct sums, and mapping cones.

- If \(A \) belongs to the bootstrap class, then \(f \) is invertible.

2.2 Abstraction

Most parts of the proof of the UCT work in all kinds of equivariant KK-theories.

Dramatis Personae

\(\mathfrak{T} \) a triangulated category

\(\mathcal{C} \) an Abelian category with a translation automorphism

\(F \) a homological functor \(\mathfrak{T} \to \mathcal{C} \) that intertwines the translation automorphisms
Definition 20. We call F an invariant without hidden symmetries if

- \mathcal{C} has enough projective objects;
- for $A \in \mathcal{C}$ projective, there is $F^+(A) \in \mathcal{T}$ with $\mathcal{T}(F^+(A), B) \cong \mathcal{C}(A, F(B));$
- $F \circ F^+(A) \cong A$ for all projective $A \in \mathcal{C}.$

An example of hidden symmetries

Dramatis Personæ

$\mathcal{T} \text{ KK}^G$ for some discrete group G

$\mathcal{C} \text{ Ab}_{\mathbb{Z}/2}^\mathbb{Z},$ the translation automorphism shifts the grading

$F \ F(A, \alpha) = K_*(A):$ forget group action and take K-theory

- $\text{KK}^*_*(\mathcal{C}_0(G, A), B) \cong \text{KK}_*(A, B)$ shows that $F^+(\mathbb{Z}) = \mathcal{C}_0(G)$ works.
- But $FF^+(\mathbb{Z}) = K_*(\mathcal{C}_0(G)) = \mathbb{Z}[G]$ is too big.
- A poor invariant like this can be refined uniquely to one without hidden symmetries:

Theorem 21. If there are enough F-projective objects, there is a unique stable homological functor F' without hidden symmetries and $\ker F = \ker F'.$

The example rectified

Dramatis Personæ

$\mathcal{T} \text{ KK}^G$ for some discrete group G

$\mathcal{C} \text{ category of countable Z/2-graded Z[G]-modules}$

$F \ F(A, \alpha) = (K_*(A), K_*(\alpha)): \text{ take K-theory and remember the induced action of G on K}_*(A)$

- $\text{KK}^*_*(\mathcal{C}_0(G), B) \cong \text{KK}_*(\mathcal{C}, B) \cong \text{Hom}_G(\mathbb{Z}[G], K_*(B))$ shows that $F^+(\mathbb{Z}[G]) = \mathcal{C}_0(G)$ works.
- $FF^+(\mathbb{Z}[G]) = K_*(\mathcal{C}_0(G)) \cong \mathbb{Z}[G]$ shows that $F \cong \mathcal{C}_0(G)$ works.
- As above, this yields F^+ first for all free modules, then for all projective modules.
- This time the functor F has no hidden symmetries.
Projective objects and abstract bootstrap class

Define F-exact chain complexes and F-projective objects in \mathcal{T} as above.

Lemma 22. F and F^+ restrict to an equivalence of categories

$$\{F\text{-projectives in } \mathcal{T}\} \cong \{\text{projectives in } \mathcal{C}\}.$$

Theorem 23. Projective resolutions of $F(A)$ lift uniquely up to isomorphism to F-projective resolutions of A.

Definition 24 (Abstract bootstrap category). Let \mathcal{B} be the localising subcategory of \mathcal{T} generated by the F-projective objects.

Let \mathcal{B}^\perp consist of all A with $F(A) = 0$.

Theorem 25. \mathcal{B} and \mathcal{B}^\perp are complementary if F commutes with \oplus.

The abstract UCT

Theorem 26 (Universal Coefficient Theorem). If $F(A)$ has a projective resolution of length 1 and $A \in \mathcal{B}$, $B \in \mathcal{T}$, there is a UCT exact sequence

$$\text{Ext}^1_\mathcal{C}(F(A)[1], F(B)) \rightarrow \mathcal{T}(A, B) \rightarrow \text{Hom}_\mathcal{C}(F(A), F(B)).$$

Theorem 27. Any object of \mathcal{C} with a projective resolution of length 1 is $F(A)$ for some $A \in \mathcal{B}$.

Open problem

The range of F may be smaller than \mathcal{C}. Is it always an exact subcategory of \mathcal{C}? This would often allow to describe the range of F.

What happens for long projective resolutions?

- Without projective resolutions of length 1, the short exact sequence becomes a \textit{spectral sequence}.

- Its higher differentials provide \textit{obstructions} for lifting a map $F(A) \rightarrow F(B)$ back to \mathcal{T}.

- We should expect that there are $A, B \in \mathcal{B}$ with $F(A) \cong F(B)$ but $A \not\cong B$.

Theorem 28. Let $\alpha \in \mathcal{T}(A, B)$. If $F(\alpha)$ is invertible and $A, B \in \mathcal{B}$, then α is invertible.

Equivalently, F restricts to a \textit{rigid} invariant on \mathcal{B}.

8
Summary: Homological algebra

- If our invariant F has hidden symmetries, there is a unique way to make these explicit, replacing F by an invariant without hidden symmetries.
- If $F: \mathcal{T} \to \mathcal{C}$ has no hidden symmetries, then the classification problem can be answered using homological algebra in \mathcal{C}.
- The bootstrap class and the object-kernel of F are complementary if F commutes with direct sums. Thus localisation at F is easy to understand.
- Projective resolutions in \mathcal{C} lift uniquely.
- If $F(A)$ has a projective resolution of length 1 and A belongs to the bootstrap class for F, then A satisfies a Universal Coefficient Theorem.
- Its ingredients are the derived functors in the target category of F.

3 An invariant for Kirchberg’s bivariant K-theory

Question
Which invariant should we use to study KK^X for a (finite) topological space X?
Is there a complete invariant?
- $\bigoplus_{x \in X} K_*(A(U_x))$ is as rigid as possible: it gives the right bootstrap class.
- But it is never complete unless X is discrete.
- $\bigoplus_{U \in \mathcal{O}(X)} K_*(A(U))$ is not better: it still fails to be complete for the non-Hausdorff two-point space.

Definition 29. Filtrated K-theory is the invariant without hidden symmetries associated to $F(A) := \bigoplus_{Y \in \mathcal{L}(X)} K_*(A(Y))$, where $\mathcal{L}(X)$ denotes the locally closed subsets of X.

Filtrated K-theory

Theorem 30. Filtrated K-theory is a complete invariant if $\mathcal{O}(X)$ is totally ordered.

Theorem 31. Filtrated K-theory is not complete for $Y_3 = \{0, 1, 2, 3\}$ with $0 < 1, 2, 3$ and no relation among $\{1, 2, 3\}$.
For this space, adding another K-theory group to F refines filtrated K-theory to a complete invariant.

Question
Can we always refine filtrated K-theory to a manageable and complete invariant?

What I expect
This should become impossible, in a sense to be made precise, for sufficiently complicated spaces, maybe already for Y_n, defined like Y_3 with $n \geq 7$. 9
Where problems could come from

- In the examples I know, the K-theory functors that are used to build a complete invariant correspond to irreducible modules over the quiver algebra of the partial order \(\prec\) on \(X\).
- In this algebraic context, there are three cases:
 - **finite** there are only finitely many irreducible modules
 - **tame** there are infinitely many irreducible modules, but they can still be classified
 - **wild** no classification of irreducible modules is possible
- The examples where things work all correspond to the finite case.

How to find the hidden symmetries?

Problem
Find the functor without hidden symmetries attached to \(F(A) := \bigoplus_{Y \in LC(X)} K_*(A(Y))!\)

- Find a representing object for this functor or, equivalently, for the functors \(A \mapsto K_*(A(Y))\), that is,
 \[KK_*^X(R_Y, A) \cong K_*(A(Y)) \]
- Then \(R := \bigoplus_{Y \in LC(X)} R_Y\) satisfies \(KK_*^X(R, A) \cong F(A)\).
- The graded ring \(N^{T_*} := KK_*(R, R)\) acts naturally on \(F(A)\) by Kasparov product.

Theorem 32. Representing objects \(R_Y\) exist and can be constructed explicitly, and filtrated K-theory is the functor \(A \mapsto \bigoplus_{Y \in LC(X)} K_*(A(Y))\), viewed as a functor to the category \(\mathcal{C}\) of countable \((\mathbb{Z}/2\text{-graded})\) \(N^{T_*}\)-modules.