Towards an analogue of the Baum-Connes conjecture for quantum groups

Christian Voigt

Westfälische Wilhelms-Universität Münster
cvoigt@math.uni-muenster.de
http://wwwmath.uni-muenster.de/reine/u/cvoigt/

Vanderbilt
May 14, 2007
The Baum-Connes conjecture

Let G be a second countable locally compact group. The Baum-Connes conjecture asserts that the assembly map

$$
\mu : K^{\text{top}}_* (G) \rightarrow K_* (C^*_\text{red} (G))
$$

is an isomorphism. Here E_G is the universal proper G-space.

More generally, the Baum-Connes conjecture with coefficients states that

$$
\mu : K^{\text{top}}_* (G; A) \rightarrow K_* (G \ltimes^R A)
$$

is an isomorphism for every G-C^*-algebra A.

Here $G \ltimes^R A$ is the reduced crossed product of A by G.

What happens if G is a locally compact quantum group?

Christian Voigt
Let G be a second countable locally compact group. The *Baum-Connes conjecture* asserts that the assembly map

$$\mu : K^\text{top}_*(G) = K^G_*(\mathcal{E}G) \to K_*({C^*_\text{red}}(G))$$

is an isomorphism.

Here $\mathcal{E}G$ is the universal proper G-space.
Let G be a second countable locally compact group. The *Baum-Connes conjecture* asserts that the assembly map

$$
\mu : K^\text{top}_*(G) = K^G_*(\mathcal{E}G) \to K_* (C^*_{\text{red}}(G))
$$

is an isomorphism.

Here $\mathcal{E}G$ is the universal proper G-space.

More generally, the *Baum-Connes conjecture with coefficients* states that

$$
\mu : K^\text{top}_*(G; A) \to K_* (G \rtimes_{\text{red}} A)
$$

is an isomorphism for every G-C^*-algebra A.

Here $G \rtimes_{\text{red}} A$ is the *reduced crossed product* of A by G.
Let G be a second countable locally compact group. The \textit{Baum-Connes conjecture} asserts that the assembly map

$$\mu : K^\text{top}_*(G) = K_*^G(\mathcal{E}G) \to K_*(C^*_\text{red}(G))$$

is an isomorphism.

Here $\mathcal{E}G$ is the universal proper G-space.

More generally, the \textit{Baum-Connes conjecture with coefficients} states that

$$\mu : K^\text{top}_*(G; A) \to K_*(G \ltimes_\text{red} A)$$

is an isomorphism for every G-C^*-algebra A.

Here $G \ltimes_\text{red} A$ is the \textit{reduced crossed product} of A by G.

What happens if G is a locally compact \textit{quantum} group?
Basic definitions

Let G be a locally compact group. A G-C^*-algebra is a C^*-algebra A with a strongly continuous action of G by $*$-automorphisms.

A $*$-homomorphism $f : A \to B$ is equivariant if $f(t \cdot a) = t \cdot f(a)$ for all $t \in G$, $a \in A$.

Let $H \subset G$ be a closed subgroup.

If A is a G-C^*-algebra then A becomes an H-C^*-algebra by restriction of the action.

If A is an H-C^*-algebra then the induced (G-C^*-) algebra is

$$\text{ind}^G_H(B) = \{ f \in C_b(G, B) | f(xh) = h^{-1} \cdot f(x), \ xH \mapsto \| f(x) \| \in C_0(G/H) \}$$
Basic definitions

Definition
Let G be a locally compact group. A G-C^*-algebra is a C^*-algebra A with a strongly continuous action of G by $*$-automorphisms. A $*$-homomorphism $f : A \to B$ is equivariant if $f(t \cdot a) = t \cdot f(a)$ for all $t \in G, a \in A$.
Definition
Let G be a locally compact group. A G-C^*-algebra is a C^*-algebra A with a strongly continuous action of G by \ast-automorphisms. A \ast-homomorphism $f : A \to B$ is equivariant if $f(t \cdot a) = t \cdot f(a)$ for all $t \in G, a \in A$.

Let $H \subset G$ be a closed subgroup.

- If A is a G-C^*-algebra then $A = \text{res}^G_H(A)$ becomes an H-C^*-algebra by restriction of the action.
Definition
Let G be a locally compact group. A G-C^*-algebra is a C^*-algebra A with a strongly continuous action of G by $*$-automorphisms. A $*$-homomorphism $f : A \to B$ is equivariant if $f(t \cdot a) = t \cdot f(a)$ for all $t \in G, a \in A$.

Let $H \subset G$ be a closed subgroup.

- If A is a G-C^*-algebra then $A = \text{res}_H^G(A)$ becomes an H-C^*-algebra by restriction of the action.
- If A is an H-C^*-algebra then the induced $(G$-C^*-) algebra is

$$\text{ind}_H^G(B) = \{ f \in C_b(G, B) | f(xh) = h^{-1} \cdot f(x), \quad xH \mapsto ||f(x)|| \in C_0(G/H) \}$$
Reformulation of the conjecture by Meyer-Nest

Equivariant Kasparov theory yields a category KK

- objects in KK are all separable G-C^*-algebras.
- morphism sets are the bivariant Kasparov K-groups $\text{KK}_G(A, B)$, and composition of morphisms is given by the Kasparov product.

In fact, the category KK_G is triangulated — this allows to do homological algebra.

A basic example of a triangulated category to have in mind is the homotopy category of chain complexes $\text{CH}(R)$ of R-modules over a ring R.

Christian Voigt
Equivariant Kasparov theory yields a category KK^G
Equivariant Kasparov theory yields a category KK^G

- objects in KK^G are all separable G-C^*-algebras.
Equivariant Kasparov theory yields a category KK^G

- objects in KK^G are all separable G-C^*-algebras.
- morphism sets are the bivariant Kasparov K-groups $KK^G(A, B)$, and composition of morphisms is given by Kasparov product.
Equivariant Kasparov theory yields a category KK^G

- objects in KK^G are all separable G-C^*-algebras.
- morphism sets are the bivariant Kasparov K-groups $KK^G(A, B)$, and composition of morphisms is given by Kasparov product.

In fact, the category KK^G is *triangulated* - this allows to do homological algebra.
Equivariant Kasparov theory yields a category KK^G

- objects in KK^G are all separable G-C^*-algebras.
- morphism sets are the bivariant Kasparov K-groups $KK^G(A, B)$, and composition of morphisms is given by Kasparov product.

In fact, the category KK^G is triangulated - this allows to do homological algebra.

A basic example of a triangulated category to have in mind is the homotopy category of chain complexes $CH(R)$ of R-modules over a ring R.
Reformulation of the conjecture by Meyer-Nest

The triangulated structure on KK^G is given by the following data.
The triangulated structure on KK^G is given by the following data.

- The (inverse of the) suspension $\Sigma(A) = C_0(\mathbb{R}) \otimes A$ yields the translation functor.
The triangulated structure on KK^G is given by the following data.

- The (inverse of the) suspension $\Sigma(A) = C_0(\mathbb{R}) \otimes A$ yields the translation functor.
- Distinguished *-triangles are all triangles isomorphic to mapping cone triangles
 \[
 \Sigma(B) \to C_f \to A \to B
 \]
 for equivariant *-homomorphisms $f : A \to B$.
A $G\ast C$-algebra is called compactly induced if it is of the form $\text{ind}_{GH}(B)$ for a compact subgroup $H \subset G$.

(corresponds to a projective chain complex in CH(R))

A $G\ast C$-algebra is called weakly contractible if $\text{res}_{GH}(A) \sim 0 \in \text{KK}_{H}$ for every compact subgroup $H \subset G$.

(corresponds to an exact chain complex in CH(R))

Christian Voigt
A G-C^*-algebra is called \textit{compactly induced} if it is of the form $\text{ind}^G_H(B)$ for a compact subgroup $H \subset G$.
A G-C^*-algebra is called \textit{compactly induced} if it is of the form $\text{ind}^G_H(B)$ for a compact subgroup $H \subset G$.

(corresponds to a \textit{projective chain complex} in $\text{CH}(R)$)
A G-C^*-algebra is called \textit{compactly induced} if it is of the form \[\text{ind}_H^G(B)\] for a compact subgroup $H \subset G$.

(corresponds to a \textit{projective chain complex} in $\text{CH}(R)$)

A G-C^*-algebra A is called \textit{weakly contractible} if \[\text{res}_H^G(A) \cong 0 \in KK^H\] for every compact subgroup $H \subset G$.

A G-C^*-algebra is called *compactly induced* if it is of the form $\text{ind}_H^G(B)$ for a compact subgroup $H \subset G$.

(corresponds to a *projective chain complex* in $\text{CH}(R)$)

A G-C^*-algebra A is called *weakly contractible* if $\text{res}_H^G(A) \cong 0 \in KK^H$ for every compact subgroup $H \subset G$.

(corresponds to an *exact chain complex* in $\text{CH}(R)$)
Let $\langle CI \rangle$ be the localising subcategory of KK^G generated by all compactly induced algebras.
Let $\langle CI \rangle$ be the localising subcategory of KK^G generated by all compactly induced algebras.

A $\langle CI \rangle$-simplicial approximation of a G-C^*-algebra A is a weak equivalence $\tilde{A} \to A$ with $\tilde{A} \in \langle CI \rangle$.

Theorem
For every $A \in KK^G$ there exists a $\langle CI \rangle$-simplicial approximation \tilde{A} which is unique up to isomorphism.

Theorem
For the functor $F(A) = K^*(G \ltimes \text{red} A)$ the transformation $L F(A) = K^*(G \ltimes \text{red} \tilde{A}) \to K^*(G \ltimes \text{red} A) = F(A)$ is isomorphic to the Baum-Connes assembly map.
Let $\langle CI \rangle$ be the localising subcategory of KK^G generated by all compactly induced algebras.

A $\langle CI \rangle$-simplicial approximation of a G-C^*-algebra A is a weak equivalence $\tilde{A} \to A$ with $\tilde{A} \in \langle CI \rangle$.

Theorem

For every $A \in KK^G$ there exists a $\langle CI \rangle$-simplicial approximation \tilde{A} which is unique up to isomorphism.
Let $\langle CI \rangle$ be the localising subcategory of KK^G generated by all compactly induced algebras.

A $\langle CI \rangle$-simplicial approximation of a G-C^*-algebra A is a weak equivalence $\tilde{A} \to A$ with $\tilde{A} \in \langle CI \rangle$.

Theorem

For every $A \in KK^G$ there exists a $\langle CI \rangle$-simplicial approximation \tilde{A} which is unique up to isomorphism.

Theorem

For the functor $F(A) = K_\ast(G \rtimes_{\text{red}} A)$ the transformation

$$\mathbb{L}F(A) = K_\ast(G \rtimes_{\text{red}} \tilde{A}) \to K_\ast(G \rtimes_{\text{red}} A) = F(A)$$

is isomorphic to the Baum-Connes assembly map.

Christian Voigt
Locally compact quantum groups

A Hopf-C^*-algebra is a C^*-algebra \mathcal{H} together with a nondegenerate injective *-homomorphism $\Delta : \mathcal{H} \to M(\mathcal{H} \otimes \mathcal{H})$ such that $\mathcal{H} \Delta \to \Delta \to \mathcal{H} \otimes \mathcal{H}$ is commutative and $\Delta(\mathcal{H})(1 \otimes \mathcal{H})$ and $(\mathcal{H} \otimes 1)\Delta(\mathcal{H})$ are dense subspaces of $\mathcal{H} \otimes \mathcal{H}$.

A locally compact quantum group is given by a Hopf-C^*-algebra \mathcal{H} together with left and right Haar integrals.
Definition

A Hopf-C^*-algebra is a C^*-algebra H together with a nondegenerate injective $*$-homomorphism $\Delta : H \to M(H \otimes H)$ such that

\[
\begin{array}{ccc}
H & \xrightarrow{\Delta} & M(H \otimes H) \\
\downarrow & & \downarrow \text{id} \otimes \Delta \\
M(H \otimes H) & \xrightarrow{\Delta \otimes \text{id}} & M(H \otimes H \otimes H)
\end{array}
\]

is commutative and $\Delta(H)(1 \otimes H)$ and $(H \otimes 1)\Delta(H)$ are dense subspaces of $H \otimes H$.
Definition

A *-Hopf-C*-algebra is a C*-algebra H together with a nondegenerate injective *-homomorphism $\Delta : H \to M(H \otimes H)$ such that

$$
\begin{array}{ccc}
H & \xrightarrow{\Delta} & M(H \otimes H) \\
\downarrow & & \downarrow \text{id} \otimes \Delta \\
M(H \otimes H) & \xrightarrow{\Delta \otimes \text{id}} & M(H \otimes H \otimes H)
\end{array}
$$

is commutative and $\Delta(H)(1 \otimes H)$ and $(H \otimes 1)\Delta(H)$ are dense subspaces of $H \otimes H$.

A locally compact quantum group is given by a Hopf-C*-algebra H together with left and right Haar integrals.
If G is a locally compact group then $H = C_0(G)$ defines a locally compact quantum group. The comultiplication $\Delta : C_0(G) \to C^b(G \times G)$ is given by $\Delta(f)(s,t) = f(st)$, and the integrals are given by left/right Haar measure.
Examples
If G is a locally compact group then $H = C_0(G)$ defines a locally compact quantum group.
The comultiplication $\Delta : C_0(G) \to C_b(G \times G)$ is given by

$$\Delta(f)(s, t) = f(st),$$

and the integrals are given by left/right Haar measure.
In general we will write $H = C_{\text{red}}^0(G)$ for a locally compact quantum group. We think of $C_{\text{red}}^0(G)$ as "the algebra of functions" on the (imaginary) quantum group G. For every locally compact quantum group G there exists a dual locally compact quantum group \hat{G} given by $\hat{H} = C^*_{\text{red}}(\hat{G}) = C_{\text{red}}^0(\hat{G})$ and the Pontrjagin duality theorem holds. Every locally compact quantum group comes equipped with a Hilbert space H_G (the GNS-space of the left Haar weight) and a multiplicative unitary $W \in \mathcal{M}(C_{\text{red}}^0(G) \otimes C^*_{\text{red}}(G))$. In the sequel all locally compact quantum groups are assumed to be strongly regular.
In general we will write $H = C_0^{\text{red}}(G)$ for a locally compact quantum group. We think of $C_0^{\text{red}}(G)$ as "the algebra of functions" on the (imaginary) quantum group G.
In general we will write $H = C^\text{red}_0(G)$ for a locally compact quantum group.

We think of $C^\text{red}_0(G)$ as "the algebra of functions" on the (imaginary) quantum group G.

For every locally compact quantum group G there exists a \textit{dual locally compact quantum group} \hat{G} given by

$$\hat{H} = C^*_\text{red}(G) = C^\text{red}_0(\hat{G})$$

and the \textit{Pontrjagin duality theorem} holds.
In general we will write $H = C^\text{red}_0(G)$ for a locally compact quantum group. We think of $C^\text{red}_0(G)$ as "the algebra of functions" on the (imaginary) quantum group G.

For every locally compact quantum group G there exists a dual locally compact quantum group \hat{G} given by

$$\hat{H} = C^*_\text{red}(G) = C^\text{red}_0(\hat{G})$$

and the Pontrjagin duality theorem holds.

Every locally compact quantum group comes equipped with a Hilbert space \mathbb{H}_G (the GNS-space of the left Haar weight) and a multiplicative unitary $W \in M(C^\text{red}_0(G) \otimes C^*_\text{red}(G))$.
In general we will write $H = C_{0}^{\text{red}}(G)$ for a locally compact quantum group.

We think of $C_{0}^{\text{red}}(G)$ as "the algebra of functions" on the (imaginary) quantum group G.

For every locally compact quantum group G there exists a dual locally compact quantum group \hat{G} given by

$$\hat{H} = C_{\text{red}}^{*}(G) = C_{0}^{\text{red}}(\hat{G})$$

and the *Pontrjagin duality theorem* holds.

Every locally compact quantum group comes equipped with a Hilbert space \mathbb{H}_{G} (the GNS-space of the left Haar weight) and a *multiplicative unitary* $W \in M(C_{0}^{\text{red}}(G) \otimes C_{\text{red}}^{*}(G))$.

In the sequel all locally compact quantum groups are assumed to be strongly regular.
Actions

Definition

A left coaction of a Hopf C^*-algebra H on a C^*-algebra A is an injective nondegenerate \ast-homomorphism $\alpha : A \to M(H \otimes A)$ such that the diagram

\[\begin{array}{ccc}
A & \xrightarrow{\alpha} & A \\
\downarrow & & \downarrow \\
M(H \otimes A) & \xrightarrow{\Delta \otimes \text{id}} & M(H \otimes H \otimes A)
\end{array} \]

is commutative and $\alpha(A)(H \otimes 1) \subset H \otimes A$ is dense.

Christian Voigt
Definition

A (left) coaction of a Hopf C^*-algebra H on a C^*-algebra A is an injective nondegenerate $*$-homomorphism $\alpha : A \to M(H \otimes A)$ such that the diagram

\[
\begin{array}{ccc}
A & \xrightarrow{\alpha} & M(H \otimes A) \\
\downarrow{\alpha} & & \downarrow{\Delta \otimes id} \\
M(H \otimes A) & \xrightarrow{id \otimes \alpha} & M(H \otimes H \otimes A)
\end{array}
\]

is commutative and $\alpha(A)(H \otimes 1) \subset H \otimes A$ is dense.
The Kasparov category

Let G be a locally compact quantum group. A G-C*-algebra is a C*-algebra A with a coaction of $C_{red}^0(G)$. For locally compact groups this recovers the usual definition. Baaj and Skandalis defined KK_G for quantum groups. As in the group case one obtains a triangulated category with objects the separable G-C*-algebras and morphisms given by equivariant Kasparov groups.
Definition

Let G be a locally compact quantum group. A G-C^*-algebra is a C^*-algebra A with a coaction of $C_0^{\text{red}}(G)$.

For locally compact groups this recovers the usual definition.
Definition
Let G be a locally compact quantum group. A G-C^*-algebra is a C^*-algebra A with a coaction of $C^*_0(G)$.
For locally compact groups this recovers the usual definition.

Baaj and Skandalis defined KK^G for quantum groups. As in the group case one obtains a triangulated category with objects the separable G-C^*-algebras and morphisms given by equivariant Kasparov groups.
Braided tensor products

Definition

Let G be a locally compact quantum group and $H = C^*_red(G)$ and let $\hat{H} = C^*_\alpha(G)$. A G-Yetter-Drinfeld algebra is a C^*-algebra A equipped with a coaction α of H and a coaction λ of \hat{H} such that the diagram

\[
\begin{array}{ccc}
A & \xrightarrow{\lambda} & M(\hat{H} \otimes A) \\
\downarrow & & \downarrow \\
\sigma \otimes id & & id \otimes \lambda \\
\end{array}
\]

\[
\begin{array}{ccc}
M(H \otimes A) & \xrightarrow{id \otimes \alpha} & M(H \otimes \hat{H} \otimes A) \\
\downarrow & & \downarrow \\
M(H \otimes \hat{H} \otimes A) & \xrightarrow{\text{ad}(W)} & M(H \otimes \hat{H} \otimes A)
\end{array}
\]

is commutative.

Here $\sigma: \hat{H} \otimes H \rightarrow H \otimes \hat{H}$ is the flip map.

Christian Voigt
Braided tensor products

Definition
Let G be a locally compact quantum group and $H = C_0^{\text{red}}(G)$ and let $\hat{H} = C^*_\text{red}(G)$. A G-Yetter-Drinfeld algebra is a C^*-algebra A equipped with a coaction α of H and a coaction λ of \hat{H} such that the diagram

$$
\begin{array}{ccc}
A & \xrightarrow{\lambda} & M(\hat{H} \otimes A) \\
\downarrow{\alpha} & & \downarrow{\text{id} \otimes \alpha}
\end{array}
\xrightarrow{\text{id} \otimes \lambda}
\begin{array}{ccc}
M(H \otimes A) & \xrightarrow{\text{id} \otimes \lambda} & M(H \otimes \hat{H} \otimes A)
\end{array}
\xrightarrow{\text{ad}(W)}
\begin{array}{ccc}
M(H \otimes \hat{H} \otimes A)
\end{array}
$$

is commutative.

Here $\sigma : \hat{H} \otimes H \to H \otimes \hat{H}$ is the flip map.
Braided tensor products

Examples

- Ordinary locally compact group G - then every G-C*-algebra A is a G-YD-algebra with the trivial coaction $\lambda: A \to M(C^*_{\text{red}}(G) \otimes A)$ given by $\lambda(a) = 1 \otimes a$.

- Discrete group G - then coactions of $C^*_{\text{red}}(G)$ correspond to Fell bundles. A YD-structure is equivalent to having a G-equivariant Fell bundle.

- In general - if $H \subset G$ is a quantum subgroup then the induced algebra $\text{ind}_G^H(A)$ of a H-YD-algebra A is a G-YD-algebra.
Examples
Examples

- G ordinary locally compact group - then every G-C^\ast-algebra A is a G-YD-algebra with the trivial coaction $\lambda : A \to M(C^\ast_{\text{red}}(G) \otimes A)$ given by

$$\lambda(a) = 1 \otimes a.$$
Examples

- G ordinary locally compact group - then every G-C^*-algebra A is a G-YD-algebra with the trivial coaction $\lambda : A \to M(C^*_\text{red}(G) \otimes A)$ given by $\lambda(a) = 1 \otimes a$.

- G discrete group - then coactions of $C^*_\text{red}(G)$ correspond to Fell bundles. A YD-structure is equivalent to having a G-equivariant Fell bundle.
Examples

▶ G ordinary locally compact group - then every G-C^*-algebra A is a G-YD-algebra with the trivial coaction $\lambda : A \to M(C^\text{red}_G \otimes A)$ given by

$$\lambda(a) = 1 \otimes a.$$

▶ G discrete group - then coactions of C^red_G correspond to Fell bundles. A YD-structure is equivalent to having a G-equivariant Fell bundle.

▶ in general - if $H \subset G$ is a quantum subgroup then the induced algebra $\text{ind}^G_H(A)$ of a H-YD-algebra A is a G-YD-algebra.
Braided tensor products and the Drinfeld double

Definition

Let G be a locally compact quantum group. The Drinfeld double $D(G)$ is the locally compact quantum group given by

$$\text{C}_{\text{red}}^0(D(G)) = \text{C}_{\text{red}}^0(G) \otimes \text{C}^*_\text{red}(G)$$

with the comultiplication

$$\Delta_{D(G)} = (\text{id} \otimes \sigma \otimes \text{id})(\text{id} \otimes \text{ad}(W) \otimes \text{id})(\Delta \otimes \hat{\Delta})$$

where $\text{ad}(W)(x) = WxW^*$ for $x \in \text{C}_{\text{red}}^0(G) \otimes \text{C}^*_\text{red}(G)$.

Proposition

A G-Yetter-Drinfeld algebra is the same thing as a $D(G)$-C^*-algebra.

Christian Voigt
Definition

Let G be a locally compact quantum group. The *Drinfeld double* $D(G)$ is the locally compact quantum group given by $C^\text{red}_0(D(G)) = C^\text{red}_0(G) \otimes C^*_\text{red}(G)$ with the comultiplication $\Delta_{D(G)} = \text{id} \otimes \sigma \otimes \text{id} \cdot \text{id} \otimes \text{ad}(W) \otimes \text{id} \cdot (\Delta \otimes \hat{\Delta})$ where $\text{ad}(W)(x) = WxW^*$ for $x \in C^\text{red}_0(G) \otimes C^*_\text{red}(G)$.
Definition
Let G be a locally compact quantum group. The Drinfeld double $D(G)$ is the locally compact quantum group given by $C^*_0(D(G)) = C^*_0(G) \otimes C^*_\text{red}(G)$ with the comultiplication

$$\Delta_{D(G)} = (\text{id} \otimes \sigma \otimes \text{id})(\text{id} \otimes \text{ad}(W) \otimes \text{id})(\Delta \otimes \hat{\Delta})$$

where $\text{ad}(W)(x) = WxW^*$ for $x \in C^*_0(G) \otimes C^*_\text{red}(G)$.

Proposition
A G-Yetter-Drinfeld algebra is the same thing as a $D(G)$-C^*-algebra.
Braided tensor products

Definition

Let \(A \) be a \(G \)-YD-algebra and let \(B \) be a \(G \)-algebra. The braided tensor product is

\[
A \triangledown B = \big[\lambda(\mathcal{A}) \big]_{12} \beta(\mathcal{B})_{13} \subset \mathcal{L}(H^G \otimes \mathcal{A} \otimes \mathcal{B}).
\]

\(A \triangledown B \) is a \(C^\ast \)-algebra, and \(\lambda \) (resp. \(\beta \)) define injective \(\ast \)-homomorphisms \(\iota_A : A \to M(\mathcal{A} \triangledown \mathcal{B}) \) (resp. \(\iota_B : B \to M(\mathcal{A} \triangledown \mathcal{B}) \)).

There is a coaction \(A \triangledown B \to M(C_{red}^0(G) \otimes (\mathcal{A} \triangledown \mathcal{B})) \) such that \(\iota_A \) and \(\iota_B \) are equivariant.

If \(B \) is a YD-algebra then \(A \triangledown B \) is a YD-algebra and \((A \triangledown B) \triangledown C \sim = A \triangledown (B \triangledown C) \) for all \(G \)-algebras \(C \).
Braided tensor products

Definition
Let A be a G-YD-algebra and let B be a G-algebra. The braided tensor product is

$$A \boxtimes B = [\lambda(A)_{12}\beta(B)_{13}] \subset \mathbb{L}(\mathbb{H}_G \otimes A \otimes B).$$
Braided tensor products

Definition
Let A be a G-YD-algebra and let B be a G-algebra. The braided tensor product is

$$A \boxtimes B = \left[\lambda(A)_{12} \beta(B)_{13} \right] \subset \mathbb{L}(H \otimes A \otimes B).$$

$A \boxtimes B$ is a C^*-algebra, and λ (resp. β) define injective $*$-homomorphisms $\iota_A : A \to M(A \boxtimes B)$ (resp. $\iota_B : B \to M(A \boxtimes B)$).
Braided tensor products

Definition
Let A be a G-YD-algebra and let B be a G-algebra. The braided tensor product is

$$A \boxtimes B = [\lambda(A)_{12}\beta(B)_{13}] \subset \mathcal{L}(H_G \otimes A \otimes B).$$

- $A \boxtimes B$ is a C^*-algebra, and λ (resp. β) define injective \ast-homomorphisms $\iota_A : A \to M(A \boxtimes B)$ (resp. $\iota_B : B \to M(A \boxtimes B)$).
- There is a coaction $A \boxtimes B \to M(C_0^{\text{red}}(G) \otimes (A \boxtimes B))$ such that ι_A and ι_B are equivariant.
Braided tensor products

Definition
Let A be a G-YD-algebra and let B be a G-algebra. The *braided tensor product* is

$$A oxtimes B = [\lambda(A)_{12} \beta(B)_{13}] \subset \mathbb{L}(H_G \otimes A \otimes B).$$

- $A \boxtimes B$ is a C^*-algebra, and λ (resp. β) define injective $*$-homomorphisms $\iota_A : A \to M(A \boxtimes B)$ (resp. $\iota_B : B \to M(A \boxtimes B)$).

- There is a coaction $A \boxtimes B \to M(C^*_0(G) \otimes (A \boxtimes B))$ such that ι_A and ι_B are equivariant.

- If B is a YD-algebra then $A \boxtimes B$ is a YD-algebra and

$$ (A \boxtimes B) \boxtimes C \cong A \boxtimes (B \boxtimes C) $$

for all G-algebras C.
Theorem

Let A_1, B_1 and D be G-YD algebras and let A_2, B_2 be G-algebras. There is an exterior Kasparov product

$$\text{KK}^D(G) \ast (A_1 \boxtimes D) \times \text{KK}^G(D \boxtimes A_2, B_2) \rightarrow \text{KK}^G(A_1 \boxtimes A_2, B_1 \boxtimes B_2)$$

which is functorial and associative.
Theorem

Let A_1, B_1 and D be G-YD algebras and let A_2, B_2 be G-algebras. There is an exterior Kasparov product

$$KK^{D(G)}_* (A_1, B_1 \boxtimes D) \times KK^G_* (D \boxtimes A_2, B_2) \to KK^G_* (A_1 \boxtimes A_2, B_1 \boxtimes B_2)$$

which is functorial and associative.
The quantum group $SU_q(2)$

Definition

Fix $q \in (0,1]$. The unital \ast-algebra $O(SU_q(2))$ (over \mathbb{C}) is generated by elements α and γ satisfying the relations:

\[
\begin{align*}
\alpha \gamma &= q \gamma \alpha, \\
\alpha \gamma^\ast &= q \gamma^\ast \alpha, \\
\gamma \gamma^\ast &= \gamma^\ast \gamma, \\
\alpha^\ast \alpha + \gamma^\ast \gamma &= 1, \\
\alpha \alpha^\ast + q^2 \gamma \gamma^\ast &= 1.
\end{align*}
\]

These relations are equivalent to saying that the fundamental matrix $(\alpha - q \gamma^\ast \gamma \alpha^\ast)$ is unitary.
The quantum group $SU_q(2)$

Definition
Fix $q \in (0, 1]$. The unital \ast-algebra $O(SU_q(2))$ (over \mathbb{C}) is generated by elements α and γ satisfying the relations

$$\alpha \gamma = q \gamma \alpha, \quad \alpha \gamma^* = q \gamma^* \alpha, \quad \gamma \gamma^* = \gamma^* \gamma,$$

$$\alpha^* \alpha + \gamma^* \gamma = 1, \quad \alpha \alpha^* + q^2 \gamma \gamma^* = 1.$$
The quantum group $SU_q(2)$

Definition
Fix $q \in (0, 1]$. The unital $*$-algebra $O(SU_q(2))$ (over \mathbb{C}) is generated by elements α and γ satisfying the relations

$$
\alpha \gamma = q \gamma \alpha, \quad \alpha \gamma^* = q \gamma^* \alpha, \quad \gamma \gamma^* = \gamma^* \gamma, \\
\alpha^* \alpha + \gamma^* \gamma = 1, \quad \alpha \alpha^* + q^2 \gamma \gamma^* = 1.
$$

These relations are equivalent to saying that the fundamental matrix

$$
\begin{pmatrix}
\alpha & -q \gamma^* \\
\gamma & \alpha^*
\end{pmatrix}
$$

is unitary.
The comultiplication \(\Delta : \mathcal{O}(SU_q(2)) \to \mathcal{O}(SU_q(2)) \otimes \mathcal{O}(SU_q(2)) \) is defined by

\[
\Delta \begin{pmatrix} \alpha & -q \gamma^* \\ \gamma & \alpha^* \end{pmatrix} = \begin{pmatrix} \alpha & -q \gamma^* \\ \gamma & \alpha^* \end{pmatrix} \otimes \begin{pmatrix} \alpha & -q \gamma^* \\ \gamma & \alpha^* \end{pmatrix}
\]
The quantum group $SU_q(2)$

The *comultiplication* $\Delta : \mathcal{O}(SU_q(2)) \rightarrow \mathcal{O}(SU_q(2)) \otimes \mathcal{O}(SU_q(2))$ is defined by

$$\Delta \begin{pmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{pmatrix} = \begin{pmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{pmatrix} \otimes \begin{pmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{pmatrix}$$

In fact, $\mathcal{O}(SU_q(2))$ is a Hopf-*-algebra.
The quantum group $SU_q(2)$

The \ast-algebra $\mathcal{O}(SU_q(2))$ can be completed uniquely to a C^*-algebra $C(SU_q(2))$. This yields a (locally) compact quantum group.
The quantum group $SU_q(2)$

The \ast-algebra $\mathcal{O}(SU_q(2))$ can be completed uniquely to a C^\ast-algebra $C(SU_q(2))$. This yields a (locally) compact quantum group.

For $q = 1$ one obtains in this way the algebras $\mathcal{O}(SU(2))$ and $C(SU(2))$ of polynomial and continuous functions on $SU(2)$, respectively.
The Podleś sphere

The maximal torus $T = S^1 \subset SU_q(2)$ is given by the projection

$$\pi: C(SU_q(2)) \to C(T) \supset C[z, z^{-1}]$$

given by

$$\pi(\alpha - q \gamma^* \gamma^* \alpha) = (z^0, 0, z^{-1})$$

The (standard) Podleś sphere is the homogeneous space $SU_q(2)/T$ given by the algebra of coinvariants $C(SU_q(2)/T) = \{x \in C(SU_q(2)) | (id \otimes \pi) \Delta(x) = x \otimes 1\}$ under right translations.

We remark that for $q \in (0, 1)$ one has $C(SU_q(2)/T) \cong K^+$. There is an algebraic version $O(SU_q(2)/T)$ as well.
The maximal torus $T = S^1 \subset SU_q(2)$ is given by the projection \(\pi : C(SU_q(2)) \to C(T) \supset \mathbb{C}[z, z^{-1}] \) given by

\[
\pi \begin{pmatrix} \alpha & -q \gamma^* \\ \gamma & \alpha^* \end{pmatrix} = \begin{pmatrix} z & 0 \\ 0 & z^{-1} \end{pmatrix}
\]
The maximal torus $T = S^1 \subset SU_q(2)$ is given by the projection
\[\pi : C(SU_q(2)) \to C(T) \supset \mathbb{C}[z, z^{-1}] \]
given by
\[\pi \begin{pmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{pmatrix} = \begin{pmatrix} z & 0 \\ 0 & z^{-1} \end{pmatrix} \]

The (standard) Podleś sphere is the homogenous space $SU_q(2)/T$ given by the algebra of coinvariants
\[C(SU_q(2)/T) = \{ x \in C(SU_q(2)) | (id \otimes \pi)\Delta(x) = x \otimes 1 \} \]
under right translations.
The maximal torus $T = S^1 \subset SU_q(2)$ is given by the projection

$$\pi : C(SU_q(2)) \to C(T) \supset \mathbb{C}[z, z^{-1}]$$

given by

$$\pi \begin{pmatrix} \alpha & -q \gamma^* \\ \gamma & \alpha^* \end{pmatrix} = \begin{pmatrix} z & 0 \\ 0 & z^{-1} \end{pmatrix}$$

The (standard) Podleś sphere is the homogenous space $SU_q(2)/T$ given by the algebra of coinvariants

$$C(SU_q(2)/T) = \{ x \in C(SU_q(2)) | (\text{id} \otimes \pi) \Delta(x) = x \otimes 1 \}$$

under right translations.

We remark that for $q \in (0, 1)$ one has $C(SU_q(2)/T) \cong \mathbb{K}^+$. There is an algebraic version $\mathcal{O}(SU_q(2)/T)$ as well.
The Baum-Connes conjecture

In the sequel we let $q \in (0, 1]$ and write $G = SU_q(2)$ as well as \hat{G} for its dual. We shall formulate and prove an analogue of the Baum-Connes conjecture for the dual quantum group \hat{G} of $SU_q(2)$. What is the Baum-Connes conjecture in this situation?
The Baum-Connes conjecture

In the sequel we let \(q \in (0, 1] \) and write \(G = SU_q(2) \) as well as \(\hat{G} \) for its dual.
In the sequel we let $q \in (0, 1]$ and write $G = SU_q(2)$ as well as \hat{G} for its dual.

We shall formulate and prove an analogue of the Baum-Connes conjecture for the dual quantum group \hat{G} of $SU_q(2)$.

The Baum-Connes conjecture
In the sequel we let $q \in (0, 1]$ and write $G = SU_q(2)$ as well as \hat{G} for its dual.

We shall formulate and prove an analogue of the Baum-Connes conjecture for the dual quantum group \hat{G} of $SU_q(2)$.

...what is the Baum-Connes conjecture in this situation?
The Baum-Connes conjecture

The discrete quantum group \hat{G} is torsion-free.

The proper homogeneous \hat{G}-algebra corresponding to the trivial subgroup is $C^*(G) = C_0(\hat{G})$.

We write $\langle CI \rangle$ for the localizing subcategory of $KK(\hat{G})$ generated by algebras of the form $C^*(G) \otimes A$ where A is some C^*-algebra and the coaction is inherited from $C^*(G)$.

Theorem

One has $\langle CI \rangle = KK(\hat{G})$.

Christian Voigt
The discrete quantum group \hat{G} is *torsion-free*. The *proper homogeneous* \hat{G}-algebra corresponding to the trivial subgroup is $C^*(G) = C_0(\hat{G})$.
The discrete quantum group \hat{G} is *torsion-free*. The *proper homogeneous* \hat{G}-algebra corresponding to the trivial subgroup is $C^*(G) = C_0(\hat{G})$.

We write $\langle CI \rangle$ for the localizing subcategory of $KK^\hat{G}$ generated by algebras of the form $C^*(G) \otimes A$ where A is some C^*-algebra and the coaction is inherited from $C^*(G)$.

The Baum-Connes conjecture
The discrete quantum group \hat{G} is *torsion-free*. The proper homogeneous \hat{G}-algebra corresponding to the trivial subgroup is $C^*(G) = C_0(\hat{G})$.

We write $\langle CI \rangle$ for the localizing subcategory of $KK\hat{G}$ generated by algebras of the form $C^*(G) \otimes A$ where A is some C^*-algebra and the coaction is inherited from $C^*(G)$.

Theorem

One has $\langle CI \rangle = KK\hat{G}$.
Outline of the proof

Let us concentrate on the following part of the argument.

Theorem

We have $C \in \langle CI \rangle \subset \text{KK} \hat{G}$.

Theorem (Baaj-Skandalis)

The reduced crossed product functor $\text{KK} \hat{G} \to \text{KK} G$ is an equivalence of categories.

As a consequence, in order to prove $C \in \langle CI \rangle$ it suffices to show $C(G) \in \langle C \rangle \in \text{KK} G$.

Christian Voigt
Let us concentrate on the following part of the argument.

Theorem

We have $\mathbb{C} \in \langle CI \rangle \subset KK^\hat{G}$.

Theorem (Baaj-Skandalis)

The reduced crossed product functor $KK^\hat{G} \rightarrow KK^G$ is an equivalence of categories.

As a consequence, in order to prove $\mathbb{C} \in \langle CI \rangle$ it suffices to show $\mathbb{C}(G) \in \langle C \rangle \in KK^G$.

Christian Voigt
Outline of the proof

Let us concentrate on the following part of the argument.

Theorem
We have $\mathbb{C} \in \langle CI \rangle \subset KK^\hat{G}$.

Theorem (Baaj-Skandalis)
The reduced crossed product functor $KK^\hat{G} \to KK^G$ is an equivalence of categories.
Outline of the proof

Let us concentrate on the following part of the argument.

Theorem
We have $\mathbb{C} \in \langle C I \rangle \subset KK^\hat{G}$.

Theorem (Baaj-Skandalis)
The reduced crossed product functor $KK^\hat{G} \to KK^G$ is an equivalence of categories.

As a consequence, in order to prove $\mathbb{C} \in \langle C I \rangle$ it suffices to show $C(G) \in \langle C \rangle \in KK^G$.
Outline of the proof

We have \(C(G) \in \langle C(G/T) \rangle \) in \(KK \). This follows from (the validity of) the Baum-Connes conjecture for \(\hat{T} \) and induction.

Hence it suffices to show

\[
\text{Theorem:}\quad C(G/T) \sim C \oplus C \quad \text{in} \quad KK.
\]

In the case \(q = 1 \) this is a consequence of equivariant Poincaré duality for \(G/T \).

We need some information about the equivariant \(K \)-theory and \(K \)-homology of the Podleś sphere \(G/T \).
Outline of the proof

We have $C(G) \in \langle C(G/T) \rangle$ in KK^G - this follows from (the validity of) the Baum-Connes conjecture for \hat{T} and induction. Hence it suffices to show

Theorem

We have $C(G) \sim C \oplus C$ in KK^G. In the case $q = 1$ this is a consequence of equivariant Poincaré duality for G/T. We need some information about the equivariant K-theory and K-homology of the Podleś sphere G/T.

Christian Voigt
Outline of the proof

We have $C(G) \in \langle C(G/T) \rangle$ in KK^G - this follows from (the validity of) the Baum-Connes conjecture for \hat{T} and induction. Hence it suffices to show

Theorem

We have $C(G/T) \cong \mathbb{C} \oplus \mathbb{C}$ in KK^G.

In the case $q = 1$ this is a consequence of *equivariant Poincaré duality* for G/T.
Outline of the proof

We have $C(G) \in \langle C(G/T) \rangle$ in KK^G - this follows from (the validity of) the Baum-Connes conjecture for \hat{T} and induction. Hence it suffices to show

Theorem

We have $C(G/T) \cong \mathbb{C} \oplus \mathbb{C}$ in KK^G.

In the case $q = 1$ this is a consequence of *equivariant Poincaré duality* for G/T.

We need some information about the equivariant K-theory and K-homology of the Podleś sphere G/T.
K-theory of the Podleś sphere

The quantum group G acts on the homogenous space G/T from the left. Natural elements in $K^G_0(C(G/T))$ are given by the finitely generated projective $\mathcal{O}(G/T)$-modules $\Gamma(G \times T \mathbb{C}^k) = \{ x \in \mathcal{O}(SU_q(2)) | (id \otimes \pi) \Delta(x) = x \otimes z^k \}$ for $k \in \mathbb{Z}$.

Geometrically, $\Gamma(G \times T \mathbb{C}^k)$ corresponds to an induced bundle on G/T.

Christian Voigt
The quantum group G acts on the homogenous space G/T from the left.
The quantum group G acts on the homogenous space G/T from the left.

Natural elements in $K_0^G(C(G/T))$ are given by the finitely generated projective $O(G/T)$-modules

$$\Gamma(G \times_T \mathbb{C}_k) = \{x \in O(SU_q(2)) | (\text{id} \otimes \pi) \Delta(x) = x \otimes z^{-k}\}$$

for $k \in \mathbb{Z}$.

Geometrically, $\Gamma(G \times_T \mathbb{C}_k)$ corresponds to an *induced bundle* on G/T.
The induced bundles yield elements

\[[\Gamma(G \times_T \mathbb{C}_k)] \in KK^G(\mathbb{C}, C(G/T)). \]
The induced bundles yield elements

\[[\Gamma(G \times_T \mathbb{C}_k)] \in KK^G(\mathbb{C}, C(G/T)). \]

Taking into account the left action of \(C(G/T) \) by multiplication we obtain in fact elements

\[[[\Gamma(G \times_T \mathbb{C}_k)]] \in KK^G(C(G/T), C(G/T)) \]

such that

\[[\Gamma(G \times_T \mathbb{C}_k)] = [1] \cdot [[\Gamma(G \times_T \mathbb{C}_k)]] \]

where \([1] \in KK^G(\mathbb{C}, C(G/T)) \) is the class of the unit homomorphism.
Dabrowski and Sitarz have constructed a spectral triple \((\mathcal{O}(G/T), L^2(G \times T \mathbb{S}), D)\) for the Podleś sphere representing the Dirac operator on \(G/T\).

The Hilbert space \(L^2(G \times T \mathbb{S})\) is the completion of \(\Gamma(G \times T \mathbb{C}^1) \oplus \Gamma(G \times T \mathbb{C}^{-1})\) for the scalar product induced from \(L^2(G)\).

Representation of \(\mathcal{O}(G/T)\) by left multiplication.

\[
D = (0 D - D 0, D^\pm |l, m\rangle \pm_{\pm} = [l + 1/2] q |l, m\rangle
\]

This defines an element \(D\) \(\in KK(G(C(G/T)), C)\).
Dabrowski and Sitarz have constructed a spectral triple \((\mathcal{O}(G/T), L^2(G \times_T S), D)\) for the Podleś sphere representing the Dirac operator on \(G/T\).
Dabrowski and Sitarz have constructed a spectral triple
\((\mathcal{O}(G/T), L^2(G \times_T S), D)\) for the Podleś sphere representing the Dirac operator on \(G/T\).

- The Hilbert space \(L^2(G \times_T S)\) is the completion of

\[\Gamma(G \times_T \mathbb{C}_1) \oplus \Gamma(G \times_T \mathbb{C}_{-1})\]

for the scalar product induced from \(L^2(G)\).
The Dirac operator for the Podleś sphere

Dabrowski and Sitarz have constructed a spectral triple \((\mathcal{O}(G/T), L^2(G \times_T S), D)\) for the Podleś sphere representing the Dirac operator on \(G/T\).

- The Hilbert space \(L^2(G \times_T S)\) is the completion of \(\Gamma(G \times_T \mathbb{C}_1) \oplus \Gamma(G \times_T \mathbb{C}_{-1})\) for the scalar product induced from \(L^2(G)\).

- Representation of \(\mathcal{O}(G/T)\) by left multiplication.
Dabrowski and Sitarz have constructed a spectral triple \((\mathcal{O}(G/T), L^2(G \times_T S), D) \) for the Podleś sphere representing the Dirac operator on \(G/T \).

- The Hilbert space \(L^2(G \times_T S) \) is the completion of

 \[\Gamma(G \times_T \mathbb{C}_1) \oplus \Gamma(G \times_T \mathbb{C}_{-1}) \]

 for the scalar product induced from \(L^2(G) \).

- Representation of \(\mathcal{O}(G/T) \) by left multiplication.

\[
D = \begin{pmatrix}
0 & D_- \\
D_+ & 0
\end{pmatrix}, \quad D_{\pm}|l, m\rangle_{\pm} = [l + 1/2]_q |l, m\rangle_{\mp}.
\]
Dabrowski and Sitarz have constructed a spectral triple \((\mathcal{O}(G/T), L^2(G \times_T S), D)\) for the Podleś sphere representing the Dirac operator on \(G/T\).

- The Hilbert space \(L^2(G \times_T S)\) is the completion of
 \[\Gamma(G \times_T \mathbb{C}_1) \oplus \Gamma(G \times_T \mathbb{C}_{-1}) \]
 for the scalar product induced from \(L^2(G)\).

- Representation of \(\mathcal{O}(G/T)\) by left multiplication.

\[
D = \begin{pmatrix}
0 & D_- \\
D_+ & 0
\end{pmatrix}, \quad D_\pm |l, m\rangle_\pm = [l + 1/2]_q |l, m\rangle_\mp.
\]

This defines an element \([D] \in KK^G(C(G/T), \mathbb{C})\).
Define elements $\alpha \in KK^G_0(C(G/T), C^2)$ by

$$\alpha = \left[D \right] \oplus \left[\Gamma(G \times T \cdot C^{-1}) \right] \cdot \left[D \right]$$

and $\beta \in KK^G_0(C^2, C(G/T))$ by

$$\beta = \Gamma(G \times T \cdot C^1) \oplus - \Gamma(G \times T \cdot C^0).$$

Proposition

We have $\beta \circ \alpha = 1$, $\alpha \circ \beta = 1$ and hence $C(G/T) \cong C^2$ in KK^G.

This finishes the proof of the theorem.
Define elements $\alpha \in KK_0^G(C(G/T), \mathbb{C}^2)$ by

$$\alpha = [D] \oplus [[\Gamma(G \times T \mathbb{C}_{-1})]] \cdot [D]$$

and $\beta \in KK_0^G(\mathbb{C}^2, C(G/T))$ by

$$\beta = \Gamma(G \times T \mathbb{C}_1) \oplus -\Gamma(G \times T \mathbb{C}_0).$$
Define elements $\alpha \in KK^G_0(C(G/T), \mathbb{C}^2)$ by

$$\alpha = [D] \oplus [[\Gamma(G \times T \mathbb{C}_1)]] \cdot [D]$$

and $\beta \in KK^G_0(\mathbb{C}^2, C(G/T))$ by

$$\beta = \Gamma(G \times T \mathbb{C}_1) \oplus -\Gamma(G \times T \mathbb{C}_0).$$

Proposition

We have

$$\beta \circ \alpha = 1, \quad \alpha \circ \beta = 1$$

and hence $C(G/T) \cong \mathbb{C}^2$ in KK^G.

This finishes the proof of the theorem.
Equivariant Poincaré duality

Let us call two G-YD-algebras P and Q equivariantly Poincaré dual to each other if there exists a natural isomorphism

$$\text{KK}_G(P \otimes A, B) \cong \text{KK}_G(A, Q \otimes B)$$

for all G-algebras A and B.

Given Poincaré dual algebras P and Q we have natural elements

$$\alpha \in \text{KK}_G(P \otimes Q, C)$$
$$\beta \in \text{KK}_G(C, Q \otimes P)$$
Equivariant Poincaré duality

Let us call two G-YD-algebras P and Q equivariantly Poincaré dual to each other if there exists a natural isomorphism

$$KK^G(P \boxtimes A, B) \cong KK^G(A, Q \boxtimes B)$$

for all G-algebras A and B.
Let us call two G-YD-algebras P and Q equivariantly Poincaré dual to each other if there exists a natural isomorphism

$$KK^G(P \boxtimes A, B) \simeq KK^G(A, Q \boxtimes B)$$

for all G-algebras A and B.

Given Poincaré dual algebras P and Q we have natural elements

$$\alpha \in KK^G(P \boxtimes Q, \mathbb{C})$$

and

$$\beta \in KK^G(\mathbb{C}, Q \boxtimes P).$$
Theorem

Let $G = SU_q(2)$. The Podleś sphere $C(G/T)$ is equivariantly Poincaré dual to itself. In fact, $KK_D(G)(C(G/T) \boxtimes A, B) \cong KK_D(G)(A, C(G/T) \boxtimes B)$ for all G-YD-algebras A and B.

The element $\alpha \in KK_D(G)(C(G/T) \boxtimes C(G/T), C)$ implementing this duality is given by the Dirac operator D acting on $L^2(G \times T \Sigma)$.

The representation ϕ of $C(G/T) \boxtimes C(G/T)$ on $L^2(G \times T \Sigma)$ is

$$\phi(f \boxtimes g)(h) = fgh.$$
Theorem

Let $G = SU_q(2)$. The Podleś sphere $C(G/T)$ is equivariantly Poincaré dual to itself. In fact,

$$KK^D(G)(C(G/T) \boxtimes A, B) \cong KK^D(G)(A, C(G/T) \boxtimes B)$$

for all G-YD-algebras A and B.
Theorem

Let $G = SU_q(2)$. The Podleś sphere $C(G/T)$ is equivariantly Poincaré dual to itself. In fact,

$$KK^{D(G)}(C(G/T) \boxtimes A, B) \cong KK^{D(G)}(A, C(G/T) \boxtimes B)$$

for all G-YD-algebras A and B.

The element $\alpha \in KK^{D(G)}(C(G/T) \boxtimes C(G/T), \mathbb{C})$ implementing this duality is given by the Dirac operator D acting on $L^2(G \times T S)$.
Theorem

Let $G = SU_q(2)$. The Podleś sphere $C(G/T)$ is equivariantly Poincaré dual to itself. In fact,

$$KK^D(G)(C(G/T) \boxtimes A, B) \cong KK^D(G)(A, C(G/T) \boxtimes B)$$

for all G-YD-algebras A and B.

The element $\alpha \in KK^D(G)(C(G/T) \boxtimes C(G/T), \mathbb{C})$ implementing this duality is given by the Dirac operator D acting on $L^2(G \times T \Sigma)$.

The representation ϕ of $C(G/T) \boxtimes C(G/T)$ on $L^2(G \times T \Sigma)$ is

$$\phi(f \boxtimes g)(h) = fgh.$$
The Baum-Connes conjecture for a torsion-free discrete group G implies the Kadison-Kaplansky conjecture: There are no nontrivial idempotents in $C^*_red(G)$. This is not true for discrete quantum groups, $C(SU_q(2))$ contains lots of nontrivial idempotents. Look at general q-deformations!
The Baum-Connes conjecture for a torsion-free discrete group G implies the *Kadison-Kaplansky* conjecture: There are no nontrivial idempotents in $C^*_\text{red}(G)$. This is not true for discrete quantum groups, $C(SU_q(2))$ contains lots of nontrivial idempotents.
The Baum-Connes conjecture for a torsion-free discrete group G implies the Kadison-Kaplansky conjecture: There are no nontrivial idempotents in $C^*_\text{red}(G)$. This is not true for discrete quantum groups, $C(SU_q(2))$ contains lots of nontrivial idempotents.

Look at general q-deformations!