Asymptotic Unitary Equivalence and Classification of Simple C^*-algebras

Huaxin Lin
Department of Mathematics
University of Oregon
Eugene, OR 97405
U.S.A.
Denote by \mathcal{N} the class of separable amenable C^*-algebras which satisfy the UCT.
Denote by \mathcal{N} the class of separable amenable C^*-algebras which satisfy the UCT.
Let $A \in \mathcal{N}$ be a unital simple C^*-algebra.
Denote by \(\mathcal{N} \) the class of separable amenable \(C^* \)-algebras which satisfy the UCT.

Let \(A \in \mathcal{N} \) be a unital simple \(C^* \)-algebra. Define

\[
\text{Ell}(A) = (K_0(A), K_0(A)_+, [1_A], K_1(A), T(A), \gamma_A),
\]

where \(\gamma_A : T(A) \to S(K_0(A)) \) is defined by \(\gamma_A(\tau)([p]) = \tau(p) \) for all projections in \(A \otimes \mathcal{K} \).
Denote by \mathcal{N} the class of separable amenable C^*-algebras which satisfy the UCT.
Let $A \in \mathcal{N}$ be a unital simple C^*-algebra. Define

$$\ell(A) = (K_0(A), K_0(A)_+, [1_A], K_1(A), T(A), \gamma_A),$$

where $\gamma_A : T(A) \rightarrow S(K_0(A))$ is defined by $\gamma_A(\tau)([p]) = \tau(p)$ for all projections in $A \otimes \mathcal{K}$.
Let A and B be two unital simple C^*-algebras in \mathcal{N}.
Denote by \mathcal{N} the class of separable amenable C^*-algebras which satisfy the UCT. Let $A \in \mathcal{N}$ be a unital simple C^*-algebra. Define

$$Ell(A) = (K_0(A), K_0(A)_+, [1_A], K_1(A), T(A), \gamma_A),$$

where $\gamma_A : T(A) \to S(K_0(A))$ is defined by $\gamma_A(\tau)([p]) = \tau(p)$ for all projections in $A \otimes K$.

Let A and B be two unital simple C^*-algebras in \mathcal{N}. We say

$$\Lambda : Ell(A) \to Ell(B)$$

is an isomorphism,
Denote by \mathcal{N} the class of separable amenable C^*-algebras which satisfy the UCT.
Let $A \in \mathcal{N}$ be a unital simple C^*-algebra. Define

$$Ell(A) = (K_0(A), K_0(A)_+, [1_A], K_1(A), T(A), \gamma_A),$$

where $\gamma_A : T(A) \to S(K_0(A))$ is defined by $\gamma_A(\tau)([p]) = \tau(p)$ for all projections in $A \otimes \mathcal{K}$.
Let A and B be two unital simple C^*-algebras in \mathcal{N}. We say

$$\Lambda : Ell(A) \to Ell(B)$$

is an isomorphism, if there is an isomorphism $\lambda_1 : K_1(A) \to K_1(B)$,
Denote by \mathcal{N} the class of separable amenable C^*-algebras which satisfy the UCT.

Let $A \in \mathcal{N}$ be a unital simple C^*-algebra. Define

$$\text{Ell}(A) = (K_0(A), K_0(A)_+, [1_A], K_1(A), T(A), \gamma_A),$$

where $\gamma_A : T(A) \to S(K_0(A))$ is defined by $\gamma_A(\tau)([p]) = \tau(p)$ for all projections in $A \otimes \mathcal{K}$.

Let A and B be two unital simple C^*-algebras in \mathcal{N}. We say

$\Lambda : \text{Ell}(A) \to \text{Ell}(B)$

is an isomorphism, if there is an isomorphism $\lambda_1 : K_1(A) \to K_1(B)$, an order isomorphism $\lambda_0 : K_0(A) \to K_0(B)$ such that $\lambda_0([1_A]) = [1_B]$.
Denote by \mathcal{N} the class of separable amenable C^*-algebras which satisfy the UCT.
Let $A \in \mathcal{N}$ be a unital simple C^*-algebra. Define

$$\text{Ell}(A) = (K_0(A), K_0(A)_+,[1_A], K_1(A), T(A), \gamma_A),$$

where $\gamma_A : T(A) \to S(K_0(A))$ is defined by $\gamma_A(\tau)([p]) = \tau(p)$ for all projections in $A \otimes \mathcal{K}$.
Let A and B be two unital simple C^*-algebras in \mathcal{N}. We say

$$\Lambda : \text{Ell}(A) \to \text{Ell}(B)$$

is an isomorphism, if there is an isomorphism $\lambda_1 : K_1(A) \to K_1(B)$, an order isomorphism $\lambda_0 : K_0(A) \to K_0(B)$ such that $\lambda_0([1_A]) = [1_B]$ and an affine homeomorphism map $\lambda^T : T(A) \to T(B)$.
Denote by \mathcal{N} the class of separable amenable C^*-algebras which satisfy the UCT. Let $A \in \mathcal{N}$ be a unital simple C^*-algebra. Define

$$Ell(A) = (K_0(A), K_0(A)_+, [1_A], K_1(A), T(A), \gamma_A),$$

where $\gamma_A : T(A) \to S(K_0(A))$ is defined by $\gamma_A(\tau)([p]) = \tau(p)$ for all projections in $A \otimes K$. Let A and B be two unital simple C^*-algebras in \mathcal{N}. We say

$$\Lambda : Ell(A) \to Ell(B)$$

is an isomorphism, if there is an isomorphism $\lambda_1 : K_1(A) \to K_1(B)$, an order isomorphism $\lambda_0 : K_0(A) \to K_0(B)$ such that $\lambda_0([1_A]) = [1_B]$ and an affine homeomorphism map $\lambda^T : T(A) \to T(B)$ such that

$$\gamma_A((\lambda^T)^{-1}(\tau))(x) = \gamma_B(\tau)(\lambda_0(x))$$

for $x \in K_0(A)$ and $\tau \in T(B)$.

Huaxin Lin
Department of Mathematics
University of Oregon
Eugene, OR 97405 U.S.A.

Asymptotic Unitary Equivalence and Classification of Simple C^*-algebras
AH-algebra:

\[A = \lim_{n \to \infty} A_n, \]
AH-algebra:

\[A = \lim_{n \to \infty} A_n, \]

where \(A_n = \bigoplus_{i=1}^{k(n)} P_{(i,n)} M_{R(i,n)}(C(X_{(i,n)})) P_{(i,n)}, \)

and \(P_{(i,n)} \in M_{R(i,n)}(C(X_n)) \) is a projection

and \(X_{(i,n)} \) is a connected finite CW-complex.
AH-algebra:

\[A = \lim_{n \to \infty} A_n, \]

where \(A_n = \bigoplus_{i=1}^{k(n)} P(i,n) M_{R(i,n)}(C(X_{i,n})) P(i,n), \)

and \(P(i,n) \in M_{R(i,n)}(C(X_n)) \) is a projection
and \(X_{i,n} \) is a connected finite CW-complex.

★. If \(A \) is simple, we say \(A \) has slow dimension growth
AH-algebra:

\[A = \lim_{n \to \infty} A_n, \]

where \(A_n = \bigoplus_{i=1}^{k(n)} P_{i,n} M_{R(i,n)}(C(X_{i,n})) P_{i,n}, \)

and \(P_{i,n} \in M_{R(i,n)}(C(X_n)) \) is a projection

and \(X_{i,n} \) is a connected finite CW-complex.

\[\star \text{. If } A \text{ is simple, we say } A \text{ has slow dimension growth if} \]

\[\lim_{n \to \infty} \max_{i} \frac{\dim X_{i,n}}{1 + \text{rank } P_{i,n}} = 0. \]

\[A \text{ is said to have no dimension growth}, \]
AH-algebra:

\[A = \lim_{n \to \infty} A_n, \]

where \(A_n = \bigoplus_{i=1}^{k(n)} P(i,n) M_R(i,n)(C(X(i,n))) P(i,n), \)

and \(P(i,n) \in M_R(i,n)(C(X_n)) \) is a projection
and \(X(i,n) \) is a connected finite CW-complex.

\(\star \). If \(A \) is simple, we say \(A \) has slow dimension growth if

\[\lim_{n \to \infty} \max_i \frac{\dim X(i,n)}{1 + \text{rank} P(i,n)} = 0. \]

\(A \) is said to have no dimension growth, if there is an integer \(m > 0 \) such that

\[\dim X(i,n) \leq m \]

for all \(i \) and \(n \).
Theorem

(Elliott, Gong and Li, Invent. Math. 168 (2007), 249-320)

Let A and B be two unital simple AH-algebras with no dimension growth.

Let A and B be two unital simple AH-algebras with no dimension growth.
Theorem

(Elliott, Gong and Li, Invent. Math. 168 (2007), 249-320)

Let A and B be two unital simple AH-algebras with no dimension growth. Then $A \cong B$ if and only if

$$\left(K_0(A), K_0(A)^+, [1_A], K_1(A), T(A) \right) \cong \left(K_0(B), K_0(B)^+, [1_B], K_1(B), T(B) \right).$$
Theorem

(Elliott, Gong and Li, Invent. Math. 168 (2007), 249-320)
Let A and B be two unital simple AH-algebras with no dimension growth. Then $A \cong B$ if and only if

$$(K_0(A), K_0(A)_+, [1_A], K_1(A), T(A)) \cong (K_0(B), K_0(B)_+, [1_B], K_1(B), T(B)).$$
Definition

Let A be a unital simple C^*-algebra. Then A has tracial rank no more than one and we will write $TR(A) \leq 1$ if the following holds:

For any $\epsilon > 0$, and any finite subset $F \subset A$ containing a nonzero element $a \in A^+$, there is a C^*-subalgebra C in A where $C = \bigoplus_{k=1}^{\infty} M_{n_k}(C(X_i))$, where each X_i is a finite CW complex with dimension no more than one

such that

(i) $\|px - xp\| < \epsilon$ for $x \in F$,

(ii) $pxp \in \epsilon C$ for $x \in F$, and

(iii) $1 - p$ is equivalent to a projection in aAa.

In the above definition, if C can be chosen to be a finite dimensional C^*-subalgebra then $TR(A) = 0$.

If $TR(A) \leq 1$ but $TR(A) \neq 0$, then we will write $TR(A) = 1$.

Huaxin Lin
Department of Mathematics
University of Oregon
Eugene, OR 97405 U.S.A.
Definition

Let A be a unital simple C^*-algebra. Then A has tracial rank no more than one and we will write $TR(A) \leq 1$ if the following holds:

For any $\epsilon > 0$, and any finite subset $\mathcal{F} \subset A$ containing a nonzero element $a \in A_+$, there is a C^*-subalgebra C in A where $C = \bigoplus_{i=1}^{k} M_{n_i}(C(X_i))$, where each X_i is a finite CW complex with dimension no more than one such that

(i) $\|px - xp\| < \epsilon$ for $x \in \mathcal{F}$,
(ii) $pxp \in \epsilon C$ for $x \in \mathcal{F}$, and
(iii) $1 - p$ is equivalent to a projection in aAa.

In the above definition, if C can be chosen to be a finite dimensional C^*-subalgebra then $TR(A) = 0$.

If $TR(A) \leq 1$ but $TR(A) \neq 0$ then we will write $TR(A) = 1$.

Definition

Let A be a unital simple C^*-algebra. Then A has tracial rank no more than one and we will write $TR(A) \leq 1$ if the following holds:

For any $\epsilon > 0$, and any finite subset $\mathcal{F} \subset A$ containing a nonzero element $a \in A_+$, there is a C^*-subalgebra C in A where $C = \bigoplus_{i=1}^{k} M_{n_i}(C(X_i))$, where each X_i is a finite CW complex with dimension no more than one such that $1_C = p$ satisfying the following:

(i) $\|px - xp\| < \epsilon$ for $x \in \mathcal{F}$,

(ii) $pxp \in \epsilon C$ for $x \in \mathcal{F}$ and

(iii) $1 - p$ is equivalent to a projection in aAa.

In the above definition, if C can be chosen to be a finite dimensional C^*-subalgebra then $TR(A) = 0$.

If $TR(A) \leq 1$ but $TR(A) \neq 0$ then we will write $TR(A) = 1$.
Definition

Let A be a unital simple C^*-algebra. Then A has tracial rank no more than one and we will write $TR(A) \leq 1$ if the following holds:

For any $\epsilon > 0$, and any finite subset $\mathcal{F} \subset A$ containing a nonzero element $a \in A_+$, there is a C^*-subalgebra C in A where $C = \bigoplus_{i=1}^{k} M_{n_i}(C(X_i))$, where each X_i is a finite CW complex with dimension no more than one such that $1_C = p$ satisfying the following:

(i) $\|px - xp\| < \epsilon$ for $x \in \mathcal{F}$,
Definition

Let A be a unital simple C^*-algebra. Then A has tracial rank no more than one and we will write $\text{TR}(A) \leq 1$ if the following holds:

For any $\epsilon > 0$, and any finite subset $\mathcal{F} \subset A$ containing a nonzero element $a \in A_+$, there is a C^*-subalgebra C in A where $C = \bigoplus_{i=1}^{k} M_{n_i}(C(X_i))$, where each X_i is a finite CW complex with dimension no more than one such that $1_C = p$ satisfying the following:

(i) $\|px - xp\| < \epsilon$ for $x \in \mathcal{F}$,
(ii) $pxp \in \epsilon C$ for $x \in \mathcal{F}$ and
Definition

Let A be a unital simple C^*-algebra. Then A has tracial rank no more than one and we will write $TR(A) \leq 1$ if the following holds:

For any $\epsilon > 0$, and any finite subset $F \subset A$ containing a nonzero element $a \in A_+$, there is a C^*-subalgebra C in A where $C = \oplus_{i=1}^k M_{n_i}(C(X_i))$, where each X_i is a finite CW complex with dimension no more than one such that $1_C = p$ satisfying the following:

(i) $\|px - xp\| < \epsilon$ for $x \in F$,
(ii) $pxp \in \epsilon C$ for $x \in F$ and
(iii) $1 - p$ is equivalent to a projection in aAa.

In the above definition, if C can be chosen to be a finite dimensional C^*-subalgebra then $TR(A) = 0$.

If $TR(A) \leq 1$ but $TR(A) \neq 0$ then we will write $TR(A) = 1$.

Huaxin Lin Department of Mathematics University of Oregon Eugene, OR 97405 U.S.A.

Asymptotic Unitary Equivalence and Classification of Simple C^*-algebras
Definition

Let A be a unital simple C^*-algebra. Then A has tracial rank no more than one and we will write $TR(A) \leq 1$ if the following holds:

For any $\epsilon > 0$, and any finite subset $\mathcal{F} \subset A$ containing a nonzero element $a \in A_+$, there is a C^*-subalgebra C in A where $C = \bigoplus_{i=1}^{k} M_{n_i}(C(X_i))$, where each X_i is a finite CW complex with dimension no more than one such that $1_C = p$ satisfying the following:

(i) $\|px - xp\| < \epsilon$ for $x \in \mathcal{F}$,
(ii) $pxp \in \epsilon C$ for $x \in \mathcal{F}$ and
(iii) $1 - p$ is equivalent to a projection in aAa.

In the above definition, if C can be chosen to be a finite dimensional C^*-subalgebra then $TR(A) = 0$. If $TR(A) \leq 1$ but $TR(A) \neq 0$ then we will write $TR(A) = 1$.

Huaxin Lin
Department of Mathematics
University of Oregon
Eugene, OR 97405 U.S.A.
where \(q = (1 - p) \).

\[
\begin{pmatrix}
qAq \\
\end{pmatrix}
\]

\[
B
\]

\[TR(A) = 0, \text{ if } \dim B < \infty, \quad TR(A) \leq 1, \text{ if } B = \bigoplus_{i=1}^{n} M_{R_i}(C(X_i))) \text{ with } \dim X_i \leq 1.\]
Theorem

(L–2001) Let A be a unital separable simple C^*-algebra with $TR(A) \leq 1$. Then

- A is quasidiagonal;
- A has real rank zero, or real rank one;
- A has stable rank one;
- $K_0(A)$ is weakly unperforated and with Riesz interpolation property;
- A has the fundamental comparison property: if $p, q \in A$ are two projections and $\tau(p) < \tau(q)$ for all $\tau \in T(A)$, then $p \sim q'$ with $q' \leq q$.

Huaxin Lin
Department of Mathematics
University of Oregon
Eugene, OR 97405 U.S.A.
Theorem

(L–2001) Let A be a unital separable simple C^*-algebra with $TR(A) \leq 1$. Then

- A is quasidiagonal;

Huaxin Lin
Department of Mathematics
University of Oregon
Eugene, OR 97405 U.S.A.
Theorem

(L–2001) Let A be a unital separable simple C^*-algebra with $\text{TR}(A) \leq 1$. Then

- A is quasidiagonal;
- A has real rank zero, or real rank one;
- $K_0(A)$ is weakly unperforated and with Riesz interpolation property;
- A has the fundamental comparison property: if $p, q \in A$ are two projections and $\tau(p) < \tau(q)$ for all $\tau \in T(A)$, then $p \sim q'$ with $q' \leq q$.
Theorem

(L–2001) Let A be a unital separable simple C^*-algebra with $TR(A) \leq 1$. Then

- A is quasidiagonal;
- A has real rank zero, or real rank one;
- A has stable rank one;
- $K_0(A)$ is weakly unperforated and with Riesz interpolation property;
- A has the fundamental comparison property: if $p, q \in A$ are two projections and $\tau(p) < \tau(q)$ for all $\tau \in T(A)$, then $p \sim q'$ with $q' \leq q$.

Huaxin Lin
Department of Mathematics
University of Oregon
Eugene, OR 97405 U.S.A.
Theorem

(L–2001) Let A be a unital separable simple C^*-algebra with $TR(A) \leq 1$. Then

- A is quasidiagonal;
- A has real rank zero, or real rank one;
- A has stable rank one;
- $K_0(A)$ is weakly unperforated and with Riesz interpolation property;
- A has the fundamental comparison property: if $p, q \in A$ are two projections and $\tau(p) < \tau(q)$ for all $\tau \in T(A)$, then $p \sim q'$ with $q' \leq q$.

Huaxin Lin
Department of Mathematics
University of Oregon
Eugene, OR 97405 U.S.A.
Theorem (L–2001) Let A be a unital separable simple C^*-algebra with $\text{TR}(A) \leq 1$. Then

- A is quasidiagonal;
- A has real rank zero, or real rank one;
- A has stable rank one;
- $K_0(A)$ is weakly unperforated and with Riesz interpolation property;
- A has the fundamental comparison property: if $p, q \in A$ are two projections and $\tau(p) < \tau(q)$ for all $\tau \in T(A)$, then $p \sim q'$ with $q' \leq q$.

Huaxin Lin
Department of Mathematics
University of Oregon
Eugene, OR 97405 U.S.A.
Theorem

(G. Gong) \textit{Every unital simple AH-algebra with no dimension growth has tracial rank no more than one.}
Theorem

(G. Gong) Every unital simple AH-algebra with no dimension growth has tracial rank no more than one.

In fact, every unital simple AH-algebra with (very) slow dimension growth has tracial rank no more than one.
Theorem

(L—2001)

For a unital simple AH-algebra, the following are equivalent:

(i) \(TR(A) = 0 \);
(ii) \(A \) has real rank zero and has the fundamental comparison property;
(iii) \(A \) has real rank zero and slow dimension growth;
(iv) \(A \) has real rank zero, stable rank one and has weakly unperforated \(K_0(A) \).

That (iii) \(\rightarrow \) (i) was proved by Elliott and Gong (at least for the no dimension growth case).
Theorem

(L—2001)

For a unital simple AH-algebra, the following are equivalent:

(i) $TR(A) = 0$;

(ii) A has real rank zero and has the fundamental comparison property;

(iii) A has real rank zero and slow dimension growth;

(iv) A has real rank zero, stable rank one and has weakly unperforated $K_0(A)$.

That (iii) \rightarrow (i) was proved by Elliott and Gong (at least for the no dimension growth case).
Theorem (L—2001)

For a unital simple AH-algebra, the following are equivalent:

- (i) $TR(A) = 0$;
- (ii) A has real rank zero and has the fundamental comparison property;
- (iii) A has real rank zero and slow dimension growth;
- (iv) A has real rank zero, stable rank one and has weakly unperforated $K_0(A)$.

That (iii) \rightarrow (i) was proved by Elliott and Gong (at least for the no dimension growth case).
Theorem

(L—2001)

For a unital simple AH-algebra, the following are equivalent:

(i) $TR(A) = 0$;

(ii) A has real rank zero and has the fundamental comparison property;

(iii) A has real rank zero and slow dimension growth;

(iv) A has real rank zero, stable rank one and has weakly unperforated $K_0(A)$.

That $(iii) \rightarrow (i)$ was proved by Elliott and Gong (at least for the no dimension growth case).
Theorem

(L—2001)
For a unital simple AH-algebra, the following are equivalent:

(i) $TR(A) = 0$;
(ii) A has real rank zero and has the fundamental comparison property;
(iii) A has real rank zero and slow dimension growth;
(iv) A has real rank zero, stable rank one and has weakly unperforated $K_0(A)$.

That (iii) \rightarrow (i) was proved by Elliott and Gong (at least for the no dimension growth case).
Theorem

(L-2003) Let A be a unital simple C^*-algebra which is locally type I.

Suppose that A has a unique tracial state, real rank zero, stable rank one and weakly unperforated $K_0(A)$. Then $\text{TR}(A) = 0$.
Theorem

(L-2003) Let A be a unital simple C^*-algebra which is locally type I. Suppose that A has a unique tracial state, real rank zero, stable rank one and weakly unperforated $K_0(A)$.

Theorem

(N. C. Phillips and L - 2004) Let X be an infinite compact metric space with finite covering dimension and let $\alpha: X \to X$ be a minimal homeomorphism. Denote $A_\alpha = C(X) \rtimes \mathbb{Z}$. Then $\text{TR}(A_\alpha) = 0$ if and only if $\rho(K_0(A_\alpha))$ is dense in $\text{Aff}(T(A_\alpha))$.

Huaxin Lin
Department of Mathematics
University of Oregon
Eugene, OR 97405 U.S.A.
Theorem

(L-2003) Let A be a unital simple C^*-algebra which is locally type I. Suppose that A has a unique tracial state, real rank zero, stable rank one and weakly unperforated $K_0(A)$. Then $TR(A) = 0$.

Theorem

(N. C. Phillips and L — 2004) Let X be an infinite compact metric space with finite covering dimension and let $\alpha: X \to X$ be a minimal homeomorphism. Denote $A_\alpha = C(X) \rtimes \mathbb{Z}$. Then $TR(A_\alpha) = 0$ if and only if $\rho(K_0(A_\alpha))$ is dense in $\text{Aff}(T(A_\alpha))$.

Theorem (L-2003) Let A be a unital simple C^*-algebra which is locally type I. Suppose that A has a unique tracial state, real rank zero, stable rank one and weakly unperforated $K_0(A)$. Then $TR(A) = 0$.

Theorem (N. C. Phillips and L —- 2004) Let X be an infinite compact metric space with finite covering dimension and let $\alpha : X \to X$ be a minimal homeomorphism. Denote $A_\alpha = C(X) \rtimes_\alpha \mathbb{Z}$.

Huaxin Lin Department of Mathematics University of Oregon Eugene, OR 97405 U.S.A. (A) Asymptotic Unitary Equivalence and Classification of Simple C^*-algebras 10 / 39
Theorem

(L-2003) Let A be a unital simple C^*-algebra which is locally type I. Suppose that A has a unique tracial state, real rank zero, stable rank one and weakly unperforated $K_0(A)$. Then $TR(A) = 0$.

Theorem

(N. C. Phillips and L —- 2004)

Let X be an infinite compact metric space with finite covering dimension and let $\alpha : X \to X$ be a minimal homeomorphism. Denote $A_\alpha = C(X) \rtimes_\alpha \mathbb{Z}$. Then $TR(A_\alpha) = 0$ if and only if
Theorem

(L-2003) Let A be a unital simple C^*-algebra which is locally type I. Suppose that A has a unique tracial state, real rank zero, stable rank one and weakly unperforated $K_0(A)$. Then $TR(A) = 0$.

Theorem

(N. C. Phillips and L —- 2004)

Let X be an infinite compact metric space with finite covering dimension and let $\alpha : X \to X$ be a minimal homeomorphism. Denote $A_\alpha = C(X) \rtimes_\alpha \mathbb{Z}$. Then $TR(A_\alpha) = 0$ if and only if

$$\rho(K_0(A_\alpha)) \text{ is dense in } Aff(T(A_\alpha)).$$
Theorem

(L—2007)

Let $A, B \in \mathcal{N}$ be two unital simple C^*-algebras with $TR(A) \leq 1$ and $TR(B) \leq 1$. Then $A \sim B$ if and only if $(K_0(A), K_0(A) + 1, T(A)) \sim (K_0(B), K_0(B) + 1, T(B))$.

Huaxin Lin
Department of Mathematics
University of Oregon
Eugene, OR 97405 U.S.A.

Asymptotic Unitary Equivalence and Classification of Simple C^*-algebras

11 / 39
Theorem

(L—2007)

Let $A, B \in \mathcal{N}$ be two unital simple C^*-algebras with $\text{TR}(A) \leq 1$ and $\text{TR}(B) \leq 1$.

Then $A \cong B$
Theorem

(L—2007)
Let $A, B \in \mathcal{N}$ be two unital simple C^*-algebras with $\text{TR}(A) \leq 1$ and $\text{TR}(B) \leq 1$.
Then $A \cong B$ if and only if

$$K_0(A), K_0(A) + 1, K_1(A), \text{T}(A) \cong K_0(B), K_0(B) + 1, K_1(B), \text{T}(B).$$
Theorem

(L—2007)

Let $A, B \in \mathcal{N}$ be two unital simple C^*-algebras with $TR(A) \leq 1$ and $TR(B) \leq 1$. Then $A \cong B$ if and only if

$$(K_0(A), K_0(A)_+, [1_A], K_1(A), T(A)) \cong (K_0(B), K_0(B)_+, [1_B], K_1(B), T(B)).$$

Huaxin Lin Department of Mathematics University of Oregon Eugene, OR 97405 U.S.A.

Asymptotic Unitary Equivalence and Classification of Simple C^*-algebras

11 / 39
\(\mathcal{Z} \) (the Jiang-Su algebra) is a unital simple separable amenable \(C^* \)-algebra (an ASH-algebra) in \(\mathcal{N} \) such that

\[
\text{Ell}(\mathcal{Z}) = \text{Ell}(\mathbb{C}).
\]
\[
\mathcal{Z} \text{ (the Jiang-Su algebra) is a unital simple separable amenable } \mathcal{C}^*\text{-algebra (an ASH-algebra) in } \mathcal{N} \text{ such that }
\]
\[
\text{Ell}(\mathcal{Z}) = \text{Ell}(\mathbb{C}).
\]

Let \(p \) and \(q \) be a pair of relatively prime supernatural numbers of infinite type.
* \mathcal{Z} (the Jiang-Su algebra) is a unital simple separable amenable C*-algebra (an ASH-algebra) in \mathcal{N} such that

$$Ell(\mathcal{Z}) = Ell(\mathbb{C}).$$

Let p and q be a pair of relatively prime supernatural numbers of infinite type.

Let

$$\mathcal{Z}_{p,q} = \{ f \in C([0,1], M_p \otimes M_q) : f(0) \in M_p \otimes 1_{M_q}, f(1) \in 1_{M_p} \otimes M_q \}$$

One has $\mathcal{Z} = \lim_{n \to \infty} (\mathcal{Z}_{p,q})$. So $A \otimes \mathcal{Z} = \lim (A \otimes \mathcal{Z}_{p,q}, \text{id}_A \otimes \alpha)$.

Huaxin Lin Department of Mathematics University of Oregon Eugene, OR 97405 U.S.A.
\(\mathcal{Z} \) (the Jiang-Su algebra) is a unital simple separable amenable \(\mathcal{C}^* \)-algebra (an ASH-algebra) in \(\mathcal{N} \) such that

\[\text{Ell}(\mathcal{Z}) = \text{Ell}(\mathbb{C}). \]

Let \(p \) and \(q \) be a pair of relatively prime supernatural numbers of infinite type.

Let

\[\mathcal{Z}_{p,q} = \{ f \in C([0,1], M_p \otimes M_q) : f(0) \in M_p \otimes 1_{M_q}, f(1) \in 1_{M_p} \otimes M_q \} \]

One has

\[\mathcal{Z} = \lim_{n \to \infty} (\mathcal{Z}_{p,q}, \alpha). \]
\(\mathcal{Z} \) (the Jiang-Su algebra) is a unital simple separable amenable \(C^* \)-algebra (an ASH-algebra) in \(\mathcal{N} \) such that

\[
Ell(\mathcal{Z}) = Ell(C).
\]

Let \(p \) and \(q \) be a pair of relatively prime supernatural numbers of infinite type.

Let

\[
\mathcal{Z}_{p,q} = \{ f \in C([0, 1], M_p \otimes M_q) : f(0) \in M_p \otimes 1_{M_q}, f(1) \in 1_{M_p} \otimes M_q \}
\]

One has

\[
\mathcal{Z} = \lim_{n \to \infty} (\mathcal{Z}_{p,q}, \alpha).
\]

So

\[
A \otimes \mathcal{Z} = \lim(A \otimes \mathcal{Z}_{p,q}, id_A \otimes \alpha).
\]
Let \(\varphi : A \otimes \mathcal{Z}_{p,q} \to B \otimes \mathcal{Z}_{r,s} \) be a homomorphism. Denote by \(\Gamma(\varphi) : \) \((K_0(A), K_0(A) + \mathbb{Z}, \mathbb{Z}[A], K_1(A), T(A)) \to (K_0(B), K_0(B) + \mathbb{Z}, \mathbb{Z}[B], K_1(B), T(B)) \) be the map induced by \(\varphi \) which is the triple:
\[
(\varphi^*_0, \varphi^*_1, \varphi^*_T)
\]
where \(\varphi^*_T : T(B) \to T(A) \) defined by \(\varphi^*_T(\tau)(a) = \tau \circ \varphi(a) \) for all \(a \in A \).

Let \(\Lambda : \operatorname{Ell}(A) \cong \operatorname{Ell}(B) \). Then \(\Lambda \) induces \(\Lambda^p : (K_0(A \otimes M_p), K_0(A \otimes M_p) + \mathbb{Z}[A \otimes M_p], K_1(A \otimes M_p), T(A \otimes M_p)) \to (K_0(B \otimes M_p), K_0(B \otimes M_p) + \mathbb{Z}[B \otimes M_p], K_1(B \otimes M_p), T(B \otimes M_p)) \).
Suppose that there are isomorphisms \(\phi : A \otimes M_p \to B \otimes M_p \) and \(\psi : A \otimes M_q \to B \otimes M_q \).
\[A \otimes \mathcal{Z}_{p,q} : \]

\[A \otimes M_p \quad \sim \quad A \otimes M_q \]

Suppose that there are isomorphisms \(\phi : A \otimes M_p \to B \otimes M_p \) and \(\psi : A \otimes M_q \to B \otimes M_q \).

Then one has

\[
\begin{align*}
(A \otimes M_p) \otimes M_q & \quad \sim \quad (A \otimes M_p) \otimes M_p \\
\downarrow_{\phi \otimes \text{id}_{M_q}} & \quad \quad \quad \quad \quad \downarrow_{\psi \otimes \text{id}_p} \\
B \otimes M_p \otimes M_q & \quad \sim \quad B \otimes M_q \otimes M_p
\end{align*}
\]
Suppose that there are isomorphisms $\phi : A \otimes M_p \to B \otimes M_p$ and $\psi : A \otimes M_q \to B \otimes M_q$. Then one has

\[
\begin{align*}
(A \otimes M_p) \otimes M_q & \sim (A \otimes M_p) \otimes M_p \\
\downarrow \phi \otimes \text{id}_{M_q} & \downarrow \psi \otimes \text{id}_p \\
B \otimes M_p \otimes M_q & \sim B \otimes M_q \otimes M_p
\end{align*}
\]

Let $\phi : A \to B$ be a homomorphism. Denote by $\Gamma(\phi) : (K_0(A), K_0(A)_+, [1_A], K_1(A), T(A)) \to (K_0(B), K_0(B), [1_B], K_1(B), T(B))$ be the map induced by ϕ which is the triple:

\[
(\phi_*0, \phi_*1, \phi_T)
\]

where $\phi_T : T(B) \to T(A)$ defined by $\phi_T(\tau)(a) = \tau \circ \phi(a)$ for all $a \in A$.

\[A \otimes \mathcal{Z}_{p,q} : \]

\[
A \otimes M_p \sim A \otimes M_q
\]
Suppose that there are isomorphisms $\phi : A \otimes M_p \to B \otimes M_p$ and $\psi : A \otimes M_q \to B \otimes M_q$.

Then one has

$$(A \otimes M_p) \otimes M_q \sim (A \otimes M_p) \otimes M_p$$

$$(A \otimes M_q) \otimes M_p \sim (A \otimes M_q) \otimes M_q$$

Let $\phi : A \to B$ be a homomorphism. Denote by $\Gamma(\phi) : (K_0(A), K_0(A)_+, [1_A], K_1(A), T(A)) \to (K_0(B), K_0(B), [1_B], K_1(B), T(B))$ be the map induced by ϕ which is the triple:

$$(\phi_*0, \phi_*1, \phi_T)$$

where $\phi_T : T(B) \to T(A)$ defined by $\phi_T(\tau)(a) = \tau \circ \phi(a)$ for all $a \in A$.

Let $\Lambda : Ell(A) \cong Ell(B)$. Then Λ induces

$$\Lambda_p : (K_0(A \otimes M_p), K_0(A \otimes M_p)_+, [1_{A \otimes M_p}], K_1(A \otimes M_p), T(A \otimes M_p))$$
(Winter 2007) Let A and B be two unital simple C^*-algebras in \mathcal{N}.
Let A and B be two unital simple C^*-algebras in \mathcal{N}. Suppose that

$$\Lambda : \text{Ell}(A) \cong \text{Ell}(B).$$

Then $A \otimes \mathbb{Z} \cong B \otimes \mathbb{Z}$.
Theorem

(Winter 2007) Let A and B be two unital simple C^*-algebras in \mathcal{N}. Suppose that

$$\Lambda : \text{Ell}(A) \cong \text{Ell}(B).$$

Suppose also that there are relatively prime supernatural numbers of infinite type p and q such that there exist isomorphisms

$$\varphi : A \otimes M_p \rightarrow B \otimes M_p$$

and

$$\psi : A \otimes M_q \rightarrow B \otimes M_q$$

with $\Gamma(\varphi) = \Lambda_p$ and $\Gamma(\psi) = \Lambda_q$. Then $A \otimes \mathbb{Z} \cong B \otimes \mathbb{Z}$.

Huaxin Lin
Department of Mathematics
University of Oregon
Eugene, OR 97405 U.S.A.

Asymptotic Unitary Equivalence and Classification of Simple C^*-algebras
(Winter 2007) Let A and B be two unital simple C^*-algebras in \mathcal{N}. Suppose that

$$\Lambda : \text{Ell}(A) \cong \text{Ell}(B).$$

Suppose also that there are relatively prime supernatural numbers of infinite type p and q such that there exist isomorphisms

$$\phi : A \otimes M_p \to B \otimes M_p \quad \text{and} \quad \psi : A \otimes M_q \to B \otimes M_q$$

and there exists a continuous path of unitaries $\{u_t : t \in [0,1)\} \subset B \otimes M_p \otimes M_q$ such that

$$u_t(0) = 1, \quad \lim_{t \to 1} \text{ad}u_t \circ \phi \otimes \text{id}_{M_q}(a) = \psi \otimes \text{id}_{M_p}(a)$$

for all $a \in A \otimes M_p \otimes M_q$. Then $A \otimes Z \cong B \otimes Z$.

Huaxin Lin
Department of Mathematics
University of Oregon
Eugene, OR 97405 U.S.A.
Theorem

(Winter 2007) Let A and B be two unital simple C^*-algebras in N. Suppose that

$$\Lambda : \text{Ell}(A) \cong \text{Ell}(B).$$

Suppose also that there are relatively prime supernatural numbers of infinite type p and q such that there exist isomorphisms

$$\phi : A \otimes M_p \to B \otimes M_p \quad \text{and} \quad \psi : A \otimes M_q \to B \otimes M_q$$

with

$$\Gamma(\phi) = \Lambda_p \quad \text{and} \quad \Gamma(\psi) = \Lambda_q.$$
Theorem

(Winter 2007) Let A and B be two unital simple C^*-algebras in \mathcal{N}. Suppose that

$$\Lambda : \text{Ell}(A) \cong \text{Ell}(B).$$

Suppose also that there are relatively prime supernatural numbers of infinite type p and q such that there exist isomorphisms

$$\phi : A \otimes M_p \to B \otimes M_p \quad \text{and} \quad \psi : A \otimes M_q \to B \otimes M_q$$

with

$$\Gamma(\phi) = \Lambda_p \quad \text{and} \quad \Gamma(\psi) = \Lambda_q.$$

and there exists a continuous path of unitaries

$$\{u_t : t \in [0, 1]\} \subset B \otimes M_p \otimes M_q$$

Then $A \otimes \mathbb{Z} \cong B \otimes \mathbb{Z}.$
(Winter 2007) Let A and B be two unital simple C^*-algebras in \mathcal{N}. Suppose that

$$\Lambda : \operatorname{Ell}(A) \cong \operatorname{Ell}(B).$$

Suppose also that there are relatively prime supernatural numbers of infinite type p and q such that there exist isomorphisms

$$\phi : A \otimes M_p \to B \otimes M_p \quad \text{and} \quad \psi : A \otimes M_q \to B \otimes M_q$$

with

$$\Gamma(\phi) = \Lambda_p \quad \text{and} \quad \Gamma(\psi) = \Lambda_q.$$

and there exists a continuous path of unitaries

$$\{u_t : t \in [0, 1]\} \subset B \otimes M_p \otimes M_q$$

such that

$$u(0) = 1, \quad \lim_{t \to 1} \operatorname{ad} u_t \circ \phi \otimes \operatorname{id}_{M_q}(a) = \psi \otimes \operatorname{id}_{M_p}(a) \quad \text{for all} \quad a \in A \otimes M_p \otimes M_q.$$
Theorem
(Winter 2007) Let A and B be two unital simple C^*-algebras in \mathcal{N}. Suppose that
\[\Lambda : \text{Ell}(A) \cong \text{Ell}(B). \]
Suppose also that there are relatively prime supernatural numbers of infinite type p and q such that there exist isomorphisms
\[\phi : A \otimes M_p \to B \otimes M_p \quad \text{and} \quad \psi : A \otimes M_q \to B \otimes M_q \]
with
\[\Gamma(\phi) = \Lambda_p \quad \text{and} \quad \Gamma(\psi) = \Lambda_q. \]
and there exists a continuous path of unitaries
\[\{u_t : t \in [0, 1]\} \subset B \otimes M_p \otimes M_q \quad \text{such that} \]
\[u(0) = 1, \quad \lim_{t \to 1} \text{ad} \ u_t \circ \phi \otimes \text{id}_{M_q}(a) = \psi \otimes \text{id}_{M_p}(a) \quad \text{for all} \quad a \in A \otimes M_p \otimes M_q. \]
Then $A \otimes \mathcal{Z} \cong B \otimes \mathcal{Z}$.
Asymptotic Unitary Equivalence and Classification of Simple C^*-algebras
Theorem

(Uniqueness Theorem A—L 2005) Let C be a unital AH-algebra and A be a unital separable simple C^*-algebra with $TR(A) = 0$. Suppose that $\varphi, \psi : C \to A$ are two unital monomorphisms. Then there exists a sequence of unitaries $\{u_n\} \subset A$ such that
$$\lim_{n \to \infty} \text{ad} u_n \circ \varphi(c) = \psi(c)$$
for all $c \in C$ if and only if $[\varphi] = [\psi]$ in $KL(C, A)$ and $\tau \circ \varphi = \tau \circ \psi$ for all $\tau \in T(A)$.
Theorem

(Uniqueness Theorem A—L 2005) Let C be a unital AH-algebra and A be a unital separable simple C^*-algebra with $\text{TR}(A) = 0$. Suppose that $\phi, \psi : C \rightarrow A$ are two unital monomorphisms. Then there exists a sequence of unitaries $\{u_n\} \subset A$ such that $\lim_{n \to \infty} \text{ad} u_n \circ \phi(c) = \psi(c)$ for all $c \in C$ if and only if $[\phi] = [\psi]$ in $\text{KL}(C, A)$ and $\tau \circ \phi = \tau \circ \psi$ for all $\tau \in \mathcal{T}(A)$.
Theorem

(Uniqueness Theorem A—L 2005) Let C be a unital AH-algebra and A be a unital separable simple C^*-algebra with $TR(A) = 0$. Suppose that $\phi, \psi : C \to A$ are two unital monomorphisms. Then there exists a sequence of unitaries $\{u_n\} \subset A$ such that

$$\lim_{n \to \infty} \text{ad} u_n \circ \phi(c) = \psi(c)$$

for all $c \in C$ if and only if $[\phi] = [\psi]$ in $KL(C, A)$ and $\tau \circ \phi = \tau \circ \psi$ for all $\tau \in T(A)$.
Theorem

(Uniqueness Theorem A—L 2005) Let C be a unital AH-algebra and A be a unital separable simple C^*-algebra with $TR(A) = 0$. Suppose that $\phi, \psi : C \to A$ are two unital monomorphisms. Then there exists a sequence of unitaries $\{u_n\} \subset A$ such that

$$\lim_{n \to \infty} \text{ad } u_n \circ \phi(c) = \psi(c)$$

for all $c \in C$
(Uniqueness Theorem A—L 2005) Let C be a unital AH-algebra and A be a unital separable simple C^*-algebra with $TR(A) = 0$. Suppose that $\phi, \psi : C \rightarrow A$ are two unital monomorphisms. Then there exists a sequence of unitaries $\{u_n\} \subset A$ such that
\[
\lim_{n \to \infty} \text{ad } u_n \circ \phi(c) = \psi(c)
\]
for all $c \in C$ if and only if
\[
[\phi] = [\psi] \text{ in } KL(C, A) \text{ and }
\tau \circ \phi = \tau \circ \psi
\]
for all $\tau \in T(A)$.
Suppose that

\[u_n^* \phi_1(a) u_n \approx \frac{1}{2^n} \phi_2(a) \]
Suppose that
\[u_n^* \phi_1(a) u_n \approx \frac{1}{2^n} \phi_2(a) \]
and
\[u_{n+1}^* \phi_1(a) u_{n+1} \approx \frac{1}{2^{n+1}} \phi_2(a) \]
Suppose that
\[u_n^* \phi_1(a) u_n \approx \frac{1}{2^n} \phi_2(a) \]
and
\[u_{n+1}^* \phi_1(a) u_{n+1} \approx \frac{1}{2^{n+1}} \phi_2(a). \]
Suppose that there is a continuous path of unitaries \(\{ u(n, t) : t \in [0, 1] \} \)
such that \(u(n, 0) = u_n \) and \(u(n, 1) = u_{n+1} \).
Suppose that

\[u_n^* \phi_1(a) u_n \approx 1/2^n \phi_2(a) \]

and

\[u_{n+1}^* \phi_1(a) u_{n+1} \approx 1/2^{n+1} \phi_2(a). \]

Suppose that there is a continuous path of unitaries \(\{u(n, t) : t \in [0, 1]\} \) such that \(u(n, 0) = u_n \) and \(u(n, 1) = u_{n+1} \). One may hope that one can use \(\{u_n(t) : t \in [0, 1]\} \) to obtain \(\{u(t) : t \in [1, \infty)\} \).
Suppose that
\[u_n^* \phi_1(a) u_n \approx \frac{1}{2^n} \phi_2(a) \]
and
\[u_{n+1}^* \phi_1(a) u_{n+1} \approx \frac{1}{2^{n+1}} \phi_2(a). \]

Suppose that there is a continuous path of unitaries \(\{u(n, t) : t \in [0, 1]\} \) such that \(u(n, 0) = u_n \) and \(u(n, 1) = u_{n+1} \). One may hope that one can use \(\{u_n(t) : t \in [0, 1]\} \) to obtain \(\{u(t) : t \in [1, \infty)\} \).

But \(u(n, t)^* \phi_1(a) u(n, t) \) may be very different from \(u_n^* \phi_1(a) u_n \).
Suppose that
\[u_n^* \phi_1(a) u_n \approx 1/2^n \phi_2(a) \]
and
\[u_{n+1}^* \phi_1(a) u_{n+1} \approx 1/2^{n+1} \phi_2(a). \]
Suppose that there is a continuous path of unitaries \(\{u(n, t) : t \in [0, 1]\} \)
such that \(u(n, 0) = u_n \) and \(u(n, 1) = u_{n+1} \). One may hope that one can
use \(\{u_n(t) : t \in [0, 1]\} \) to obtain \(\{u(t) : t \in [1, \infty)\} \).
But \(u(n, t)^* \phi_1(a) u(n, t) \) may be very different from \(u_n^* \phi_1(a) u_n \).
Consider \(w = u_n^* u_{n+1} \).
Suppose that
\[u_n^* \phi_1(a) u_n \approx \frac{1}{2^n} \phi_2(a) \]
and
\[u_{n+1}^* \phi_1(a) u_{n+1} \approx \frac{1}{2^{n+1}} \phi_2(a). \]

Suppose that there is a continuous path of unitaries \(\{u(n, t) : t \in [0, 1]\} \)
such that \(u(n, 0) = u_n \) and \(u(n, 1) = u_{n+1} \). One may hope that one can use \(\{u_n(t) : t \in [0, 1]\} \) to obtain \(\{u(t) : t \in [1, \infty)\} \).

But \(u(n, t)^* \phi_1(a) u(n, t) \) may be very different from \(u_n^* \phi_1(a) u_n \).

Consider \(w = u_n^* u_{n+1} \). Then
\[w^* \phi_2(a) w \approx \frac{1}{2^n} \quad u_{n+1}^* \phi_1(a) u_{n+1} \]
Suppose that
\[u_n^* \phi_1(a) u_n \approx \frac{1}{2^n} \phi_2(a) \]
and
\[u_{n+1}^* \phi_1(a) u_{n+1} \approx \frac{1}{2^{n+1}} \phi_2(a) \].

Suppose that there is a continuous path of unitaries \(\{u(n, t) : t \in [0, 1]\} \)
such that \(u(n, 0) = u_n \) and \(u(n, 1) = u_{n+1} \). One may hope that one can use \(\{u_n(t) : t \in [0, 1]\} \) to obtain \(\{u(t) : t \in [1, \infty)\} \).

But \(u(n, t)^* \phi_1(a) u(n, t) \) may be very different from \(u_n^* \phi_1(a) u_n \).

Consider \(w = u_n^* u_{n+1} \). Then
\[
w^* \phi_2(a) w \quad \approx 1/2^n \quad u_{n+1}^* \phi_1(a) u_{n+1}
\approx 1/2^{n+1} \quad \phi_2(a). \tag{e0.1}
\]
Suppose that
\[u_n^* \phi_1(a) u_n \approx \frac{1}{2^n} \phi_2(a) \]
and
\[u_{n+1}^* \phi_1(a) u_{n+1} \approx \frac{1}{2^{n+1}} \phi_2(a). \]

Suppose that there is a continuous path of unitaries \(\{ u(n, t) : t \in [0, 1] \} \)
such that \(u(n, 0) = u_n \) and \(u(n, 1) = u_{n+1} \). One may hope that one can
use \(\{ u_n(t) : t \in [0, 1] \} \) to obtain \(\{ u(t) : t \in [1, \infty) \} \).

But \(u(n, t)^* \phi_1(a) u(n, t) \) may be very different from \(u_n^* \phi_1(a) u_n \).

Consider \(w = u_n^* u_{n+1} \). Then
\[
\begin{align*}
 w^* \phi_2(a) w & \approx \frac{1}{2^n} \quad u_{n+1}^* \phi_1(a) u_{n+1} \\
 & \approx \frac{1}{2^{n+1}} \phi_2(a). \quad (e0.1)
\end{align*}
\]

So \(w \) almost commutes with \(\phi_2(a) \).
If we have a continuous path of unitaries \(\{ w(t) : t \in [0, 1] \} \) such that

\[
\begin{align*}
\text{Then} & \quad u(n, t) \approx 1/2 n w(t) \\
\text{and} & \quad w(t) \approx \phi_2(a) w(t)
\end{align*}
\]

We may then use this \(u(n, t) \).
If we have a continuous path of unitaries \(\{ w(t) : t \in [0, 1] \} \) such that \(w(0) = 1, \ w(1) = w \)

and
If we have a continuous path of unitaries \(\{ w(t) : t \in [0, 1] \} \) such that

\[
w(0) = 1, \quad w(1) = w
\]

and \(w(t) \) almost commutes with \(\phi_2(a) \), put \(u(n, t) = u_n w(t) \).
If we have a continuous path of unitaries \(\{w(t) : t \in [0, 1]\} \) such that
\[
w(0) = 1, \quad w(1) = w
\]
and \(w(t) \) almost commutes with \(\phi_2(a) \), put \(u(n, t) = u_n w(t) \). Then
\[
u(n, t)^* \phi_1(a) u(n, t) \approx_{1/2^n} w(t)^* \phi_2(a) w(t)
\]
and \(w(t)^* \phi_2(a) w(t) \) is almost the same as \(\phi_2(a) \).
If we have a continuous path of unitaries \(\{w(t) : t \in [0,1]\} \) such that
\[
w(0) = 1, \quad w(1) = w
\]
and \(w(t) \) almost commutes with \(\phi_2(a) \), put \(u(n, t) = u_n w(t) \). Then
\[
u(n, t)^* \phi_1(a) u(n, t) \approx_{1/2^n} w(t)^* \phi_2(a) w(t)
\]
and \(w(t)^* \phi_2(a) w(t) \) is almost the same as \(\phi_2(a) \). We may then use this \(u(n, t) \).
Question 5 For any $\epsilon > 0$ and a finite subset $\mathcal{F} \subset C$, there exist a $\delta > 0$ and a finite subset $G \subset C$ such that, for any unital separable simple C^*-algebra A with tracial rank zero and any unitary $u \in A$ with

$$
\| \phi(a)u - u\phi(a) \| < \delta
$$

for all $a \in G$ does there exist a continuous path of unitaries $\{u(t) : t \in [0, 1]\}$ such that

$$
\| \phi(a)u(t) - u(t)\phi(a) \| < \epsilon
$$

for all $f \in F$, $u(0) = u$ and $u(1) = 1$?

Consider the case that $C = C(T)$. It turns out that the answer is negative even A is assumed to be finite dimensional.
Question 5 For any $\epsilon > 0$ and a finite subset $\mathcal{F} \subset C$, is there a $\delta > 0$ and a finite subset $\mathcal{G} \subset C$ such that,
Question 5 For any $\epsilon > 0$ and a finite subset $\mathcal{F} \subset C$, is there a $\delta > 0$ and a finite subset $\mathcal{G} \subset C$ such that, for any unital separable simple C^*-algebra A with tracial rank zero and any unitary $u \in A$
Question 5 For any $\epsilon > 0$ and a finite subset $\mathcal{F} \subset C$, is there a $\delta > 0$ and a finite subset $\mathcal{G} \subset C$ such that, for any unital separable simple C^*-algebra A with tracial rank zero and any unitary $u \in A$ with

$$\|\phi(a)u - u\phi(a)\| < \delta$$

for all $a \in \mathcal{G}$.

Consider the case that $C = C(T)$. It turns out that the answer is negative even A is assumed to be finite dimensional. The Bott element appears to be the obstacle in this case.
Question 5 For any $\epsilon > 0$ and a finite subset $\mathcal{F} \subset C$, is there a $\delta > 0$ and a finite subset $\mathcal{G} \subset C$ such that, for any unital separable simple C*-algebra A with tracial rank zero and any unitary $u \in A$ with

$$\|\phi(a)u - u\phi(a)\| < \delta \text{ for all } a \in \mathcal{G}$$

does there exist a continuous path of unitaries $\{u(t) : t \in [0, 1]\}$
Question 5 For any \(\epsilon > 0 \) and a finite subset \(\mathcal{F} \subset C \), is there a \(\delta > 0 \) and a finite subset \(\mathcal{G} \subset C \) such that, for any unital separable simple \(C^* \)-algebra \(A \) with tracial rank zero and any unitary \(u \in A \) with

\[
\| \phi(a)u - u\phi(a) \| < \delta \text{ for all } a \in \mathcal{G}
\]

does there exist a continuous path of unitaries \(\{ u(t) : t \in [0, 1] \} \) such that

\[
\| \phi(a)u(t) - u(t)\phi(a) \| < \epsilon \text{ for all } f \in \mathcal{F},
\]

\[
u(0) = u \text{ and } u(1) = 1?
\]
Question 5 For any $\epsilon > 0$ and a finite subset $\mathcal{F} \subset C$, is there a $\delta > 0$ and a finite subset $\mathcal{G} \subset C$ such that, for any unital separable simple C^*-algebra A with tracial rank zero and any unitary $u \in A$ with

$$\|\phi(a)u - u\phi(a)\| < \delta \text{ for all } a \in \mathcal{G}$$

does there exist a continuous path of unitaries $\{u(t) : t \in [0, 1]\}$ such that

$$\|\phi(a)u(t) - u(t)\phi(a)\| < \epsilon \text{ for all } f \in \mathcal{F},$$

$$u(0) = u \text{ and } u(1) = 1?$$

Consider the case that $C = C(\mathbb{T})$. It turns out that the answer is negative even A is assumed to be finite dimensional.
Question 5 For any $\epsilon > 0$ and a finite subset $\mathcal{F} \subset C$, is there a $\delta > 0$ and a finite subset $\mathcal{G} \subset C$ such that, for any unital separable simple C^*-algebra A with tracial rank zero and any unitary $u \in A$ with

$$\|\phi(a)u - u\phi(a)\| < \delta \text{ for all } a \in G$$

does there exist a continuous path of unitaries $\{u(t) : t \in [0, 1]\}$ such that

$$\|\phi(a)u(t) - u(t)\phi(a)\| < \epsilon \text{ for all } f \in \mathcal{F},$$

$$u(0) = u \text{ and } u(1) = 1?$$

Consider the case that $C = C(\mathbb{T})$. It turns out that the answer is negative even if A is assumed to be finite dimensional. The Bott element appears to be the obstacle in this case.
Denote by \mathcal{B} the set of unital purely infinite simple C^*-algebras and unital simple C^*-algebras of real rank zero and stable rank one.

Theorem

(98, Bratteli, Elliott, Evans and Kishimoto) \textit{For any $\epsilon > 0$, there exists $\delta > 0$ satisfying the following:}
Denote by \mathcal{B} the set of unital purely infinite simple C^*-algebras and unital simple C^*-algebras of real rank zero and stable rank one.

Theorem

(98, Bratteli, Elliott, Evans and Kishimoto) *For any $\epsilon > 0$, there exists $\delta > 0$ satisfying the following: For any C^*-algebra $A \in \mathcal{B}$,*
Denote by \mathcal{B} the set of unital purely infinite simple C^*-algebras and unital simple C^*-algebras of real rank zero and stable rank one.

Theorem

(98, Bratteli, Elliott, Evans and Kishimoto) *For any $\epsilon > 0$, there exists $\delta > 0$ satisfying the following: For any C^*-algebra $A \in \mathcal{B}$, and any pair of unitaries $u, v \in A$*
Denote by \mathcal{B} the set of unital purely infinite simple C^*-algebras and unital simple C^*-algebras of real rank zero and stable rank one.

Theorem

(98, Bratteli, Elliott, Evans and Kishimoto) *For any $\epsilon > 0$, there exists $\delta > 0$ satisfying the following: For any C^*-algebra $A \in \mathcal{B}$, and any pair of unitaries $u, v \in A$ with*

$$\|[u, v]\| < \delta, [v] = 0 \text{ in } K_1(A), \text{sp}(v) = \mathbb{T} \text{ and}$$
Denote by \mathcal{B} the set of unital purely infinite simple C^*-algebras and unital simple C^*-algebras of real rank zero and stable rank one.

Theorem

(98, Bratteli, Elliott, Evans and Kishimoto) \textit{For any $\epsilon > 0$, there exists $\delta > 0$ satisfying the following: For any C^*-algebra $A \in \mathcal{B}$, and any pair of unitaries $u, v \in A$ with}

$$
\|[u, v]\| < \delta, [v] = 0 \text{ in } K_1(A), \text{sp}(v) = \mathbb{T} \text{ and}
$$

$$
bott_1(u, v) = 0,
$$
Denote by \mathcal{B} the set of unital purely infinite simple C^*-algebras and unital simple C^*-algebras of real rank zero and stable rank one.

Theorem

(98, Bratteli, Elliott, Evans and Kishimoto) \textit{For any } $\epsilon > 0$, \textit{there exists } $\delta > 0$ \textit{satisfying the following: For any } C^*-algebra $A \in \mathcal{B}$, \textit{and any pair of unitaries } $u, v \in A$ \textit{with}

$$\|[u, v]\| < \delta, [v] = 0 \text{ in } K_1(A), \text{ sp}(v) = \mathbb{T} \text{ and}$$

$$\text{bott}_1(u, v) = 0,$$

\textit{there exists a continuous path of unitaries } $\{v(t) : t \in [0, 1]\}$
Denote by B the set of unital purely infinite simple C^*-algebras and unital simple C^*-algebras of real rank zero and stable rank one.

Theorem

(98, Bratteli, Elliott, Evans and Kishimoto) *For any $\epsilon > 0$, there exists $\delta > 0$ satisfying the following: For any C^*-algebra $A \in B$, and any pair of unitaries $u, v \in A$ with*

\[\| [u, v] \| < \delta, \quad [v] = 0 \text{ in } K_1(A), \quad \text{sp}(v) = \mathbb{T} \text{ and} \]

\[\text{bott}_1(u, v) = 0, \]

there exists a continuous path of unitaries $\{ v(t) : t \in [0, 1] \}$ such that

\[v(0) = v, \quad v(1) = 1_A \]
Denote by \mathcal{B} the set of unital purely infinite simple C^*-algebras and unital simple C^*-algebras of real rank zero and stable rank one.

Theorem

(98, Bratteli, Elliott, Evans and Kishimoto) *For any $\epsilon > 0$, there exists $\delta > 0$ satisfying the following: For any C^*-algebra $A \in \mathcal{B}$, and any pair of unitaries $u, v \in A$ with*

$$\|[u, v]\| < \delta, \ [v] = 0 \text{ in } K_1(A), \text{ sp}(v) = \mathbb{T} \text{ and}$$

$$\text{bott}_1(u, v) = 0,$$

there exists a continuous path of unitaries $\{v(t) : t \in [0, 1]\}$ such that

$$v(0) = v, \ v(1) = 1_A$$

$$\|[u, v(t)]\| < \epsilon \text{ and } \text{Length}(\{v(t)\}) \leq 4\pi + 1.$$
Theorem (L–07) Let X be a finite CW complex with dimension 1.
Theorem

(L–07) Let X be a finite CW complex with dimension 1. Then, for any $\epsilon > 0$ and any finite subset $\mathcal{F} \subset C(X)$,
Theorem

(L–07) Let X be a finite CW complex with dimension 1. Then, for any $\epsilon > 0$ and any finite subset $\mathcal{F} \subset C(X)$, there exists $\delta > 0$ and a finite subset $\mathcal{G} \subset C(X)$ satisfying the following:
Theorem

(L–07) Let X be a finite CW complex with dimension 1. Then, for any $\epsilon > 0$ and any finite subset $F \subset C(X)$, there exists $\delta > 0$ and a finite subset $G \subset C(X)$ satisfying the following:

Suppose that $A \in \mathcal{B}$, suppose that $h : C(X) \to A$ is a unital monomorphism and suppose that there is a unitary $u \in A$ with $[u] = 0$ such that for all $a \in G$,

$$\|h(a), u\| < \delta$$

and

$$\text{bott}_1(h, u) = 0.$$ \hspace{1cm} (e 0.2)

Then there exists a rectifiable continuous path of unitaries $\{u_t : t \in [0, 1]\}$ of A such that

$$u_0 = u, \quad u_1 = 1_A$$

and

$$\|h(a), u_t\| < \epsilon$$ \hspace{1cm} (e 0.3)

for all $a \in F$ and all $t \in [0, 1]$.

Moreover,

$$\text{Length}(\{u_t\}) \leq 2\pi + \epsilon.$$ \hspace{1cm} (e 0.4)
Theorem

(L–07) Let X be a finite CW complex with dimension 1. Then, for any $\epsilon > 0$ and any finite subset $F \subset C(X)$, there exists $\delta > 0$ and a finite subset $G \subset C(X)$ satisfying the following:

Suppose that $A \in B$, suppose that $h : C(X) \to A$ is a unital monomorphism and suppose that there is a unitary $u \in A$ with $[u] = 0$ such that for all $a \in G$,

$$\|[h(a), u]\| < \delta \quad \text{and} \quad \text{bott}_1(h, u) = 0.$$

(e0.2)
Theorem

(L–07) Let X be a finite CW complex with dimension 1. Then, for any $\epsilon > 0$ and any finite subset $\mathcal{F} \subset C(X)$, there exists $\delta > 0$ and a finite subset $\mathcal{G} \subset C(X)$ satisfying the following:

Suppose that $A \in \mathcal{B}$, suppose that $h : C(X) \to A$ is a unital monomorphism and suppose that there is a unitary $u \in A$ with $[u] = 0$ such that for all $a \in \mathcal{G}$,

$$
\|[h(a), u]\| < \delta \quad \text{and} \quad \text{bott}_1(h, u) = 0.
$$

(e 0.2)

Then there exists a rectifiable continuous path of unitaries $\{u_t : t \in [0, 1]\}$ of A
Theorem

(L–07) Let X be a finite CW complex with dimension 1. Then, for any $\epsilon > 0$ and any finite subset $\mathcal{F} \subset C(X)$, there exists $\delta > 0$ and a finite subset $\mathcal{G} \subset C(X)$ satisfying the following:

Suppose that $A \in \mathcal{B}$, suppose that $h : C(X) \to A$ is a unital monomorphism and suppose that there is a unitary $u \in A$ with $[u] = 0$ such that for all $a \in \mathcal{G}$,

$$\|[h(a), u]\| < \delta \text{ and } \text{bott}_1(h, u) = 0.$$ \hspace{1cm} (e 0.2)

Then there exists a rectifiable continuous path of unitaries $\{u_t : t \in [0, 1]\}$ of A such that

$$u_0 = u, \quad u_1 = 1_A \quad \text{and} \quad \|[h(a), u_t]\| < \epsilon$$ \hspace{1cm} (e 0.3)

for all $a \in \mathcal{F}$ and all $t \in [0, 1]$.

Huaxin Lin
Department of Mathematics
University of Oregon
Eugene, OR 97405 U.S.A.

Asymptotic Unitary Equivalence and Classification of Simple C^*-algebras

21 / 39
Theorem

(L–07) Let X be a finite CW complex with dimension 1. Then, for any $\epsilon > 0$ and any finite subset $F \subset C(X)$, there exists $\delta > 0$ and a finite subset $G \subset C(X)$ satisfying the following:

Suppose that $A \in B$, suppose that $h : C(X) \to A$ is a unital monomorphism and suppose that there is a unitary $u \in A$ with $[u] = 0$ such that for all $a \in G$,

$$
\|[h(a), u]\| < \delta \quad \text{and} \quad \text{bott}_1(h, u) = 0. \quad \text{(e 0.2)}
$$

Then there exists a rectifiable continuous path of unitaries $\{u_t : t \in [0, 1]\}$ of A such that

$$
\begin{align*}
 u_0 &= u, \quad u_1 = 1_A \quad \text{and} \quad \|[h(a), u_t]\| < \epsilon \quad \text{(e 0.3)}
\end{align*}
$$

for all $a \in F$ and all $t \in [0, 1]$. Moreover,

$$
\text{Length}(\{u_t\}) \leq 2\pi + \epsilon. \quad \text{(e 0.4)}
$$
Theorem

(L–07) Let C be a unital AH-algebra,
Theorem

(L–07) Let C be a unital AH-algebra, let $\epsilon > 0$ and $\mathcal{F} \subset C$ be a finite subset.
Theorem

(L–07) Let C be a unital AH-algebra, let $\epsilon > 0$ and $\mathcal{F} \subset C$ be a finite subset. Suppose that A is a unital simple C^*-algebra with tracial rank zero and $h : C \to A$ is a unital monomorphism. Then there exists $\delta > 0$, a finite subset G and a finite subset $P \subset K(C)$ satisfying the following:

Suppose that there is a unitary $\|h(a), u\| < \delta$ for all $f \in G$, $\text{Bott}(h, u)|_P = 0$.

Then there exists a continuous path of unitaries $\{u_t : t \in [0, 1]\}$ such that $u_0 = u$, $u_1 = u$, $\|h(a), v_t\| < \epsilon$ for all $f \in \mathcal{F}$ and for all $t \in [0, 1]$ and $\text{Length}(\{u_t\}) \leq 2\pi + \epsilon$.

Huaxin Lin
Department of Mathematics
University of Oregon
Eugene, OR 97405 U.S.A.

Asymptotic Unitary Equivalence and Classification of Simple C^*-algebras

22 / 39
Theorem

(L-07) Let C be a unital AH-algebra, let $\epsilon > 0$ and $F \subset C$ be a finite subset. Suppose that A is a unital simple C^*-algebra with tracial rank zero and $h : C \to A$ is a unital monomorphism. Then there exists $\delta > 0$, a finite subset G and a finite subset $P \subset K(C)$ satisfying the following:
Theorem

(L–07) Let C be a unital AH-algebra, let $\epsilon > 0$ and $\mathcal{F} \subset C$ be a finite subset. Suppose that A is a unital simple C^*-algebra with tracial rank zero and $h : C \to A$ is a unital monomorphism. Then there exists $\delta > 0$, a finite subset \mathcal{G} and a finite subset $\mathcal{P} \subset K(C)$ satisfying the following:

Suppose that there is a unitary

$$
\|[h(a), u]\| < \delta \quad \text{for all} \quad f \in \mathcal{G}, \quad \text{Bott}(h, u)|_{\mathcal{P}} = 0.
$$

Then there exists a continuous path of unitaries $\{u_t : t \in [0, 1]\}$ such that

$$
u_0 = u, \quad v_1 = u, \quad \|[h(a), v_t]\| < \epsilon \quad \text{for all} \quad f \in \mathcal{F} \quad \text{and} \quad t \in [0, 1]
$$

and

$$\text{Length}(\{u_t\}) \leq 2\pi + \epsilon.$$
Theorem (L–07) Let C be a unital AH-algebra, let $\epsilon > 0$ and $\mathcal{F} \subset C$ be a finite subset. Suppose that A is a unital simple C^*-algebra with tracial rank zero and $h : C \to A$ is a unital monomorphism. Then there exists $\delta > 0$, a finite subset \mathcal{G} and a finite subset $\mathcal{P} \subset \mathcal{K}(C)$ satisfying the following: Suppose that there is a unitary $\| [h(a), u] \| < \delta$ for all $f \in \mathcal{G}$, $\text{Bott}(h, u) |_{\mathcal{P}} = 0$.

Then there exists a continuous path of unitaries
\[\{ u_t : t \in [0, 1] \} \]
Theorem

(L–07) Let C be a unital AH-algebra, let $\epsilon > 0$ and $\mathcal{F} \subset C$ be a finite subset. Suppose that A is a unital simple C^*-algebra with tracial rank zero and $h : C \to A$ is a unital monomorphism. Then there exists $\delta > 0$, a finite subset \mathcal{G} and a finite subset $\mathcal{P} \subset K(C)$ satisfying the following: Suppose that there is a unitary

$$\| [h(a), u] \| < \delta \quad \text{for all } f \in \mathcal{G}, \quad \text{Bott}(h, u)|_{\mathcal{P}} = 0.$$

Then there exists a continuous path of unitaries

$$\{ u_t : t \in [0, 1] \}$$ such that

$$u_0 = u, \quad u_1 = u, \quad \| [h(a), v_t] \| < \epsilon$$

for all $f \in \mathcal{F}$ and for all $t \in [0, 1]$.

Huaxin Lin
Department of Mathematics
University of Oregon
Eugene, OR 97405 U.S.A.

Asymptotic Unitary Equivalence and Classification of Simple C^*-algebras
Theorem

(L–07) Let C be a unital AH-algebra, let $\epsilon > 0$ and $\mathcal{F} \subset C$ be a finite subset. Suppose that A is a unital simple C^*-algebra with tracial rank zero and $h : C \to A$ is a unital monomorphism. Then there exists $\delta > 0$, a finite subset \mathcal{G} and a finite subset $\mathcal{P} \subset K(C)$ satisfying the following:

Suppose that there is a unitary $\| [h(a), u] \| < \delta$ for all $f \in \mathcal{G}$, $\text{Bott}(h, u)|_{\mathcal{P}} = 0$.

Then there exists a continuous path of unitaries $\{ u_t : t \in [0, 1] \}$ such that

$$u_0 = u, \quad u_1 = u, \quad \| [h(a), v_t] \| < \epsilon$$

for all $f \in \mathcal{F}$ and for all $t \in [0, 1]$ and

$$\text{Length}(\{ u_t \}) \leq 2\pi + \epsilon.$$
Definition

Let C be a separable C^*-algebra and A is unital C^*-algebra. Suppose that $\phi, \psi : C \to A$ are two homomorphisms. We say ϕ and ψ are asymptotically unitarily equivalent if there exists a continuous path of unitaries $\{u(t) : t \in [0, 1)\} \subset A$ such that $\lim_{t \to 1} \text{ad} u(t) \circ \phi(c) = \psi(c)$ for all $c \in C$.

Huaxin Lin
Department of Mathematics
University of Oregon
Eugene, OR 97405 U.S.A.

Asymptotic Unitary Equivalence and Classification of Simple C^*-algebras

23 / 39
Definition

Let C be a separable C^*-algebra and A is unital C^*-algebra. Suppose that $\phi, \psi : C \to A$ are two homomorphisms. We say ϕ and ψ are asymptotically unitarily equivalent if there exists a continuous path of unitaries $\{u(t) : t \in [0, 1)\} \subset A$ such that

$$\lim_{t \to 1} \text{Ad} u(t) \circ \phi(c) = \psi(c)$$

for all $c \in C$.
Definition

Let C be a separable C^*-algebra and A is unital C^*-algebra. Suppose that $\phi, \psi : C \to A$ are two homomorphisms. We say ϕ and ψ are asymptotically unitarily equivalent if there exists a continuous path of unitaries $\{u(t) : t \in [0, 1]\} \subset A$ such that

\[
\lim_{t \to 1} \text{ad} \ u(t) \circ \phi(c) = \psi(c)
\]

for all $c \in C$.
Definition

Mapping torus. Let C and A be a unital C^*-algebras and let $\phi_1, \phi_2 : C \to A$ be two unital monomorphisms. Set

$$M_{\phi_1, \phi_2} = \{ f \in C([0, 1], A) : f(0) = \phi_1(c), f(1) = \phi_2(c) \text{ for some } c \in C \}.$$
Definition

Mapping torus. Let C and A be a unital C^*-algebras and let $\phi_1, \phi_2 : C \to A$ be two unital monomorphisms. Set

$$M_{\phi_1, \phi_2} = \{ f \in C([0, 1], A) : f(0) = \phi_1(c), f(1) = \phi_2(c) \text{ for some } c \in C \}.$$

We obtain a short exact sequence:

$$0 \to SA \to M_{\phi_1, \phi_2} \to C \to 0.$$
Definition

Mapping torus. Let C and A be a unital C^*-algebras and let $\phi_1, \phi_2 : C \to A$ be two unital monomorphisms. Set

$$M_{\phi_1, \phi_2} = \{ f \in C([0, 1], A) : f(0) = \phi_1(c), f(1) = \phi_2(c) \text{ for some } c \in C \}.$$

We obtain a short exact sequence:

$$0 \to SA \to M_{\phi_1, \phi_2} \to C \to 0.$$

Suppose that there exists a continuous path $\{u(t)\}$ so that $\lim_{t \to 1} \text{ad} u(t) \circ \phi_1(c) = \phi_2(c)$ for all $c \in C$.

Huaxin Lin Department of Mathematics University of Oregon Eugene, OR 97405 U.S.A. Asymptotic Unitary Equivalence and Classification of Simple C^*-algebras
Definition

Mapping torus. Let C and A be a unital C^*-algebras and let $\phi_1, \phi_2 : C \to A$ be two unital monomorphisms. Set

$$M_{\phi_1, \phi_2} = \{ f \in C([0,1], A) : f(0) = \phi_1(c), f(1) = \phi_2(c) \text{ for some } c \in C \}.$$

We obtain a short exact sequence:

$$0 \to SA \to M_{\phi_1, \phi_2} \to C \to 0.$$

Suppose that there exists a continuous path $\{u(t)\}$ so that

$$\lim_{t \to 1} \text{ad} u(t) \circ \phi_1(c) = \phi_2(c) \text{ for all } c \in C.$$

Define $\theta : C \to M_{\phi_1, \phi_2}$ by

$$\theta(c)(t) = u(t)^* \phi_1(c) u(t) \text{ for all } t \in [0,1)$$

and

$$\theta(c)(1) = \phi_2(c).$$
Thus if ϕ_1 and ϕ_2 are asymptotically unitarily equivalent, one must have $[\phi_1] = [\phi_2]$ in $KK(C, A)$.
Thus if ϕ_1 and ϕ_2 are asymptotically unitarily equivalent, one must have $[\phi_1] = [\phi_2]$ in $KK(C, A)$. Furthermore,

$$\tau \circ \phi_1 = \tau \circ \phi_2.$$
Thus if ϕ_1 and ϕ_2 are asymptotically unitarily equivalent, one must have $[\phi_1] = [\phi_2]$ in $KK(C, A)$. Furthermore,

$$\tau \circ \phi_1 = \tau \circ \phi_2.$$

Let $u \in M_{\phi_1,\phi_2}$ be a unitary such that $t \mapsto u(t)$ is piecewise C^1.

Huaxin Lin Department of Mathematics University of Oregon Eugene, OR 97405 U.S.A.

Asymptotic Unitary Equivalence and Classification of Simple C^*-algebras
Thus if ϕ_1 and ϕ_2 are asymptotically unitarily equivalent, one must have $[\phi_1] = [\phi_2]$ in $KK(C, A)$. Furthermore,

$$\tau \circ \phi_1 = \tau \circ \phi_2.$$

Let $u \in M_{\phi_1, \phi_2}$ be a unitary such that $t \mapsto u(t)$ is piecewise C^1. For $\tau \in T(A)$, we define

$$\rho_\tau(u) = \frac{1}{2\pi i} \int_0^1 \tau\left(\frac{du(t)}{dt}u(t)^*\right)dt.$$
Thus if ϕ_1 and ϕ_2 are asymptotically unitarily equivalent, one must have $[\phi_1] = [\phi_2]$ in $KK(C, A)$. Furthermore,

$$\tau \circ \phi_1 = \tau \circ \phi_2.$$

Let $u \in M_{\phi_1, \phi_2}$ be a unitary such that $t \mapsto u(t)$ is piecewise C^1. For $\tau \in T(A)$, we define

$$\rho_\tau(u) = \frac{1}{2\pi i} \int_0^1 \tau \left(\frac{du(t)}{dt} u(t)^* \right) dt.$$

This gives a homomorphism $\rho_\tau : K_1(M_{\phi_1, \phi_2}) \to \mathbb{R}$.

Huaxin Lin
Department of Mathematics
University of Oregon
Eugene, OR 97405 U.S.A.

Asymptotic Unitary Equivalence and Classification of Simple C^*-algebras

25 / 39
Thus if ϕ_1 and ϕ_2 are asymptotically unitarily equivalent, one must have $[\phi_1] = [\phi_2]$ in $KK(C, A)$. Furthermore,

$$\tau \circ \phi_1 = \tau \circ \phi_2.$$

Let $u \in M_{\phi_1, \phi_2}$ be a unitary such that $t \mapsto u(t)$ is piecewise C^1. For $\tau \in T(A)$, we define

$$\rho_\tau(u) = \frac{1}{2\pi i} \int_0^1 \tau\left(\frac{du(t)}{dt} u(t)^* \right) dt.$$

This gives a homomorphism $\rho_\tau : K_1(M_{\phi_1, \phi_2}) \rightarrow \mathbb{R}$. Consequently, we obtain a homomorphism $R_{\phi_1, \phi_2} : K_1(M_{\phi_1, \phi_2}) \rightarrow \text{Aff}(T(A)).$ It is called the rotation map.
Consider

\[0 \to K_0(A) \to K_1(M_{\phi_1,\phi_2}) \to K_1(C) \to 0. \]

It splits.
Consider
\[0 \to K_0(A) \to K_1(M_{\phi_1, \phi_2}) \to K_1(C) \to 0. \]
It splits. If \(p \in A \) is a projection, \(\iota_0([p]) = [u] \) can be defined by
\[u(t) = e^{2\pi it} p + (1 - p). \]
Consider
\[0 \to K_0(A) \to K_1(M_{\phi_1,\phi_2}) \to K_1(C) \to 0. \]

It splits. If \(p \in A \) is a projection, \(\iota_0([p]) = [u] \) can be defined by
\[u(t) = e^{2\pi it} p + (1 - p). \]

We have the following commutative diagram:

\[
\begin{array}{ccc}
K_0(A) & \xrightarrow{\iota_*} & K_1(M_{\phi_1,\phi_2}) \\
\rho_A & \downarrow & \quad \swarrow R_{\phi_1,\phi_2} \\
& \text{Aff}(T(A)), &
\end{array}
\]
Consider
\[0 \to K_0(A) \to K_1(M_{\phi_1,\phi_2}) \to K_1(C) \to 0. \]
It splits. If \(p \in A \) is a projection, \(\iota_*([p]) = [u] \) can be defined by
\[u(t) = e^{2\pi it} p + (1 - p). \]
We have the following commutative diagram:

\[
\begin{array}{ccc}
K_0(A) & \xrightarrow{\iota_*} & K_1(M_{\phi_1,\phi_2}) \\
\rho_A & \searrow & \nearrow R_{\phi_1,\phi_2} \\
& Aff(T(A)), & \\
\end{array}
\]
where \(\rho_A([p])(\tau) = \tau(p) \) for each \(\tau \in T(A). \)
Consider

$$0 \to K_0(A) \to K_1(M_{\phi_1,\phi_2}) \to K_1(C) \to 0.$$

It splits. If $p \in A$ is a projection, $\iota_*([p]) = [u]$ can be defined by

$$u(t) = e^{2\pi i t} p + (1 - p).$$

We have the following commutative diagram:

$$
\begin{array}{ccc}
K_0(A) & \xrightarrow{\iota_*} & K_1(M_{\phi_1,\phi_2}) \\
\rho_A & \searrow & \nearrow R_{\phi_1,\phi_2} \\
& Aff(\mathcal{T}(A)), &
\end{array}
$$

where $\rho_A([p])(\tau) = \tau(p)$ for each $\tau \in \mathcal{T}(A)$. Moreover, R_{ϕ_1,ϕ_2} extends ρ_A.
Suppose that there is $\theta \in \text{Hom}_\Lambda(\underline{K}(A), \underline{K}(M_{\phi,\psi}))$ such that $[\pi_0] \circ \theta = [\text{id}_A]$. In particular, one has a monomorphism $\theta|_{K_1(A)} : K_1(A) \to K_1(M_{\phi,\psi})$ such that $[\pi_0] \circ \theta|_{K_1(A)} = (\text{id}_A)_1$.
Suppose that there is $\theta \in Hom_{\Lambda}(K(A), K(M_{\phi,\psi}))$ such that $[\pi_0] \circ \theta = [id_A]$. In particular, one has a monomorphism $\theta|_{K_1(A)} : K_1(A) \to K_1(M_{\phi,\psi})$ such that $[\pi_0] \circ \theta|_{K_1(A)} = (id_A)_* \chi_1$. Thus, one may write

$$K_1(M_{\phi,\psi}) = K_0(B) \oplus K_1(A).$$ \hspace{1cm} (e 0.5)
Suppose that there is $\theta \in \text{Hom}_\Lambda(K(A), K(M_{\phi, \psi}))$ such that $[\pi_0] \circ \theta = [\text{id}_A]$. In particular, one has a monomorphism $\theta|_{K_1(A)} : K_1(A) \rightarrow K_1(M_{\phi, \psi})$ such that $[\pi_0] \circ \theta|_{K_1(A)} = (\text{id}_A)_*1$. Thus, one may write

$$K_1(M_{\phi, \psi}) = K_0(B) \oplus K_1(A). \quad (e0.5)$$

Suppose also that $\tau \circ \phi = \tau \circ \psi$ for all $\tau \in T(A)$.

Suppose that there is \(\theta \in \text{Hom}_\Lambda(K(A), K(M_{\phi, \psi})) \) such that
\[
[\pi_0] \circ \theta = [\text{id}_A].
\]
In particular, one has a monomorphism
\[
\theta|_{K_1(A)} : K_1(A) \to K_1(M_{\phi, \psi})
\]
such that
\[
[\pi_0] \circ \theta|_{K_1(A)} = (\text{id}_A)_{*1}.
\]
Thus, one may write
\[
K_1(M_{\phi, \psi}) = K_0(B) \oplus K_1(A). \tag{e 0.5}
\]

Suppose also that \(\tau \circ \phi = \tau \circ \psi \) for all \(\tau \in T(A) \). Then one obtains the homomorphism
\[
R_{\phi, \psi} \circ \theta|_{K_1(A)} : K_1(A) \to \text{Aff}(T(B)).
\]
Suppose that there is $\theta \in \text{Hom}_\Lambda(K(A), K(M_\phi, \psi))$ such that $[\pi_0] \circ \theta = [\text{id}_A]$. In particular, one has a monomorphism $\theta|_{K_1(A)} : K_1(A) \to K_1(M_\phi, \psi)$ such that $[\pi_0] \circ \theta|_{K_1(A)} = (\text{id}_A)_* 1$. Thus, one may write

$$K_1(M_\phi, \psi) = K_0(B) \oplus K_1(A).$$

(e 0.5)

Suppose also that $\tau \circ \phi = \tau \circ \psi$ for all $\tau \in T(A)$. Then one obtains the homomorphism

$$R_{\phi, \psi} \circ \theta|_{K_1(A)} : K_1(A) \to \text{Aff}(T(B)).$$

We say a rotation related map vanishes, if there exists a such splitting map θ such that

$$R_{\phi, \psi} \circ \theta|_{K_1(A)} = 0.$$
Suppose that there is \(\theta \in \text{Hom}_\Lambda(K(A), K(M_{\phi, \psi})) \) such that
\[[\pi_0] \circ \theta = [\text{id}_A] \]. In particular, one has a monomorphism
\(\theta|_{K_1(A)} : K_1(A) \to K_1(M_{\phi, \psi}) \) such that
\[[\pi_0] \circ \theta|_{K_1(A)} = (\text{id}_A)_*1. \] Thus, one may write
\[
K_1(M_{\phi, \psi}) = K_0(B) \oplus K_1(A). \tag{e 0.5}
\]

Suppose also that \(\tau \circ \phi = \tau \circ \psi \) for all \(\tau \in T(A) \). Then one obtains the homomorphism
\[
R_{\phi, \psi} \circ \theta|_{K_1(A)} : K_1(A) \to \text{Aff}(T(B)).
\]

We say a rotation related map vanishes, if there exists a such splitting map \(\theta \) such that
\[
R_{\phi, \psi} \circ \theta|_{K_1(A)} = 0.
\]

Denote by \(\mathcal{R}_0 \) the set of those homomorphisms
\(\lambda \in \text{Hom}(K_1(A), \text{Aff}(T(B))) \) for which there is a homomorphism
\(h : K_1(A) \to K_0(B) \) such that
Suppose that there is $\theta \in \text{Hom}_\Lambda(K(A), K(M_\phi, \psi))$ such that $[\pi_0] \circ \theta = [\text{id}_A]$. In particular, one has a monomorphism $\theta|_{K_1(A)} : K_1(A) \rightarrow K_1(M_\phi, \psi)$ such that $[\pi_0] \circ \theta|_{K_1(A)} = (\text{id}_A)_* 1$. Thus, one may write

$$K_1(M_\phi, \psi) = K_0(B) \oplus K_1(A).$$

Suppose also that $\tau \circ \phi = \tau \circ \psi$ for all $\tau \in T(A)$. Then one obtains the homomorphism

$$R_{\phi, \psi} \circ \theta|_{K_1(A)} : K_1(A) \rightarrow \text{Aff}(T(B)).$$

We say a rotation related map vanishes, if there exists a such splitting map θ such that $R_{\phi, \psi} \circ \theta|_{K_1(A)} = 0$.

Denote by \mathcal{R}_0 the set of those homomorphisms $\lambda \in \text{Hom}(K_1(A), \text{Aff}(T(B)))$ for which there is a homomorphism $h : K_1(A) \rightarrow K_0(B)$ such that $\lambda = \rho_A \circ h$.
Suppose that there is $\theta \in \text{Hom}_\Lambda(K(A), K(M_\phi, \psi))$ such that $[\pi_0] \circ \theta = [\text{id}_A]$. In particular, one has a monomorphism $\theta|_{K_1(A)} : K_1(A) \to K_1(M_\phi, \psi)$ such that $[\pi_0] \circ \theta|_{K_1(A)} = (\text{id}_A)_*1$. Thus, one may write

$$K_1(M_\phi, \psi) = K_0(B) \oplus K_1(A).$$

(S0.5)

Suppose also that $\tau \circ \phi = \tau \circ \psi$ for all $\tau \in T(A)$. Then one obtains the homomorphism

$$R_{\phi, \psi} \circ \theta|_{K_1(A)} : K_1(A) \to \text{Aff}(T(B)).$$

We say a rotation related map vanishes, if there exists a such splitting map θ such that

$$R_{\phi, \psi} \circ \theta|_{K_1(A)} = 0.$$

Denote by R_0 the set of those homomorphisms $\lambda \in \text{Hom}(K_1(A), \text{Aff}(T(B)))$ for which there is a homomorphism $h : K_1(A) \to K_0(B)$ such that $\lambda = \rho_A \circ h$. It is a subgroup of $\text{Hom}(K_1(A), \text{Aff}(T(B)))$.

Huaxin Lin
Department of Mathematics
University of Oregon
Eugene, OR 97405 U.S.A.

Asymptotic Unitary Equivalence and Classification of Simple C^*-algebras
27 / 39
Let $\theta, \theta' \in \text{Hom}_\Lambda(K(A), K(M_{\phi, \psi}))$ such that $[\pi_0] \circ [\theta] = [\text{id}_C] = [\pi_0] \circ [\theta']$. Then $(\theta - \theta')|_{K_1(A)} \subset K_0(B)$. In other words, $R_{\phi, \psi} \circ (\theta - \theta')|_{K_1(A)} \in R_0$. Thus, we obtain a well-defined element $R_{\phi, \psi} \in \text{Hom}(K_1(A), \text{Aff}(T(B)))$ which does not depend on the choices of θ.
Let $\theta, \theta' \in \text{Hom}_{\Lambda}(K(A), K(M_{\phi, \psi}))$ such that $[\pi_0] \circ [\theta] = [\text{id}_C] = [\pi_0] \circ [\theta']$. Then $(\theta - \theta')(K_1(A)) \subset K_0(B)$.
Let $\theta, \theta' \in Hom_\Lambda(K(A), K(M_{\phi,\psi}))$ such that $[\pi_0] \circ [\theta] = [\text{id}_C] = [\pi_0] \circ [\theta']$. Then $(\theta - \theta')(K_1(A)) \subset K_0(B)$. In other words,

$$R_{\phi,\psi} \circ (\theta - \theta')|_{K_1(A)} \in \mathcal{R}_0.$$
Let $\theta, \theta' \in Hom_{\Lambda}(K(A), K(M_{\phi,\psi}))$ such that $[\pi_0] \circ [\theta] = [\text{id}_C] = [\pi_0] \circ [\theta']$. Then $(\theta - \theta')(K_1(A)) \subset K_0(B)$. In other words,

$$R_{\phi,\psi} \circ (\theta - \theta')|_{K_1(A)} \in \mathcal{R}_0.$$

Thus, we obtain a well-defined element

$$\overline{R}_{\phi,\psi} \in Hom(K_1(A), \text{Aff}(T(B)))/\mathcal{R}_0$$

(which does not depend on the choices of θ).
In this case, if there is a homomorphism \(\theta_1' : K_1(A) \to K_1(M_{\phi, \psi}) \) such that
\[
(\pi_0)_* \circ \theta_1' = \text{id}_{K_1(A)} \quad \text{and}
\]
\[
R_{\phi, \psi} \circ \theta_1' \in \mathcal{R}_0,
\]
In this case, if there is a homomorphism \(\theta'_1 : K_1(A) \to K_1(M_{\phi,\psi}) \) such that
\[(\pi_0)_1 \circ \theta'_1 = \text{id}_{K_1(A)} \] and

\[R_{\phi,\psi} \circ \theta'_1 \in R_0, \]

then there is \(\Theta \in \text{Hom}_\Lambda(K(A), K(M_{\phi,\psi})) \) such that
In this case, if there is a homomorphism \(\theta'_1 : K_1(A) \to K_1(M_{\phi,\psi}) \) such that
\[(\pi_0)_1 \circ \theta'_1 = id_{K_1(A)} \]
and
\[R_{\phi,\psi} \circ \theta'_1 \in R_0, \]
then there is \(\Theta \in Hom_{\Lambda}(K(A), K(M_{\phi,\psi})) \) such that
\[[\pi_0] \circ \Theta = [id_A] \text{ and } R_{\phi,\psi} \circ \Theta = 0. \]

When \(\overline{R}_{\phi,\psi} = 0 \), \(\theta(K_1(A)) \in \ker R_{\phi,\psi} \) for some \(\theta \) so that \([\pi_0] \circ \theta = id_{K_1(C)}. \)
In this case, if there is a homomorphism $\theta'_1 : K_1(A) \to K_1(M_{\phi,\psi})$ such that
$(\pi_0)_* 1 \circ \theta'_1 = \text{id}_{K_1(A)}$ and

$$R_{\phi,\psi} \circ \theta'_1 \in R_0,$$

then there is $\Theta \in \text{Hom}_\Lambda(K(A), K(M_{\phi,\psi}))$ such that

$$[\pi_0] \circ \Theta = [\text{id}_A] \quad \text{and} \quad R_{\phi,\psi} \circ \Theta = 0.$$

When $\bar{R}_{\phi,\psi} = 0$, $\theta(K_1(A)) \in \ker R_{\phi,\psi}$ for some θ so that $[\pi_0] \circ \theta = \text{id}_{K_1(C)}$. Thus θ also gives the following:

$$\ker R_{\phi,\psi} = \ker \rho_B \oplus K_1(A).$$
Theorem

(Uniqueness Theorem B—L 2007) Let C be a unital AH-algebra and A be a unital separable simple C^*-algebra with $TR(A) = 0$. Suppose that $\phi, \psi : C \to A$ are two unital monomorphisms. Then there exists a continuous path of unitaries $\{u_t\} \subset A$ such that
$$\lim_{t \to \infty} \text{ad} u_t \circ \phi(c) = \psi(c)$$
for all $c \in C$ if and only if $[\phi] = [\psi]$ in $KK(C, A)$ and $R_{\phi, \psi} = 0$.

Huaxin Lin Department of Mathematics University of Oregon Eugene, OR 97405 U.S.A.
Theorem

(Uniqueness Theorem B—L 2007) Let C be a unital AH-algebra and A be a unital separable simple C^*-algebra with $\text{TR}(A) = 0$. Suppose that $\phi, \psi : C \to A$ are two unital monomorphisms. Then there exists a continuous path of unitaries $\{u_t\} \subset A$ such that $\lim_{t \to \infty} \text{ad} u_t \circ \phi(c) = \psi(c)$ for all $c \in C$ if and only if $[\phi] = [\psi]$ in $\text{KK}(C, A)$ and $\tau \circ \phi = \tau \circ \psi$ for all $\tau \in \mathbb{T}(A)$ and $R_{\phi, \psi} = 0$.
Theorem

(Uniqueness Theorem B—L 2007) Let C be a unital AH-algebra and A be a unital separable simple C^*-algebra with $TR(A) = 0$. Suppose that $\phi, \psi : C \rightarrow A$ are two unital monomorphisms. Then there exists a continuous path of unitaries $\{u_t\} \subset A$
Theorem

(Uniqueness Theorem B—L 2007) Let C be a unital AH-algebra and A be a unital separable simple C^*-algebra with $\text{TR}(A) = 0$. Suppose that $\phi, \psi : C \to A$ are two unital monomorphisms. Then there exists a continuous path of unitaries $\{u_t\} \subset A$ such that

$$\lim_{t \to \infty} \text{ad} u_t \circ \phi(c) = \psi(c)$$

for all $c \in C$.

Theorem

(Uniqueness Theorem B—L 2007) Let \(C \) be a unital AH-algebra and \(A \) be a unital separable simple \(C^* \)-algebra with \(TR(A) = 0 \). Suppose that \(\phi, \psi : C \to A \) are two unital monomorphisms. Then there exists a continuous path of unitaries \(\{ u_t \} \subset A \) such that

\[
\lim_{t \to \infty} \text{ad} \ u_t \circ \phi(c) = \psi(c)
\]

for all \(c \in C \) if and only if

\[
[\phi] = [\psi] \text{ in } KK(C, A)
\]
Theorem

(Uniqueness Theorem B—L 2007) Let \(C \) be a unital AH-algebra and \(A \) be a unital separable simple \(C^* \)-algebra with \(TR(A) = 0 \). Suppose that \(\phi, \psi : C \to A \) are two unital monomorphisms. Then there exists a continuous path of unitaries \(\{u_t\} \subset A \) such that

\[
\lim_{t \to \infty} \text{ad} u_t \circ \phi(c) = \psi(c)
\]

for all \(c \in C \) if and only if

\[
[\phi] = [\psi] \quad \text{in} \quad KK(C, A)
\]

\[
\tau \circ \phi = \tau \circ \psi \quad \text{for all} \quad \tau \in T(A) \quad \text{and} \quad R_{\phi, \psi} = 0.
\]
Theorem

(2007 Winer –with an appendix by L) Let A and B be two unital C^*-algebras in \mathcal{N}. Suppose that $\Ell(A) \cong \Ell(B)$ and suppose that $\text{TR}(A \otimes M_p) = \text{TR}(B \otimes M_q) = 0$ for any supernatural number p of infinite type. Then $A \otimes \mathbb{Z} \cong B \otimes \mathbb{Z}$, provided that $K^*(A)$ and $K^*(B)$ are finitely generated.
Theorem

(2007 Winer –with an appendix by L) Let A and B be two unital C^*-algebras in \mathcal{N}. Suppose that

$$\text{Ell}(A) \cong \text{Ell}(B)$$

and suppose that $\text{TR}(A \otimes M_p) = \text{TR}(B \otimes M_q) = 0$ for any supernatural number p of infinite type. Then $A \otimes \mathbb{Z} \cong B \otimes \mathbb{Z}$, provided that $K^*(A)$ and $K^*(B)$ are finitely generated.

Huaxin Lin
Department of Mathematics
University of Oregon
Eugene, OR 97405 U.S.A.

Asymptotic Unitary Equivalence and Classification of Simple C^*-algebras

31 / 39
Theorem

(2007 Winer – with an appendix by L) Let A and B be two unital C^*-algebras in \mathcal{N}. Suppose that

$$\text{Ell}(A) \cong \text{Ell}(B)$$

and suppose that $\text{TR}(A \otimes M_p) = \text{TR}(B \otimes M_q) = 0$ for any supernatural number p of infinite type.

Huaxin Lin
Department of Mathematics
University of Oregon
Eugene, OR 97405 U.S.A.
Theorem

(2007 Winer – with an appendix by L) Let A and B be two unital C^*-algebras in \mathcal{N}. Suppose that

$$\text{Ell}(A) \cong \text{Ell}(B)$$

and suppose that $TR(A \otimes M_p) = TR(B \otimes M_q) = 0$ for any supernatural number p of infinite type. Then

$$A \otimes \mathbb{Z} \cong B \otimes \mathbb{Z},$$
Theorem

(2007 Winer –with an appendix by L) **Let A and B be two unital C*-algebras in \(\mathcal{N} \). Suppose that**

\[
\text{Ell}(A) \cong \text{Ell}(B)
\]

and suppose that \(\text{TR}(A \otimes M_p) = \text{TR}(B \otimes M_q) = 0 \) **for any supernatural number** \(p \) **of infinite type. Then**

\[
A \otimes \mathbb{Z} \cong B \otimes \mathbb{Z},
\]

provided that \(K_*(A) \) **and** \(K_*(B) \) **are finitely generated.**
Definition

Denote by $KK_e(C, A)^{++}$ the set of those $\kappa \in KK(C, A)$ for which $\kappa(K_0(C)_+ \setminus \{0\}) \subset K_0(A)_+ \setminus \{0\}$ such that $\kappa([1_C]) = [1_A]$.

Theorem (L and Z. Niu 2008) (Existence Theorem B (part I))

Let C be a unital AH-algebra and let A be a unital separable simple C^*-algebra with $TR(A) = 0$. Then for any $\kappa \in KK_e(C, A)^{++}$ and for any $\lambda : T(A) \to T_f(C)$ which is compatible with κ, there exists a unital monomorphism $\phi : C \to A$ such that $\phi = \kappa$ and $\lambda(\tau)(c) = \tau \circ \phi(c)$ for all $c \in C$.

Huaxin Lin
Department of Mathematics
University of Oregon
Eugene, OR 97405 U.S.A.
Definition

Denote by $KK_e(C, A)^{++}$ the set of those $\kappa \in KK(C, A)$ for which $\kappa(K_0(C)_+ \setminus \{0\}) \subset K_0(A)_+ \setminus \{0\}$ such that $\kappa([1_C]) = [1_A]$.

Denote by $T_f(C)$ the set of those tracial states $t \in T(C)$ such that $t(c) > 0$ for any $c \in C_+ \setminus \{0\}$.
Definition

Denote by $KK_e(C, A)^{++}$ the set of those $\kappa \in KK(C, A)$ for which $\kappa(K_0(C)_+ \setminus \{0\}) \subset K_0(A)_+ \setminus \{0\}$ such that $\kappa([1_C]) = [1_A]$.

Denote by $T_f(C)$ the set of those tracial states $t \in T(C)$ such that $t(c) > 0$ for any $c \in C_+ \setminus \{0\}$. Let $\lambda : T(A) \to T_f(C)$ be an affine continuous map and $\kappa \in KK_e(C, A)^{++}$. We say that λ is compatible with κ if $(\lambda(\tau))(p) = \tau(\kappa([p]))$ for all projections $p \in C \otimes K$ and $\tau \in T(A)$.
Definition

Denote by $KK_e(C, A)^{++}$ the set of those $\kappa \in KK(C, A)$ for which $\kappa(K_0(C)_+ \setminus \{0\}) \subset K_0(A)_+ \setminus \{0\}$ such that $\kappa([1_C]) = [1_A]$.

Denote by $T_f(C)$ the set of those tracial states $t \in T(C)$ such that $t(c) > 0$ for any $c \in C_+ \setminus \{0\}$. Let $\lambda : T(A) \to T_f(C)$ be an affine continuous map and $\kappa \in KK_e(C, A)^{++}$. We say that λ is compatible with κ if $(\lambda(\tau))(p) = \tau(\kappa([p]))$ for all projections $p \in C \otimes K$ and $\tau \in T(A)$.

Theorem

(L and Z. Niu 2008) (Existence Theorem B (part I))
Definition

Denote by $KK_e(C, A)^{++}$ the set of those $\kappa \in KK(C, A)$ for which $\kappa(K_0(C)_+ \setminus \{0\}) \subset K_0(A)_+ \setminus \{0\}$ such that $\kappa([1_C]) = [1_A]$.

Denote by $T_f(C)$ the set of those tracial states $t \in T(C)$ such that $t(c) > 0$ for any $c \in C_+ \setminus \{0\}$. Let $\lambda : T(A) \to T_f(C)$ be an affine continuous map and $\kappa \in KK_e(C, A)^{++}$. We say that λ is compatible with κ if $(\lambda(\tau))(p) = \tau(\kappa([p]))$ for all projections $p \in C \otimes K$ and $\tau \in T(A)$.

Theorem

(L and Z. Niu 2008) (Existence Theorem B (part I)) Let C be a unital AH-algebra and let A be a unital separable simple C^*-algebra with $TR(A) = 0$.

Huaxin Lin Department of Mathematics University of Oregon Eugene, OR 97405 U.S.A.
Definition

Denote by $KK_e(C, A)^{++}$ the set of those $\kappa \in KK(C, A)$ for which $\kappa(K_0(C)_+ \setminus \{0\}) \subset K_0(A)_+ \setminus \{0\}$ such that $\kappa([1_C]) = [1_A]$.

Denote by $T_f(C)$ the set of those tracial states $t \in T(C)$ such that $t(c) > 0$ for any $c \in C_+ \setminus \{0\}$. Let $\lambda : T(A) \to T_f(C)$ be an affine continuous map and $\kappa \in KK_e(C, A)^{++}$. We say that λ is compatible with κ if $(\lambda(\tau))(p) = \tau(\kappa([p]))$ for all projections $p \in C \otimes K$ and $\tau \in T(A)$.

Theorem

(L and Z. Niu 2008) (Existence Theorem B (part I)) Let C be a unital AH-algebra and let A be a unital separable simple C^*-algebra with $TR(A) = 0$. Then for any $\kappa \in KK_e(C, A)^{++}$ and for any $\lambda : T(A) \to T_f(T)$ which is compatible with κ,
Definition

Denote by $KK_e(C, A)^{++}$ the set of those $\kappa \in KK(C, A)$ for which $\kappa(K_0(C)_+ \setminus \{0\}) \subset K_0(A)_+ \setminus \{0\}$ such that $\kappa([1_C]) = [1_A]$.

Denote by $T_f(C)$ the set of those tracial states $t \in T(C)$ such that $t(c) > 0$ for any $c \in C_+ \setminus \{0\}$. Let $\lambda : T(A) \to T_f(C)$ be an affine continuous map and $\kappa \in KK_e(C, A)^{++}$. We say that λ is compatible with κ if $(\lambda(\tau))(p) = \tau(\kappa([p]))$ for all projections $p \in C \otimes K$ and $\tau \in T(A)$.

Theorem

(L and Z. Niu 2008) (Existence Theorem B (part I)) Let C be a unital AH-algebra and let A be a unital separable simple C^*-algebra with $TR(A) = 0$. Then for any $\kappa \in KK_e(C, A)^{++}$ and for any $\lambda : T(A) \to T_f(T)$ which is compatible with κ, there exists a unital monomorphism $\phi : C \to A$ such that

$$[\phi] = \kappa \text{ and } \lambda(\tau)(c) = \tau \circ \phi(c)$$

for all $c \in C$.
Definition

Denote by $KKT(C, A)^{++}$ the set of pairs (κ, λ), where $\kappa \in KK_e(C, A)^{++}$ and $\lambda : T(A) \rightarrow T_f(C)$ is an affine continuous map which is compatible with κ.
Definition

Denote by $KKT(C, A)^{++}$ the set of pairs (κ, λ), where $\kappa \in KK_e(C, A)^{++}$ and $\lambda : T(A) \to T_f(C)$ is an affine continuous map which is compatible with κ.

Definition

Let A be a unital C^*-algebra, and let C be a unital separable C^*-algebra.
Definition
Denote by $KKT(C, A)^{++}$ the set of pairs (κ, λ), where $\kappa \in KK_e(C, A)^{++}$ and $\lambda : T(A) \to T_f(C)$ is an affine continuous map which is compatible with κ.

Definition
Let A be a unital C^*-algebra, and let C be a unital separable C^*-algebra. Denote by $\text{Mon}_{asu}^e(C, A)$ the set of asymptotically unitary equivalence classes of unital monomorphisms.
Definition

Denote by $KKT(C, A)^{++}$ the set of pairs (κ, λ), where $\kappa \in KK_e(C, A)^{++}$ and $\lambda : T(A) \to T_f(C)$ is an affine continuous map which is compatible with κ.

Definition

Let A be a unital C^*-algebra, and let C be a unital separable C^*-algebra. Denote by $\text{Mon}_{asu}^e(C, A)$ the set of asymptotically unitary equivalence classes of unital monomorphisms.
Definition

Denote by $KKT(C, A)^{++}$ the set of pairs (κ, λ), where $\kappa \in KK_e(C, A)^{++}$ and $\lambda : T(A) \to T_f(C)$ is an affine continuous map which is compatible with κ.

Definition

Let A be a unital C*-algebra, and let C be a unital separable C*-algebra. Denote by $\text{Mon}_{asu}(C, A)$ the set of asymptotically unitary equivalence classes of unital monomorphisms. Denote by \mathcal{K} the map from $\text{Mon}_{asu}^e(C, A)$ into $KKT(C, A)^{++}$ defined by

$$\phi \mapsto ([\phi], \phi T)$$

for all $\phi \in \text{Mon}_{asu}^e(C, A)$.
Definition

Denote by $K KT(C, A)^{++}$ the set of pairs (κ, λ), where $\kappa \in KK_e(C, A)^{++}$ and $\lambda : T(A) \to T_f(C)$ is an affine continuous map which is compatible with κ.

Definition

Let A be a unital C^*-algebra, and let C be a unital separable C^*-algebra. Denote by $Mon^e_{asu}(C, A)$ the set of asymptotically unitary equivalence classes of unital monomorphisms. Denote by \mathfrak{A} the map from $Mon^e_{asu}(C, A)$ into $K KT(C, A)^{++}$ defined by

$$\phi \mapsto ([\phi], \phi_T) \text{ for all } \phi \in Mon^e_{asu}(C, A).$$

Denote by $\langle \kappa, \lambda \rangle$ the classes of $\phi \in Mon^e_{asu}(C, A)$ such that $\mathfrak{A}(\phi) = (\kappa, \lambda)$.
Theorem

(L and Z. Niu 2008) (*Existence Theorem B (part II)*)

Let C be a unital AH-algebra and let A be a unital separable simple C^*-algebra with $\text{TR}(A) = 0$. Then the map $K: \text{Mon}((C, A)) \to \text{KKT}(C, A)^{++}$ is surjective. Moreover, for each $(\kappa, \lambda) \in \text{KKT}(C, A)^{++}$, there exists a bijection $\eta: \langle \kappa, \lambda \rangle \to \text{Hom}(K_1(C), \text{Aff}(T(A)))/R_0$.

Huaxin Lin
Department of Mathematics
University of Oregon
Eugene, OR 97405 U.S.A.
(L and Z. Niu 2008) (Existence Theorem B (part II)) Let C be a unital AH-algebra and let A be a unital separable simple C^*-algebra with $\text{TR}(A) = 0$. Then the map $K : \text{Mon}(C, A) \to K\text{KTT}(C, A)^+$ is surjective. Moreover, for each $(\kappa, \lambda) \in K\text{KTT}(C, A)^+$, there exists a bijection $\eta : \langle \kappa, \lambda \rangle \to \text{Hom}(K_1(C), \text{Aff}(T(A))) / R_0.$
(L and Z. Niu 2008) (Existence Theorem B (part II)) Let C be a unital AH-algebra and let A be a unital separable simple C^*-algebra with $\text{TR}(A) = 0$. Then the map $\mathfrak{F} : \text{Mon}^e_{\text{asu}}(C, A) \to \text{KKT}(C, A)^{++}$ is surjective.
Theorem

(L and Z. Niu 2008) (Existence Theorem B (part II)) Let C be a unital AH-algebra and let A be a unital separable simple C^*-algebra with $\text{TR}(A) = 0$. Then the map $\mathfrak{A} : \text{Mon}_{\text{asu}}^e(C, A) \to \text{KKT}(C, A)^{++}$ is surjective. Moreover, for each $(\kappa, \lambda) \in \text{KKT}(C, A)^{++}$,
Theorem

(L and Z. Niu 2008) (Existence Theorem B (part II)) Let C be a unital AH-algebra and let A be a unital separable simple C^*-algebra with $\text{TR}(A) = 0$. Then the map $\mathfrak{H} : \text{Mon}_{\text{asu}}^e(C, A) \to \text{KKT}(C, A)^{++}$ is surjective. Moreover, for each $(\kappa, \lambda) \in \text{KKT}(C, A)^{++}$, there exists a bijection

$$\eta : \langle \kappa, \lambda \rangle \to \text{Hom}(K_1(C), \text{Aff}(T(A))) / \mathcal{R}_0.$$

Huaxin Lin Department of Mathematics University of Oregon Eugene, OR 97405 U.S.A.
Using Winter’s theorem, one has the following:
Using Winter’s theorem, one has the following:

Theorem

(L and Z. Niu) *Let A and B be unital simple C^*-algebras in \mathcal{N} such that $\Ell(A) = \Ell(B)$. Then $A \otimes Z \cong B \otimes Z$.***
Using Winter’s theorem, one has the following:

Theorem

(L and Z. Niu) Let A and B be unital simple C^*-algebras in \mathcal{N} such that

$$\text{Ell}(A) = \text{Ell}(B).$$

Suppose that $TR(A \otimes M_p) = TR(A \otimes M_p) = 0$ for any supernatural numbers of infinite type p.
Using Winter’s theorem, one has the following:

Theorem

(L and Z. Niu) *Let A and B be unital simple C*-algebras in \(\mathcal{N} \) such that*

\[
\text{Ell}(A) = \text{Ell}(B).
\]

Suppose that \(TR(A \otimes M_p) = TR(A \otimes M_p) = 0 \) *for any supernatural numbers of infinite type* \(p \). *Then*

\[
A \otimes \mathbb{Z} \cong B \otimes \mathbb{Z}.
\]
Theorem

(L–2008) (Uniqueness Theorem C)
Theorem

(L–2008) (Uniqueness Theorem C) Let C and A be two unital simple C^*-algebras with $\text{TR}(A)$, $\text{TR}(C) \leq 1$.

Suppose that $C \in N$ and $\varphi, \psi : C \to A$ are two unital homomorphisms. Then there exists a continuous path of unitaries $\{u_t : t \in [0, \infty)\} \subset A$ such that

$$\lim_{t \to \infty} \text{ad} u_t \circ \varphi(c) = \psi(c)$$

for all $c \in C$ if and only if $[\varphi] = [\psi]$ in $\text{KK}(C, A)$

$\varphi_T = \psi_T$, $\varphi^\perp = \psi^\perp$ and $R_{\varphi, \psi} = 0$.

Here $\varphi^\perp : \text{U}(C)/\text{CU}(C) \to \text{U}(A)/\text{CU}(A)$ is the induced homomorphism by φ and $\text{CU}(C)$ (and $\text{CU}(A)$) is the closure of the commutator group of $\text{U}(C)$ (of $\text{U}(A)$).
Theorem

(L–2008) (Uniqueness Theorem C) Let C and A be two unital simple C^*-algebras with $\text{TR}(A), \text{TR}(C) \leq 1$. Suppose that $C \in \mathcal{N}$ and $\phi, \psi : C \to A$ are two unital homomorphisms. Then there exists a continuous path of unitaries $\{u_t : t \in [0, \infty)\} \subset A$ such that

$$\lim_{t \to \infty} \text{ad} u_t \circ \phi(c) = \psi(c)$$

for all $c \in C$ if and only if $[\phi] = [\psi]$ in $KK(C, A)$.

$\phi^T = \psi^T, \phi^\perp = \psi^\perp$ and $R_{\phi, \psi} = 0$.

In particular, ϕ and ψ are asymptotically unitarily equivalent if and only if $[\phi] = [\psi]$ in $KK(C, A)$.

Here $\phi^\perp : U(C)/CU(C) \to U(A)/CU(A)$ is the induced homomorphism by ϕ and $CU(C)$ (and $CU(A)$) is the closure of the commutator group of $U(C)$ (of $U(A)$).
Theorem

(L–2008) (Uniqueness Theorem C) Let C and A be two unital simple C^*-algebras with $\text{TR}(A), \text{TR}(C) \leq 1$. Suppose that $C \in \mathcal{N}$ and $\phi, \psi : C \to A$ are two unital homomorphisms. Then there exists a continuous path of unitaries $\{u_t : t \in [0, \infty)\} \subset A$ such that

$$\lim_{t \to \infty} \text{ad} u_t \circ \phi(c) = \psi(c) \text{ for all } c \in C$$
Theorem

(L–2008) (Uniqueness Theorem C) Let C and A be two unital simple C^*-algebras with $TR(A)$, $TR(C) \leq 1$. Suppose that $C \in \mathcal{N}$ and $\phi, \psi : C \to A$ are two unital homomorphisms. Then there exists a continuous path of unitaries $\{u_t : t \in [0, \infty)\} \subset A$ such that

$$\lim_{t \to \infty} \text{ad} u_t \circ \phi(c) = \psi(c) \text{ for all } c \in C$$

if and only if

$$[\phi] = [\psi] \text{ in } KK(C, A)$$
Theorem (L–2008) (Uniqueness Theorem C) Let C and A be two unital simple C^*-algebras with $TR(A) = TR(C) \leq 1$. Suppose that $C \in \mathcal{N}$ and $\phi, \psi : C \to A$ are two unital homomorphisms. Then there exists a continuous path of unitaries $\{u_t : t \in [0, \infty)\} \subset A$ such that

$$\lim_{t \to \infty} \text{ad} u_t \circ \phi(c) = \psi(c) \text{ for all } c \in C$$

if and only if

$$[\phi] = [\psi] \text{ in } KK(C, A)$$

$$\phi_T = \psi_T, \phi^\dagger = \psi^\dagger \text{ and}$$

Here $\phi^\dagger : U(C)/CU(C) \to U(A)/CU(A)$ is the induced homomorphism by ϕ and $CU(C)$ (and $CU(A)$) is the closure of the commutator group of $U(C)$ (of $U(A)$).
Theorem

(L–2008) (Uniqueness Theorem C) Let C and A be two unital simple C^*-algebras with $\text{TR}(A)$, $\text{TR}(C) \leq 1$. Suppose that $C \in \mathcal{N}$ and $\phi, \psi : C \to A$ are two unital homomorphisms. Then there exists a continuous path of unitaries $\{u_t : t \in [0, \infty)\} \subset A$ such that

$$\lim_{t \to \infty} \text{ad} u_t \circ \phi(c) = \psi(c) \text{ for all } c \in C$$

if and only if

$$[\phi] = [\psi] \text{ in } KK(C,A)$$

$$\phi_T = \psi_T, \phi^\dagger = \psi^\dagger \text{ and }$$

$$\overline{R}_{\phi,\psi} = 0.$$
Theorem

(L–2008) (Uniqueness Theorem C) Let C and A be two unital simple C^*-algebras with $TR(A)$, $TR(C) \leq 1$. Suppose that $C \in \mathcal{N}$ and $\phi, \psi : C \to A$ are two unital homomorphisms. Then there exists a continuous path of unitaries $\{u_t : t \in [0, \infty)\} \subset A$ such that

$$\lim_{t \to \infty} \text{ad} u_t \circ \phi(c) = \psi(c) \text{ for all } c \in C$$

if and only if

$$[\phi] = [\psi] \text{ in } KK(C, A)$$

$$\phi_T = \psi_T, \phi^{\dagger} = \psi^{\dagger} \text{ and}$$

$$\overline{R}_{\phi, \psi} = 0.$$

Here $\phi^{\dagger} : U(C)/CU(C) \to U(A)/CU(A)$ is the induced homomorphism by ϕ and $CU(C)$ (and $CU(A)$) is the closure of the commutator group of $U(C)$ (of $U(A)$).
We omit the Existence Theorem C.
We omit the Existence Theorem C.

Definition

Denote by A the class of unital simple C^*-algebras A in \mathcal{N} such that $TR(A \otimes M_p) \leq 1$ for any supernatural number p of infinite type.
We omit the Existence Theorem C.

Definition

Denote by \mathcal{A} the class of unital simple C^*-algebras A in \mathcal{N} such that $\text{TR}(A \otimes M_p) \leq 1$ for any supernatural number p of infinite type.

Proposition

(1) If $A \in \mathcal{A}$, then for any projection $p \in A$, $pAp \in \mathcal{A}$;
We omit the Existence Theorem C.

Definition

Denote by \mathcal{A} the class of unital simple C^*-algebras A in \mathcal{N} such that $TR(A \otimes M_p) \leq 1$ for any supernatural number p of infinite type.

Proposition

(1) If $A \in \mathcal{A}$, then for any projection $p \in A$, $pAp \in \mathcal{A}$;
(2) If $A \in \mathcal{A}$, then $M_n(A) \in \mathcal{A}$ for all $n \geq 1$;
We omit the Existence Theorem C.

Definition

Denote by \mathcal{A} the class of unital simple C^*-algebras A in \mathcal{N} such that $TR(A \otimes M_p) \leq 1$ for any supernatural number p of infinite type.

Proposition

(1) If $A \in \mathcal{A}$, then for any projection $p \in A$, $pAp \in \mathcal{A}$;
(2) If $A \in \mathcal{A}$, then $M_n(A) \in \mathcal{A}$ for all $n \geq 1$;
(3) $\mathcal{Z} \in \mathcal{A}$;
We omit the Existence Theorem C.

Definition

Denote by \mathcal{A} the class of unital simple C^*-algebras A in \mathcal{N} such that $TR(A \otimes M_p) \leq 1$ for any supernatural number p of infinite type.

Proposition

1. If $A \in \mathcal{A}$, then for any projection $p \in A$, $pAp \in \mathcal{A}$;
2. If $A \in \mathcal{A}$, then $M_n(A) \in \mathcal{A}$ for all $n \geq 1$;
3. $\mathcal{Z} \in \mathcal{A}$;
4. If $A, B \in \mathcal{A}$, then $A \otimes B \in \mathcal{A}$;
We omit the Existence Theorem C.

Definition

Denote by \mathcal{A} the class of unital simple C^*-algebras A in \mathcal{N} such that $TR(A \otimes M_p) \leq 1$ for any supernatural number p of infinite type.

Proposition

(1) If $A \in \mathcal{A}$, then for any projection $p \in A$, $pAp \in \mathcal{A}$;
(2) If $A \in \mathcal{A}$, then $M_n(A) \in \mathcal{A}$ for all $n \geq 1$;
(3) $\mathbb{Z} \in \mathcal{A}$;
(4) If $A, B \in \mathcal{A}$, then $A \otimes B \in \mathcal{A}$;
(5) If $\{A_n\} \subset A$, then the unital C^*-algebras of the form $\lim_n(A_n, \phi_n)$ are in \mathcal{A};
We omit the Existence Theorem C.

Definition

Denote by \(\mathcal{A} \) the class of unital simple \(C^* \)-algebras \(A \) in \(\mathcal{N} \) such that \(TR(A \otimes M_p) \leq 1 \) for any supernatural number \(p \) of infinite type.

Proposition

1. If \(A \in \mathcal{A} \), then for any projection \(p \in A \), \(pAp \in \mathcal{A} \);
2. If \(A \in \mathcal{A} \), then \(M_n(A) \in \mathcal{A} \) for all \(n \geq 1 \);
3. \(\mathcal{Z} \in \mathcal{A} \);
4. If \(A, B \in \mathcal{A} \), then \(A \otimes B \in \mathcal{A} \);
5. If \(\{A_n\} \subset A \), then the unital \(C^* \)-algebras of the form \(\lim_n (A_n, \phi_n) \) are in \(\mathcal{A} \);
6. Every unital simple ASH-algebra whose projections separate the traces is in \(\mathcal{A} \) (Winter);
We omit the Existence Theorem C.

Definition

Denote by \mathcal{A} the class of unital simple C^*-algebras A in \mathcal{N} such that $\text{TR}(A \otimes M_p) \leq 1$ for any supernatural number p of infinite type.

Proposition

(1) If $A \in \mathcal{A}$, then for any projection $p \in A$, $pAp \in \mathcal{A}$;
(2) If $A \in \mathcal{A}$, then $M_n(A) \in \mathcal{A}$ for all $n \geq 1$;
(3) $\mathbb{Z} \in \mathcal{A}$;
(4) If $A, B \in \mathcal{A}$, then $A \otimes B \in \mathcal{A}$;
(5) If $\{A_n\} \subset A$, then the unital C^*-algebras of the form $\lim_n(A_n, \phi_n)$ are in \mathcal{A};
(6) Every unital simple ASH-algebra whose projections separate the traces is in \mathcal{A} (Winter);
(7) Every unital separable simple C^*-algebra which is an inductive limit of type I C^*-algebras and which has a unique tracial state is in \mathcal{A}.
We omit the Existence Theorem C.

Definition

Denote by \mathcal{A} the class of unital simple C^*-algebras A in \mathcal{N} such that $TR(A \otimes M_p) \leq 1$ for any supernatural number p of infinite type.

Proposition

(1) If $A \in \mathcal{A}$, then for any projection $p \in A$, $pAp \in \mathcal{A}$;
(2) If $A \in \mathcal{A}$, then $M_n(A) \in \mathcal{A}$ for all $n \geq 1$;
(3) $\mathbb{Z} \in \mathcal{A}$;
(4) If $A, B \in \mathcal{A}$, then $A \otimes B \in \mathcal{A}$;
(5) If $\{A_n\} \subset A$, then the unital C^*-algebras of the form $\lim_n(A_n, \phi_n)$ are in \mathcal{A};
(6) Every unital simple ASH-algebra whose projections separate the traces is in \mathcal{A} (Winter);
(7) Every unital separable simple C^*-algebra which is an inductive limit of type I C^*-algebras and which has a unique tracial state is in \mathcal{A}.
(8) Every unital simple AH-algebra is in \mathcal{A}.
Theorem

(L–2008) Let A and B be two C^*-algebras in A. Then $A \otimes \mathbb{Z} \cong B \otimes \mathbb{Z}$ if and only if

$$\text{Ell}(A) \cong \text{Ell}(B).$$
Theorem

(L–2008) Let A and B be two C^*-algebras in A. Then $A \otimes \mathbb{Z} \cong B \otimes \mathbb{Z}$ if and only if

$$\text{Ell}(A) \cong \text{Ell}(B).$$

Corollary

Let A be a unital simple AH-algebra. Then $A \otimes \mathbb{Z}$ is a unital simple unital AH-algebra with no dimension growth.
Corollary

Suppose that A is a unital simple AH-algebra. Then the following are equivalent:

1. $\text{TR}(A) \leq 1$,
2. A is Z-stable,
3. A is approximately divisible,
4. A has very slow dimension growth.
5. A has no dimension growth.
Corollary

Suppose that A is a unital simple AH-algebra. Then the following are equivalent:

1. $\text{TR}(A) \leq 1$,
2. A is \mathcal{Z}-stable,
3. A is approximately divisible,
4. A has very slow dimension growth,
5. A has no dimension growth.
Corollary

Suppose that A is a unital simple AH-algebra. Then the following are equivalent:

1. $TR(A) \leq 1$,
2. A is \mathcal{Z}-stable,
3. A is approximately divisible,
4. A has very slow dimension growth,
5. A has no dimension growth.
Corollary

Suppose that A is a unital simple AH-algebra. Then the following are equivalent:

1. $TR(A) \leq 1$,
2. A is \mathcal{Z}-stable,
3. A is approximately divisible,
4. A has very slow dimension growth.

Huaxin Lin
Department of Mathematics
University of Oregon
Eugene, OR 97405 U.S.A.
Corollary

Suppose that A is a unital simple AH-algebra. Then the following are equivalent:

1. $\text{TR}(A) \leq 1$,
2. A is \mathbb{Z}-stable,
3. A is approximately divisible,
4. A has very slow dimension growth.
5. A has no dimension growth.