Universal coefficient theorems for Kirchberg’s bivariant K-theory I

Ralf Meyer

Vanderbilt
Sixth Annual Spring Institute on Noncommutative Geometry and Operator Algebras
May 5 to May 14, 2008

1 Non-commutative topology

1.1 The role of Kasparov theory and K-theory

Definition 1. A non-commutative homology theory is a functor on a category of (separable) \(\mathbb{C}^* \)-algebras (with extra structure) that is

- \(\mathbb{C}^* \)-stable (Morita invariant)
- split-exact
- homotopy invariant
- has Puppe exact sequence for mapping cones

Example 2. K-theory is a non-commutative homology theory for \(\mathbb{C}^* \)-algebras. It maps separable \(\mathbb{C}^* \)-algebras to the category \(\text{Ab}_{\mathbb{Z}/2} \) of \(\mathbb{Z}/2 \)-graded countable Abelian groups.

Example 3. \(\text{KK}^G \) is a non-commutative homology theory for \(\mathbb{C}^* \)-algebras with a \(G \)-action.

Theorem 4 (Joachim Cuntz and Nigel Higson). Bivariant KK-theory is the universal \(\mathbb{C}^* \)-stable, split-exact functor on the category of separable \(\mathbb{C}^* \)-algebras.

That is, a functor from the category of separable \(\mathbb{C}^* \)-algebras to some additive category factors through KK if and only if it is \(\mathbb{C}^* \)-stable and split-exact, and this factorisation is unique if it exists.

Equivariant versions of KK are characterised by analogous universal properties.

Corollary 5. \(\mathbb{C}^* \)-stability and split-exactness \(\implies \) homotopy invariance, Bott periodicity, Connes–Thom Isomorphism, \(\ldots \)
The central role of K-theory

Theorem 6. Let X and Y be locally compact spaces with

$$K_\ast(X) \cong K_\ast(Y).$$

Then $C_0(X)$ and $C_0(Y)$ are KK-equivalent.

Thus $F(C_0(X)) \cong F(C_0(Y))$ if F is C^\ast-stable split-exact.

Proof. This follows from the Universal Coefficient Theorem.

Bad news
All the intricacies of the stable homotopy category disappear in the non-commutative setting.

Good news
All the intricacies of the stable homotopy category disappear in the non-commutative setting.

Equivariant Kasparov theory

- KK has become a tool instead of an object of study.
- You can prove theorems with KK, but not about KK.
- For each additional structure C^\ast-algebras can carry, there is an appropriate version of KK:
 - group actions of locally compact groups
 - groupoid actions of locally compact groupoids
 - coactions of locally compact quantum groups
 - $C(X)$-algebras
 - C^\ast-algebra bundles over non-Hausdorff spaces

 This situation generates Kirchberg’s bivariant K-theory.

- These equivariant bivariant K-theories are more intricate—you may also prove theorems about them.

1.2 Commutative versus non-commutative topology

Why is non-commutative topology so effective?

Question
Some results in topology can, so far, be proved only with C^\ast-algebra methods.

How can that be?

Possible answer
Applications of C^\ast-algebras in topology usually involve spaces with an extra structure like a group action.

The interaction of the extra structure with the topology of the space becomes much simpler in the non-commutative setting.
A hopeless task

Exercise
Classify simplicial complexes up to (stable) homotopy equivalence! — Forget it!

Theorem 7. K-theory is a complete invariant up to KK-equivalence for \(C^* \)-algebras in the bootstrap class.
Two \(C^* \)-algebras in the bootstrap class are KK-equivalent if and only if they have isomorphic K-theory.

Any pair of countable Abelian groups is the K-theory of some \(C^* \)-algebra in the bootstrap class.

A ridiculous question

Question
If a \(G \)-map \(f : A \to B \) is a (stable) homotopy equivalence, is it automatically a \(G \)-equivariant (stable) homotopy equivalence? — Forget it!

Theorem 8 (Extra strong Baum–Connes property). Let \(G \) be a locally compact group that acts properly by affine isometries on a Hilbert space. If \(\alpha \in \text{KK}^G(A, B) \) becomes invertible in \(\text{KK}^H \) for each compact subgroup \(H \subseteq G \), then \(\alpha \) is invertible in \(\text{KK}^G \).

Corollary 9 (Homotopic actions are equivalent). Let \(G \) be a torsion-free group with the extra strong Baum–Connes property. Then homotopic \(G \)-actions on a separable \(C^* \)-algebra \(A \) are KK\(^G\)-equivalent.

Example 10. Non-commutative tori of the same dimension are KK-equivalent.

A general line of inquiry

• We want to study equivariant homology theories on a category of \(C^* \)-algebras with some extra structure.

• First we need a bivariant K-theory in this setting.

• Secondly, we need an invariant that we use to probe this equivariant KK-category.

Goal
Compute the equivariant KK-theory and other equivariant homology theories using the chosen invariant.

1.3 The rigidity question

What can we know?

Rigidity question
If the invariant \(F(A) = 0 \) vanishes, does it follow that \(A \) is equivariantly KK-equivalent to \(0 \)?

Equivalently, if a morphism \(\alpha \) induces an isomorphism on the invariant \(F \), is it already invertible?
Definition 11. We call the invariant F rigid if $F(A) = 0 \iff A \cong 0$.

Example 12 (Extra strong Baum–Connes property). Let G be a locally compact group, let F be the family of restriction functors $\text{KK}^G \to \text{KK}^H$ for $H \subseteq G$ compact.

This invariant is rigid if and only if the group G has the extra strong Baum–Connes property.

Rigid invariants

Example 13. Let G be a connected Lie group with torsion-free fundamental group.

• Let $T \subseteq G$ be a maximal torus. The forgetful functor $\text{KK}^G \to \text{KK}^T$ is a rigid invariant.

• The crossed product functor (descent)

$$\text{KK}^G \to \text{KK}, \quad A \mapsto A \rtimes G$$

is rigid.

Example 14 (Bootstrap category). There exist separable C^*-algebras with $K_*(A) = 0$ but $\text{KK}_0(A, A) \neq 0$.

Localisation at the invariant

• We want to focus on the part of our bivariant K-theory that our invariant can detect.

• There is a general process to do this: localisation of triangulated categories

• Often it works as follows.

Theorem 15. Let \mathcal{T} be a triangulated category and let F be a stable homological functor.

$$\mathcal{N} := \{ A \mid F(A) = 0 \}$$

$$\mathcal{N}^\perp := \{ A \mid \mathcal{T}(A, B) = 0 \quad \forall B \in \mathcal{N} \}$$

If $\mathcal{N} \cup \mathcal{N}^\perp$ generates \mathcal{T}, then \mathcal{T}/\mathcal{N} is equivalent to \mathcal{N}^\perp.

Example 16. This works for the K-theory functor on KK, where \mathcal{N}^\perp is the bootstrap class or UCT class.

1.4 The classification question

Lemma 17. After localisation, the invariant F becomes rigid, that is, it detects zero objects and isomorphisms: α invertible $\iff F(\alpha)$ invertible

Classification question

If $F(A) \cong F(B)$, does it follow that $A \cong B$?

If yes, can you also describe the range of F?

Definition 18. We call the invariant F complete if the answer to both questions is “Yes” after localisation.

Example 19. K-theory is a complete invariant on KK.

Example 20. The forgetful functor $\text{KK}^\mathbb{Z} \to \text{KK}$ is both rigid and complete.
Necessity of a Universal Coefficient Theorem

For most equivariant situations, we do not expect a manageable complete invariant to exist.

(The identity invariant is always complete and rigid.)

Open question

Is there a manageable complete invariant for \mathbb{Z}^2-actions?

Theorem 21 (No-Go Theorem). Let $\mathcal{I} := \ker F$ be the ideal of morphisms in \mathfrak{T} annihilated by the invariant F. Assume enough \mathcal{I}-projective objects.

$\mathcal{I} \circ \mathcal{I} \neq 0 \implies$ there are A, B with $F(A) \cong F(B)$ but $A \ncong B$.

Corollary 22. Let F be a complete, rigid invariant on \mathfrak{T}. Then there is a natural exact sequence

$$\mathcal{I}/\mathcal{I}^2(\mathcal{A}, \mathcal{B}) \rightarrow \mathfrak{T}(\mathcal{A}, \mathcal{B}) \rightarrow \mathfrak{T}/\mathcal{I}(\mathcal{A}, \mathcal{B}).$$

Homological algebra in triangulated categories

Questions

When is $\mathcal{I}^2 = \mathcal{I} \circ \mathcal{I} = 0$?

Are \mathfrak{T}/\mathcal{I} and $\mathcal{I}/\mathcal{I}^2$ derived functors?

- There is a general machinery for homological algebra in triangulated categories using an ideal such as $\ker F$.

- It yields an Abelian approximation \mathfrak{C} to our triangulated category \mathfrak{T} and a homological functor $F' : \mathfrak{T} \rightarrow \mathfrak{C}$ such that homological algebra in \mathfrak{C} lifts back to \mathfrak{T}.

- A universal coefficient exact sequence exists for A if $F'(A)$ has a projective resolution of length 1.

- This need not be the case and may be hard to check.

Difficult problem

Refine an incomplete invariant to make it (more) complete!

2 \hspace{1em} C^*-algebra bundles over non-Hausdorff spaces

- We will first reformulate the notion of a $C(X)$-algebra in a way suitable for non-Hausdorff spaces.

- This leads to a definition of a C^*-algebra (bundle) over a non-Hausdorff space, which we illustrate by some examples.

- Then we introduce Kirchberg’s bivariant KK-theory for such C^*-algebra bundles.
2.1 Equivalent definitions in the Hausdorff case

Theorem 23. Let X be a Hausdorff topological space and A a C^*-algebra. The following additional structures on A are equivalent:

- a non-degenerate *-homomorphism from $C_0(X)$ to the centre of the multiplier algebra of A
- a non-degenerate *-homomorphism $C_0(X, A) \to A$; it has a class in $\text{KK}(C_0(X, A), A)$
- a continuous map $\text{Prim}(A) \to X$, where $\text{Prim}(A)$ is the primitive ideal space of A
- a map from the lattice of open subsets of X to the lattice of ideals in A that commutes with arbitrary suprema and finite infima

The last two conditions make sense for non-Hausdorff spaces.

2.2 Definition and Examples

Definition 24. Let X be a topological space. A C^*-algebra over X is a C^*-algebra A together with a continuous map $\psi: \text{Prim}(A) \to X$.

Theorem 25. The lattice $\mathcal{O}(\text{Prim}A)$ of open subsets of $\text{Prim}(A)$ is isomorphic to the lattice $\mathbb{I}(A)$ of ideals in A.

Lemma 26. A continuous map $\psi: \text{Prim}(A) \to X$ is equivalent to a lattice morphism $\mathcal{O}(X) \to \mathcal{O}(\text{Prim}A) \cong \mathbb{I}(A)$ that preserves arbitrary suprema (provided X is sober).

Finite T_0-spaces and partial orders

- We will concentrate on finite topological T_0-spaces here.
- Let $x \preceq y$ if $\overline{\{x\}} \subseteq \overline{\{y\}}$, this is a partial order on X.

Lemma 27. A subset $S \subseteq X$ is closed \iff $x \prec y \in S$ implies $x \in S$.
A subset $S \subseteq X$ is open \iff $x \succ y \in S$ implies $x \in S$.

Important observation

T_0-topologies and partial orders on finite sets are equivalent.

Example 28. Consider $X_n = \{1, \ldots, n\}$ with the total order $1 \succ 2 \succ \cdots \succ n$.

- The open subsets are $U_k := \{1, \ldots, k\}$ for $k = 0, \ldots, n$.
- A C^*-algebra over X_n is a C^*-algebra A together with an increasing chain of ideals
 $$0 = A(U_0) \triangleleft A(U_1) \triangleleft \cdots \triangleleft A(U_{n-1}) \triangleleft A(U_n) = A.$$
- For $n = 2$, we get a chain $I \triangleleft A$, so that we study C^*-algebra extensions.
Example 29. Consider $Y_n = \{0, 1, \ldots, n\}$ with the partial order $0 < 1, 2, \ldots, n$ and no further relation between $1, \ldots, n$.

- The open subsets of Y_n are all subsets of $\{1, \ldots, n\}$ and Y_n itself.
- The lattice of open subsets is already generated by the singletons $U_j := \{j\}$ for $j = 1, \ldots, n$ and $U_0 := Y_n$.
- A C^*-algebra over Y_n is a C^*-algebra A together with n orthogonal ideals $A(U_j)$, $j = 1, \ldots, n$, that is, $A(U_j) \cap A(U_k) = \{0\}$.
- This is equivalent to a C^*-algebra extension $I \hookrightarrow A \twoheadrightarrow A/I$ with a direct sum decomposition $I = I_1 \oplus I_2 \oplus \cdots \oplus I_n$.

2.3 Kirchberg’s bivariant K-theory

Definition 30. A morphism between two C^*-algebras over X is a *-homomorphism $f : A \to B$ that maps $A(U)$ to $B(U)$ for all open subsets $U \subseteq X$.

Theorem 31. If X is Hausdorff and A and B are C^*-algebras over X (equivalently, $C_0(X)$-algebras), then the morphisms are the $C_0(X)$-linear *-homomorphisms.

Definition 32 (Eberhard Kirchberg). Let A and B be C^*-algebras over X and let (E, F) be a Kasparov cycle for $KK(A, B)$. We call it a Kasparov cycle over X if $A(U) \cdot E \subseteq E \cdot B(U)$ for all $U \in \mathcal{O}(X)$.

$KK^X(A, B)$ is the group of homotopy classes of such Kasparov cycles over X.

Formal properties

- Since we only impose restrictions on the Hilbert module, the Kasparov product works as usual for Kasparov cycles over X.
- There is an exterior product

$$KK^X(A, B) \otimes KK(D, E) \to KK^X(A \otimes D, B \otimes E).$$

This allows us to carry over properties like C^*-stability and Bott periodicity from KK to KK^X.

- There are long exact sequences in both variables for an extension $I \hookrightarrow E \twoheadrightarrow Q$ of C^*-algebras over X with a completely positive contractive section over X, that is, the section maps $Q(U)$ to $E(U)$ for all $U \in \mathcal{O}(X)$.

In particular, KK^X is split-exact in both variables.

Theorem 33 (Universal property). Kirchberg’s bivariant K-theory is the universal split-exact C^*-stable functor on the category of separable C^*-algebras over X.

7
3 The bootstrap class

3.1 The classical case

Definition 34. The bootstrap class \mathcal{B} in KK is the smallest class of C^*-algebras containing the generator \mathbb{C} and closed under the following operations:

- suspensions $A \mapsto C_0(\mathbb{R}, A)$
- countable direct sums
- KK-equivalence
- mapping cones: if $f : A \to B$ is a *-homomorphism and A and B belong to the bootstrap class, so does cone(f).

Lemma 35. The bootstrap class \mathcal{B} is also closed under

- extensions with completely positive section
- inductive limits with completely positive approximations
- fibred products of $A \to B \leftarrow A'$ if p is surjective with a completely positive section

Theorem 36. Let G be a locally compact group with the extra strong Baum-Connes property and let A be a G-C^*-algebra.

$A \rtimes H$ in \mathcal{B} for all compact subgroups $H \subseteq G \implies A \rtimes G$ in \mathcal{B}

Theorem 37. Let G be a connected Lie group with torsion-free fundamental group, let $T \subseteq G$ be a maximal torus, and let A be a G-C^*-algebra.

$A \rtimes G$ in $\mathcal{B} \iff A \rtimes T$ in $\mathcal{B} \implies A$ in \mathcal{B}

Further properties of the bootstrap class

Question

Are all separable nuclear C^*-algebras in the bootstrap class?

Example 38 (Georges Skandalis). If G is a cocompact lattice in $\text{Sp}(n,1)$, then $C^*_r(G)$ does not belong to the bootstrap class.

Reason: The image of $\gamma \in \text{KK}_0^G(\mathbb{C}, \mathbb{C})$ in $\text{KK}_0(C^*_rG, C^*_rG)$ acts identically on $K_* (C^*_rG)$, but it is not invertible.

Exercise

The bootstrap class is not closed under crossed products by actions of $\mathbb{Z}/2$.

Hint (Chris Phillips)

There is an action of $\mathbb{Z}/2$ on a contractible, commutative C^*-algebra with $K_*(\mathbb{Z}/2 \rtimes A) \neq 0$. Tensor this with Skandalis’ counterexample.
3.2 Bootstrap class over a space

Localisation at K-theory over a space X

X: a topological T_0-space.

$F(A): \bigoplus_{U \in \mathcal{O}(X)} K_*(A(U))$ as functor on $KK(X)$

$\mathcal{B}(X)^\perp: \{ A \in KK(X) \mid F(A) = 0 \}$

- If $A \in \mathcal{B}(X)^\perp$, then any computation that is based on K-theoretic invariants of A must give zero.

- The bootstrap class is supposed to be the localisation of $KK(X)$ at the subcategory $\mathcal{B}(X)^\perp$: it is a “quotient” of $KK(X)$ where
 - objects of $\mathcal{B}(X)^\perp$ become zero;
 - an element in $KK^X_0(A,B)$ becomes invertible if it induces an isomorphism $F(A) \cong F(B)$.

Lemma 39. Let \mathcal{U} be an open covering of X.
If $K_*(A(U)) = 0$ whenever $U \in \mathcal{O}(X)$ is contained in some $V \in \mathcal{U}$, then $A \in \mathcal{B}(X)^\perp$.

Small open subsets versus fibres

- If X is a Hausdorff space, then a C^*-algebra over X has fibres $A(x) := A/A(X \setminus \{x\})$ for all $x \in X$.

- For continuous bundles of nuclear C^*-algebras, Marius Dadarlat’s lecture showed that we can detect invertibility of a KK^X-morphism by its restrictions to these fibres.

- This suggests that a KK^X-morphism should become invertible in $\mathcal{B}(X)$ once its restrictions to the fibres in $KK_*(A(x), B(x))$ are invertible for all $x \in X$.
I do not know how to prove this.

- Such a reduction to fibres is impossible for general non-Hausdorff spaces because bundles over such spaces need not have any “fibres” at all.