Moduli Problems in Sasakian Geometry

Charles Boyer

University of New Mexico

May 21, 2015,
Recent Advances in Kähler Geometry,
Vanderbilt University
Fundamental Problems

Problems:

1. Given a manifold determine how many contact structures D of Sasaki type there are.

2. Given a contact structure or isotopy class of contact structures:
 - Determine the space of compatible Sasakian structures.
 - Determine the (pre)-moduli space of Sasaki classes.
 - Determine the (pre)-moduli space of extremal Sasakian structures.
 - Determine those of constant scalar curvature (cscS). How many?
 - Determine the (pre)-moduli space of Sasaki-Einstein and/or η-Einstein structures.
 - Determine the (pre)-moduli space of Sasakian structures with the same underlying CR structure.
 - Determine those having distinct underlying CR structures within the same isotopy class of contact structures.

We give partial answers to these problems for particular cases. My talk is based on joint work with various colleagues: Leonardo Macarini, Justin Pati, Christina Tønnesen-Friedman, and Otto van Koert.
Fundamental Problems

Problems:

1. Given a manifold determine how many contact structures \mathcal{D} of Sasaki type there are.
 - with distinct first Chern class $c_1(\mathcal{D})$.

2. Given a contact structure or isotopy class of contact structures:
 - Determine the space of compatible Sasakian structures.
 - Determine the (pre)-moduli space of Sasaki classes.
 - Determine the (pre)-moduli space of extremal Sasakian structures.
 - Determine those of constant scalar curvature (cscS). How many?
 - Determine the (pre)-moduli space of Sasaki-Einstein and/or η-Einstein structures.
 - Determine the (pre)-moduli space of Sasakian structures with the same underlying CR structure.
 - Determine those having distinct underlying CR structures within the same isotopy class of contact structures.

We give partial answers to these problems for particular cases. My talk is based on joint work with various colleagues: Leonardo Macarini, Justin Pati, Christina Tønnesen-Friedman, and Otto van Koert.
Fundamental Problems

Problems:

1. Given a manifold determine how many contact structures \mathcal{D} of Sasaki type there are.
 - with distinct first Chern class $c_1(\mathcal{D})$.
 - with the same first Chern class $c_1(\mathcal{D})$.

2. Given a contact structure or isotopy class of contact structures:
 - Determine the space of compatible Sasakian structures.
 - Determine the (pre)-moduli space of Sasaki classes.
 - Determine the (pre)-moduli space of extremal Sasakian structures.
 - Determine those of constant scalar curvature (cscS). How many?
 - Determine the (pre)-moduli space of Sasaki-Einstein and/or η-Einstein structures.
 - Determine the (pre)-moduli space of Sasakian structures with the same underlying CR structure.
 - Determine those having distinct underlying CR structures within the same isotopy class of contact structures.

We give partial answers to these problems for particular cases. My talk is based on joint work with various colleagues: Leonardo Macarini, Justin Pati, Christina Tønnesen-Friedman, and Otto van Koert.
Problems:

1. Given a manifold determine how many contact structures \mathcal{D} of Sasaki type there are.
 - with distinct first Chern class $c_1(\mathcal{D})$.
 - with the same first Chern class $c_1(\mathcal{D})$.

2. Given a contact structure or isotopy class of contact structures:
 - Determine the space of compatible Sasakian structures.
 - Determine the (pre)-moduli space of Sasaki classes.
 - Determine the (pre)-moduli space of extremal Sasakian structures.
 - Determine those of constant scalar curvature (cscS). How many?
 - Determine the (pre)-moduli space of Sasaki-Einstein and/or η-Einstein structures.
 - Determine the (pre)-moduli space of Sasakian structures with the same underlying CR structure.
 - Determine those having distinct underlying CR structures within the same isotopy class of contact structures.

We give partial answers to these problems for particular cases. My talk is based on joint work with various colleagues: Leonardo Macarini, Justin Pati, Christina Tønnesen-Friedman, and Otto van Koert.
Fundamental Problems

Problems:

1. Given a manifold determine how many contact structures \mathcal{D} of Sasaki type there are.
 - with distinct first Chern class $c_1(\mathcal{D})$.
 - with the same first Chern class $c_1(\mathcal{D})$.

2. Given a contact structure or isotopy class of contact structures:
 - Determine the space of compatible Sasakian structures.
 - Determine the (pre)-moduli space of Sasaki classes.
 - Determine the (pre)-moduli space of extremal Sasakian structures.
 - Determine those of constant scalar curvature (cscS). How many?
 - Determine the (pre)-moduli space of Sasaki-Einstein and/or η-Einstein structures.
 - Determine the (pre)-moduli space of Sasakian structures with the same underlying CR structure.
 - Determine those having distinct underlying CR structures within the same isotopy class of contact structures.

We give partial answers to these problems for particular cases. My talk is based on joint work with various colleagues: Leonardo Macarini, Justin Pati, Christina Tønnesen-Friedman, and Otto van Koert.
Fundamental Problems

Problems:

1. Given a manifold determine how many contact structures \mathcal{D} of Sasaki type there are.
 - with distinct first Chern class $c_1(\mathcal{D})$.
 - with the same first Chern class $c_1(\mathcal{D})$.

2. Given a contact structure or isotopy class of contact structures:
 - Determine the space of compatible Sasakian structures.
 - Determine the (pre)-moduli space of Sasaki classes.
Fundamental Problems

Problems:

1. Given a manifold determine how many contact structures \mathcal{D} of Sasaki type there are.
 - with distinct first Chern class $c_1(\mathcal{D})$.
 - with the same first Chern class $c_1(\mathcal{D})$.

2. Given a contact structure or isotopy class of contact structures:
 - Determine the space of compatible Sasakian structures.
 - Determine the (pre)-moduli space of Sasaki classes.
 - Determine the (pre)-moduli space of extremal Sasakian structures.
Fundamental Problems

Problems:

1. Given a manifold determine how many contact structures \mathcal{D} of Sasaki type there are.
 - with distinct first Chern class $c_1(\mathcal{D})$.
 - with the same first Chern class $c_1(\mathcal{D})$.

2. Given a contact structure or isotopy class of contact structures:
 - Determine the space of compatible Sasakian structures.
 - Determine the (pre)-moduli space of Sasaki classes.
 - Determine the (pre)-moduli space of extremal Sasakian structures.
 - Determine those of constant scalar curvature (cscS). How many?

We give partial answers to these problems for particular cases. My talk is based on joint work with various colleagues: Leonardo Macarini, Justin Pati, Christina Tønnesen-Friedman, and Otto van Koert.
Fundamental Problems

Problems:

1. Given a manifold determine how many contact structures \mathcal{D} of Sasaki type there are.
 - with distinct first Chern class $c_1(\mathcal{D})$.
 - with the same first Chern class $c_1(\mathcal{D})$.

2. Given a contact structure or isotopy class of contact structures:
 - Determine the space of compatible Sasakian structures.
 - Determine the (pre)-moduli space of Sasaki classes.
 - Determine the (pre)-moduli space of extremal Sasakian structures.
 - Determine those of constant scalar curvature (cscS). How many?
 - Determine the (pre)-moduli space of Sasaki-Einstein and/or η-Einstein structures.
Fundamental Problems

Problems:

1. Given a manifold determine how many contact structures \mathcal{D} of Sasaki type there are.
 - with distinct first Chern class $c_1(\mathcal{D})$.
 - with the same first Chern class $c_1(\mathcal{D})$.

2. Given a contact structure or isotopy class of contact structures:
 - Determine the space of compatible Sasakian structures.
 - Determine the (pre)-moduli space of Sasaki classes.
 - Determine the (pre)-moduli space of extremal Sasakian structures.
 - Determine those of constant scalar curvature (cscS). How many?
 - Determine the (pre)-moduli space of Sasaki-Einstein and/or η-Einstein structures.
 - Determine the (pre)-moduli space of Sasakian structures with the same underlying CR structure.

We give partial answers to these problems for particular cases. My talk is based on joint work with various colleagues: Leonardo Macarini, Justin Pati, Christina Tønnesen-Friedman, and Otto van Koert.
Fundamental Problems

Problems:

1. Given a manifold determine how many contact structures \mathcal{D} of Sasaki type there are.
 - with distinct first Chern class $c_1(\mathcal{D})$.
 - with the same first Chern class $c_1(\mathcal{D})$.

2. Given a contact structure or isotopy class of contact structures:
 - Determine the space of compatible Sasakian structures.
 - Determine the (pre)-moduli space of Sasaki classes.
 - Determine the (pre)-moduli space of extremal Sasakian structures.
 - Determine those of constant scalar curvature (cscS). How many?
 - Determine the (pre)-moduli space of Sasaki-Einstein and/or η-Einstein structures.
 - Determine the (pre)-moduli space of Sasakian structures with the same underlying CR structure.
 - Determine those having distinct underlying CR structures within the same isotopy class of contact structures.

We give partial answers to these problems for particular cases. My talk is based on joint work with various colleagues: Leonardo Macarini, Justin Pati, Christina Tønnesen-Friedman, and Otto van Koert.
Fundamental Problems

Problems:

1. Given a manifold determine how many contact structures \mathcal{D} of Sasaki type there are.
 - with distinct first Chern class $c_1(\mathcal{D})$.
 - with the same first Chern class $c_1(\mathcal{D})$.

2. Given a contact structure or isotopy class of contact structures:
 - Determine the space of compatible Sasakian structures.
 - Determine the (pre)-moduli space of Sasaki classes.
 - Determine the (pre)-moduli space of extremal Sasakian structures.
 - Determine those of constant scalar curvature (cscS). How many?
 - Determine the (pre)-moduli space of Sasaki-Einstein and/or η-Einstein structures.
 - Determine the (pre)-moduli space of Sasakian structures with the same underlying CR structure.
 - Determine those having distinct underlying CR structures within the same isotopy class of contact structures.

We give partial answers to these problems for particular cases. My talk is based on joint work with various colleagues: Leonardo Macarini, Justin Pati, Christina Tønnesen-Friedman, and Otto van Koert.
Contact manifold

- **Closed Contact Manifold** M.

- A **contact 1-form** η such that

$$\eta \wedge (d\eta)^n \neq 0.$$
Contact manifold

- **Closed Contact Manifold** M.

- A **contact 1-form** η such that
 \[\eta \wedge (d\eta)^n \neq 0. \]

- defines a **contact structure**
 \[\eta' \sim \eta \iff \eta' = f\eta \]

for some $f \neq 0$, take $f > 0$, or equivalently a codimension 1 subbundle $\mathcal{D} = \text{Ker} \ \eta$ of TM with a conformal symplectic structure. So $\{\text{oriented contact 1-forms in } \mathcal{D}\} \approx C^\infty(M)^+$
Contact manifold

- **Closed Contact Manifold** \(M \).

- A **contact 1-form** \(\eta \) such that
 \[
 \eta \wedge (d\eta)^n \neq 0.
 \]

- defines a **contact structure**
 \[
 \eta' \sim \eta \iff \eta' = f\eta
 \]
 for some \(f \neq 0 \), take \(f > 0 \), or equivalently a codimension 1 subbundle \(\mathcal{D} = \text{Ker} \, \eta \) of \(TM \) with a conformal symplectic structure. So \(\{ \text{oriented contact 1-forms in } \mathcal{D} \} \approx C^\infty(M)^+ \)

- Unique vector field \(\xi \), called the **Reeb vector field**, satisfying
 \[
 \xi \rfloor \eta = 1, \quad \xi \rfloor d\eta = 0.
 \]
Contact manifold

- Closed Contact Manifold M.

- A contact 1-form η such that
 \[\eta \wedge (d\eta)^n \neq 0. \]

- defines a contact structure
 \[\eta' \sim \eta \iff \eta' = f\eta \]
 for some $f \neq 0$, take $f > 0$, or equivalently a codimension 1 subbundle $D = \text{Ker} \, \eta$ of TM with a conformal symplectic structure. So \{oriented contact 1-forms in $D\} \approx C^\infty (M)$.

- Unique vector field ξ, called the Reeb vector field, satisfying
 \[\xi \rfloor \eta = 1, \quad \xi \rfloor d\eta = 0. \]

- The characteristic foliation \mathcal{F}_ξ: It is called quasi-regular if each leaf of \mathcal{F}_ξ passes through any nbd U at most k times. It is regular if $k = 1$; otherwise, it is irregular.
Contact manifold

- **Closed Contact Manifold** M.

- A contact 1-form η such that

 $$\eta \wedge (d\eta)^n \neq 0.$$

- defines a contact structure

 $$\eta' \sim \eta \iff \eta' = f\eta$$

 for some $f \neq 0$, take $f > 0$, or equivalently a codimension 1 subbundle $\mathcal{D} = \text{Ker} \, \eta$ of TM with a conformal symplectic structure. So $\{\text{oriented contact 1-forms in } \mathcal{D}\} \approx C^\infty(M)^+$.

- Unique vector field ξ, called the **Reeb vector field**, satisfying

 $$\xi \rfloor \eta = 1, \quad \xi \rfloor d\eta = 0.$$

- The characteristic foliation \mathcal{F}_ξ: It is called **quasi-regular** if each leaf of \mathcal{F}_ξ passes through any nbd U at most k times. It is **regular** if $k = 1$; otherwise, it is **irregular**.

- Quasi-regularity is strong, most contact 1-forms are irregular.
Contact manifold

- Closed Contact Manifold M.

A contact 1-form η such that

$$\eta \wedge (d\eta)^n \neq 0.$$

defines a contact structure

$$\eta' \sim \eta \iff \eta' = f\eta$$

for some $f \neq 0$, take $f > 0$, or equivalently a codimension 1 subbundle $\mathcal{D} = \text{Ker } \eta$ of TM with a conformal symplectic structure. So \{oriented contact 1-forms in $\mathcal{D}\} \approx C^\infty(M)^+$

Unique vector field ξ, called the Reeb vector field, satisfying

$$\xi \lceil \eta = 1, \quad \xi \lceil d\eta = 0.$$

The characteristic foliation \mathcal{F}_ξ: It is called quasi-regular if each leaf of \mathcal{F}_ξ passes through any nbd U at most k times. It is regular if $k = 1$; otherwise, it is irregular.

Quasi-regularity is strong, most contact 1-forms are irregular.

Contact bundle $\mathcal{D} \rightarrow$ choose almost complex structure J extend to an endomorphism Φ with $\Phi \xi = 0$ with a compatible metric $g = d\eta \circ (\Phi \otimes 1) + \eta \otimes \eta$. Quadruple $S = (\xi, \eta, \Phi, g)$ called contact metric structure.
Contact manifold

- Closed Contact Manifold \(M \).

- A contact 1-form \(\eta \) such that
 \[
 \eta \wedge (d\eta)^n \neq 0.
 \]

- defines a contact structure
 \[
 \eta' \sim \eta \iff \eta' = f\eta
 \]
 for some \(f \neq 0 \), take \(f > 0 \), or equivalently a codimension 1 subbundle \(\mathcal{D} = \text{Ker} \eta \) of \(TM \) with a conformal symplectic structure. So \(\{ \text{oriented contact 1-forms in } \mathcal{D} \} \approx C^\infty(M)^+ \)

- Unique vector field \(\xi \), called the Reeb vector field, satisfying
 \[
 \xi \lrcorner \eta = 1, \quad \xi \lrcorner d\eta = 0.
 \]

- The characteristic foliation \(\mathcal{F}_\xi \): It is called quasi-regular if each leaf of \(\mathcal{F}_\xi \) passes through any nbd \(U \) at most \(k \) times. It is regular if \(k = 1 \); otherwise, it is irregular.

- Quasi-regularity is strong, most contact 1-forms are irregular.

- Contact bundle \(\mathcal{D} \rightarrow \) choose almost complex structure \(J \) extend to an endomorphism \(\Phi \) with \(\Phi \xi = 0 \) with a compatible metric \(g = d\eta \circ (\Phi \otimes \text{Id}) + \eta \otimes \eta \). Quadruple \(S = (\xi, \eta, \Phi, g) \) called contact metric structure

- The pair \((\mathcal{D}, J) \) is a strictly pseudo-convex almost CR structure (s\(\psi \)CR structure).
Contact manifold

- **Closed Contact Manifold** M.

- A **contact 1-form** η such that

 \[\eta \wedge (d\eta)^n \neq 0. \]

- defines a **contact structure**

 \[\eta' \sim \eta \iff \eta' = f\eta \]

 for some $f \neq 0$, take $f > 0$, or equivalently a codimension 1 subbundle $\mathcal{D} = \text{Ker} \eta$ of TM with a conformal symplectic structure. So \{oriented contact 1-forms in $\mathcal{D}\} \approx C^\infty(M)^+

- **Unique vector field** ξ, called the **Reeb vector field**, satisfying

 \[\xi \rfloor \eta = 1, \quad \xi \rfloor d\eta = 0. \]

- The **characteristic foliation** \mathcal{F}_ξ: It is called **quasi-regular** if each leaf of \mathcal{F}_ξ passes through any nbd U at most k times. It is **regular** if $k = 1$; otherwise, it is **irregular**.

- Quasi-regularity is strong, most contact 1-forms are irregular.

- Contact bundle $\mathcal{D} \rightarrow$ choose **almost complex structure** J extend to an endomorphism Φ with $\Phi \xi = 0$ with a compatible metric $g = d\eta \circ (\Phi \otimes 1) + \eta \otimes \eta$. Quadruple $S = (\xi, \eta, \Phi, g)$ called **contact metric structure**

- The pair (\mathcal{D}, J) is a **strictly pseudo-convex almost CR structure** ($s\psi$CR structure).

- If (\mathcal{D}, J) is an **integrable** CR structure, and $\mathcal{L}_\xi g = 0$ then $S = (\xi, \eta, \Phi, g)$ is a **Sasakian** structure. Then contact manifold (M, \mathcal{D}) is of **Sasaki type**.
Distinguishing Contact Structures

- **Contact Invariants.**

- **Gray Stability Theorem:** On a closed contact manifold all deformations are trivial.
• Contact Invariants.

- **Gray Stability Theorem**: On a closed contact manifold all deformations are trivial.
- A classical invariant: The **first Chern class**: $c_1(D)$.
Distinguishing Contact Structures

- **Contact Invariants.**
 - **Gray Stability Theorem:** On a closed contact manifold all deformations are trivial.
 - A classical invariant: The **first Chern class**: $c_1(D)$.
 - **contact homology**: has serious transversality problems, so we work with **fillings**.
Distinguishing Contact Structures

- **Contact Invariants.**

 - **Gray Stability Theorem:** On a closed contact manifold all deformations are trivial.
 - A classical invariant: The **first Chern class:** $c_1(D)$.
 - **contact homology:** has serious transversality problems, so we work with **fillings**.

Definition

A (strong) symplectic filling of (M, D) is a compact symplectic manifold (W, ω) such that $\partial W = M$, there is a local outward pointing vector field ψ on W such that $\mathcal{L}_\psi \omega = \omega$ and $D = \ker(\psi \lrcorner \omega)|_M$. If ψ is globally defined (W, ω) is a **Liouville filling**. It is a **holomorphic filling** if W has a complex structure J such that (M, J) is strictly pseudo-convex and $D = TM \cap JTM$. It is a **Stein (Kähler) filling** if (W, ω) is biholomorphic to a Stein (Kähler) manifold.
Contact Invariants.

Gray Stability Theorem: On a closed contact manifold all deformations are trivial.

A classical invariant: The first Chern class: $c_1(D)$.

contact homology: has serious transversality problems, so we work with fillings.

Definition

A (strong) symplectic filling of (M, D) is a compact symplectic manifold (W, ω) such that $\partial W = M$, there is a local outward pointing vector field Ψ on W such that $\mathcal{L}_\Psi \omega = \omega$ and $D = \ker(\Psi \llcorner \omega)|_M$. If Ψ is globally defined (W, ω) is a Liouville filling. It is a holomorphic filling if W has a complex structure J such that (M, J) is strictly pseudo-convex and $D = TM \cap JTM$. It is a Stein (Kähler) filling if (W, ω) is biholomorphic to a Stein (Kähler) manifold.

Think of the cone $(M \times \mathbb{R}^+, \omega)$ and smoothing singularity at cone point.
Distinguishing Contact Structures

- Contact Invariants.

- **Gray Stability Theorem**: On a closed contact manifold all deformations are trivial.
- A classical invariant: The first Chern class: $c_1(\mathcal{D})$.
- **contact homology**: has serious transversality problems, so we work with fillings.

Definition

A (strong) symplectic filling of (M, \mathcal{D}) is a compact symplectic manifold (W, ω) such that $\partial W = M$, there is a local outward pointing vector field ψ on W such that $\mathcal{L}_\psi \omega = \omega$ and $\mathcal{D} = \ker(\psi^* \omega)|_M$. If ψ is globally defined (W, ω) is a **Liouville filling**. It is a **holomorphic filling** if W has a complex structure J such that (M, J) is strictly pseudo-convex and $\mathcal{D} = TM \cap JTM$. It is a **Stein (Kähler) filling** if (W, ω) is biholomorphic to a Stein (Kähler) manifold.

- Think of the cone $(M \times \mathbb{R}^+, \omega)$ and smoothing singularity at cone point.
- Kähler fillability coincides with holomorphic fillability. **Stein fillable** implies **Liouville fillable**.
Distinguishing Contact Structures

- Contact Invariants.
 - Gray Stability Theorem: On a closed contact manifold all deformations are trivial.
 - A classical invariant: The first Chern class: $c_1(D)$.
 - Contact homology: has serious transversality problems, so we work with fillings.

Definition

A (strong) symplectic filling of (M, D) is a compact symplectic manifold (W, ω) such that $\partial W = M$, there is a local outward pointing vector field ψ on W such that $\mathcal{L}_\psi \omega = \omega$ and $D = \ker(\psi \lrcorner \omega)|_M$. If ψ is globally defined (W, ω) is a Liouville filling. It is a holomorphic filling if W has a complex structure J such that (M, J) is strictly pseudo-convex and $D = TM \cap JTM$. It is a Stein (Kähler) filling if (W, ω) is biholomorphic to a Stein (Kähler) manifold.

- Think of the cone $(M \times \mathbb{R}^+, \omega)$ and smoothing singularity at cone point.
- Kähler fillability coincides with holomorphic fillability. Stein fillable implies Liouville fillable.
- For a Liouville filling (W, ω), the symplectic form ω is exact.
Distinguishing Contact Structures

- **Contact Invariants.**

- **Gray Stability Theorem:** On a closed contact manifold all deformations are trivial.
- A classical invariant: The **first Chern class**: $c_1(D)$.
- **contact homology:** has serious transversality problems, so we work with fillings.

Definition

A (strong) symplectic filling of (M, D) is a compact symplectic manifold (W, ω) such that $\partial W = M$, there is a local outward pointing vector field ψ on W such that $\mathcal{L}_\psi \omega = \omega$ and $D = \ker(\psi^* \omega)|_M$. If ψ is globally defined (W, ω) is a **Liouville filling**. It is a **holomorphic filling** if W has a complex structure J such that (M, J) is strictly pseudo-convex and $D = TM \cap JTM$. It is a **Stein (Kähler) filling** if (W, ω) is biholomorphic to a Stein (Kähler) manifold.

- Think of the cone $(M \times \mathbb{R}^+, \omega)$ and smoothing singularity at cone point.
- Kähler fillability coincides with holomorphic fillability. **Stein fillable** implies **Liouville fillable**.
- For a **Liouville filling** (W, ω), the symplectic form ω is **exact**.
- A Sasaki manifold is **holomorphically (Kähler) fillable**, but not necessarily Stein fillable.
Distinguishing Contact Structures

- **Contact Invariants.**
 - **Gray Stability Theorem:** On a closed contact manifold all deformations are trivial.
 - A classical invariant: The **first Chern class:** \(c_1(D) \).
 - **contact homology:** has serious transversality problems, so we work with **fillings.**

Definition

A (strong) symplectic filling of \((M, D)\) is a compact symplectic manifold \((W, \omega)\) such that \(\partial W = M\), there is a local outward pointing vector field \(\psi\) on \(W\) such that \(\mathcal{L}_\psi \omega = \omega\) and \(D = \ker(\psi \downharpoonright \omega)|_M\). If \(\psi\) is globally defined \((W, \omega)\) is a **Liouville filling.** It is a **holomorphic filling** if \(W\) has a complex structure \(J\) such that \((M, J)\) is strictly pseudo-convex and \(D = TM \cap JTM\). It is a **Stein (Kähler) filling** if \((W, \omega)\) is biholomorphic to a Stein (Kähler) manifold.

- Think of the cone \((M \times \mathbb{R}^+, \omega)\) and smoothing singularity at cone point.
- Kähler fillability coincides with holomorphic fillability. **Stein fillable** implies **Liouville fillable.**
- For a Liouville filling \((W, \omega)\), the symplectic form \(\omega\) is **exact.**
- A Sasaki manifold is **holomorphically (Kähler) fillable,** but not necessarily Stein fillable.
- **\(S^1\)-equivariant symplectic homology** of the filling is a Floer homology introduced by Viterbo and developed further by Bourgeois-Oancea.
Distinguishing Contact Structures

- **Contact Invariants.**

 - **Gray Stability Theorem:** On a closed contact manifold all deformations are trivial.
 - A classical invariant: The **first Chern class**: \(c_1(D) \).
 - **contact homology:** has serious transversality problems, so we work with fillings.

Definition

A (strong) symplectic filling of \((M, D)\) is a compact symplectic manifold \((W, \omega)\) such that \(\partial W = M\), there is a local outward pointing vector field \(\psi\) on \(W\) such that \(\mathcal{L}_\psi \omega = \omega\) and \(D = \ker(\psi \lrcorner \omega)|_M\). If \(\psi\) is globally defined \((W, \omega)\) is a **Liouville filling**. It is a **holomorphic filling** if \(W\) has a complex structure \(J\) such that \((M, J)\) is strictly pseudo-convex and \(D = TM \cap JTM\). It is a **Stein (Kähler) filling** if \((W, \omega)\) is biholomorphic to a Stein (Kähler) manifold.

- Think of the cone \((M \times \mathbb{R}^+, \omega)\) and smoothing singularity at cone point.
- Kähler fillability coincides with holomorphic fillability. **Stein fillable** implies **Liouville fillable**.
- For a **Liouville filling** \((W, \omega)\), the symplectic form \(\omega\) is **exact**.
- A Sasaki manifold is **holomorphically (Kähler) fillable**, but not necessarily Stein fillable.
- **\(S^1\)-equivariant symplectic homology** of the filling is a Floer homology introduced by Viterbo and developed further by Bourgeois-Oancea.
- We need a **Liouville filling** which we extend to a full cone \(\bar{W} = W \cup M \times \mathbb{R}^+\).
Distinguishing Contact Structures

- Contact Invariants.

- Gray Stability Theorem: On a closed contact manifold all deformations are trivial.
- A classical invariant: The first Chern class: \(c_1(\mathcal{D}) \).
- contact homology: has serious transversality problems, so we work with fillings.

Definition

A (strong) symplectic filling of \((M, \mathcal{D})\) is a compact symplectic manifold \((W, \omega)\) such that \(\partial W = M\), there is a local outward pointing vector field \(\psi\) on \(W\) such that \(\mathcal{L}_\psi \omega = \omega\) and \(\mathcal{D} = \ker(\psi \downarrow \omega)|_M\). If \(\psi\) is globally defined \((W, \omega)\) is a **Liouville filling**. It is a **holomorphic filling** if \(W\) has a complex structure \(J\) such that \((M, J)\) is strictly pseudo-convex and \(\mathcal{D} = TM \cap JTM\). It is a **Stein (Kähler) filling** if \((W, \omega)\) is biholomorphic to a Stein (Kähler) manifold.

- Think of the cone \((M \times \mathbb{R}^+, \omega)\) and smoothing singularity at cone point.
- Kähler fillability coincides with holomorphic fillability. **Stein fillable** implies **Liouville fillable**.
- For a **Liouville filling** \((W, \omega)\), the symplectic form \(\omega\) is **exact**.
- A Sasaki manifold is **holomorphically (Kähler) fillable**, but not necessarily Stein fillable.
- **\(S^1\)-equivariant symplectic homology** of the filling is a Floer homology introduced by Viterbo and developed further by Bourgeois-Oancea.
- We need a **Liouville filling** which we extend to a full cone \(\bar{W} = W \cup M \times \mathbb{R}^+\).
- Obtain an **\(S^1\)-equivariant theory on the free loop space** \(\Lambda \bar{W}\) of \(\bar{W}\) which gives equivariant “Morse-Floer” type homology groups \(SH^+ \cdot S^1 (W)\). The \(+ \Rightarrow\) truncate action functional at 0.
Distinguishing Contact Structures

- **Contact Invariants.**
 - **Gray Stability Theorem:** On a closed contact manifold all deformations are trivial.
 - A classical invariant: The **first Chern class**: \(c_1(D) \).
 - **contact homology:** has serious transversality problems, so we work with **fillings**.

Definition

A (strong) symplectic filling of \((M, D)\) is a compact symplectic manifold \((W, \omega)\) such that \(\partial W = M\), there is a local outward pointing vector field \(\Psi\) on \(W\) such that \(\mathcal{L}_\Psi \omega = \omega\) and \(D = \ker(\Psi \mid \omega)\mid_M\). If \(\Psi\) is globally defined \((W, \omega)\) is a **Liouville filling**. It is a **holomorphic filling** if \(W\) has a complex structure \(J\) such that \((M, J)\) is strictly pseudo-convex and \(D = TM \cap JTM\). It is a **Stein (Kähler) filling** if \((W, \omega)\) is biholomorphic to a Stein (Kähler) manifold.

- Think of the cone \((M \times \mathbb{R}^+, \omega)\) and smoothing singularity at cone point.
- Kähler fillability coincides with holomorphic fillability. **Stein fillable** implies **Liouville fillable**.
- For a **Liouville filling** \((W, \omega)\), the symplectic form \(\omega\) is **exact**.
- A Sasaki manifold is **holomorphically (Kähler) fillable**, but not necessarily Stein fillable.
- **\(S^1\)-equivariant symplectic homology** of the filling is a Floer homology introduced by Viterbo and developed further by Bourgeois-Oancea.
- We need a **Liouville filling** which we extend to a full cone \(\bar{W} = W \cup M \times \mathbb{R}^+\).
- Obtain an **\(S^1\)-equivariant** theory on the free loop space \(\Lambda\bar{W}\) of \(\bar{W}\) which gives equivariant “Morse-Floer” type homology groups \(SH^{+, S^1}(W)\). The \(+\) \(\Rightarrow\) truncate action functional at 0.
- Morally, \(SH^{+, S^1}(W)\) is generated by **periodic Reeb orbits** on the boundary \(M\).
Distinguishing Contact Structures

- **Contact Invariants.**
 - **Gray Stability Theorem:** On a closed contact manifold all deformations are trivial.
 - A classical invariant: The **first Chern class**: \(c_1(D) \).
 - **contact homology:** has serious transversality problems, so we work with **fillings**.

Definition

A (strong) symplectic filling of \((M, D)\) is a compact symplectic manifold \((W, \omega)\) such that \(\partial W = M\), there is a local outward pointing vector field \(\psi\) on \(W\) such that \(\mathcal{L}_\psi \omega = \omega\) and \(D = \ker(\psi \downarrow \omega)|_M\). If \(\psi\) is globally defined \((W, \omega)\) is a **Liouville filling**. It is a **holomorphic filling** if \(W\) has a complex structure \(J\) such that \((M, J)\) is strictly pseudo-convex and \(D = TM \cap JTM\). It is a **Stein (Kähler) filling** if \((W, \omega)\) is biholomorphic to a Stein (Kähler) manifold.

- Think of the cone \((M \times \mathbb{R}^+, \omega)\) and smoothing singularity at cone point.
- Kähler fillability coincides with holomorphic fillability. **Stein fillable** implies **Liouville fillable**.
- For a **Liouville filling** \((W, \omega)\), the symplectic form \(\omega\) is **exact**.
- A Sasaki manifold is **holomorphically (Kähler) fillable** but not necessarily **Stein fillable**.
- **\(S^1\)-equivariant symplectic homology** of the filling is a Floer homology introduced by Viterbo and developed further by Bourgeois-Oancea.
- We need a **Liouville filling** which we extend to a full cone \(\tilde{W} = W \cup M \times \mathbb{R}^+\).
- Obtain an **\(S^1\)-equivariant theory** on the free loop space \(\Lambda \tilde{W}\) of \(\tilde{W}\) which gives equivariant “Morse-Floer” type homology groups \(SH^{+, S^1}(W)\). The \(+ \Rightarrow\) truncate action functional at 0.
- Morally, \(SH^{+, S^1}(W)\) is generated by **periodic Reeb orbits** on the boundary \(M\).
- Under the right assumptions \(SH^{+, S^1}(W)\) is a **contact invariant**.
Assume the filling is Liouville, define the \textbf{symplectic Betti numbers} by
\[sb_i := \text{rank } SH_i^{+,S^1}(W). \]
Assume the filling is Liouville, define the symplectic Betti numbers by $sb_i := \text{rank } SH^+_i; S^1 (W)$.

Definition (van Koert)

For a convenient Liouville filling (W, ω), the mean Euler characteristic is defined by

$$\chi_m(W) = \frac{1}{2} \left(\liminf_{N \to \infty} \frac{1}{N} \sum_{i=-N}^{N} (-1)^i sb_i(W) + \limsup_{N \to \infty} \frac{1}{N} \sum_{i=-N}^{N} (-1)^i sb_i(W) \right)$$

if this number exists.
Assume the filling is **Liouville**, define the **symplectic Betti numbers** by

\[sb_i := \text{rank } SH_i^{+,S^1}(W). \]

Definition (van Koert)

For a convenient Liouville filling \((W, \omega)\), the **mean Euler characteristic** is defined by

\[
\chi_m(W) = \frac{1}{2} \left(\liminf_{N \to \infty} \frac{1}{N} \sum_{i=-N}^{N} (-1)^i sb_i(W) + \limsup_{N \to \infty} \frac{1}{N} \sum_{i=-N}^{N} (-1)^i sb_i(W) \right)
\]

if this number exists.

Under various technical assumptions, \(\chi_m(W)\) exists and is a **contact invariant** independent of the Liouville filling.
The Mean Euler Characteristic

- Assume the filling is **Liouville**, define the **symplectic Betti numbers** by $sb_i := \text{rank } SH^+_{i,S^1}(W)$.

Definition (van Koert)

For a convenient Liouville filling (W, ω), the **mean Euler characteristic** is defined by

$$\chi_m(W) = \frac{1}{2} \left(\liminf_{N \to \infty} \frac{1}{N} \sum_{i=-N}^{N} (-1)^i sb_i(W) + \limsup_{N \to \infty} \frac{1}{N} \sum_{i=-N}^{N} (-1)^i sb_i(W) \right)$$

if this number exists.

- Under various technical assumptions, $\chi_m(W)$ exists and is a **contact invariant** independent of the Liouville filling.
- $\chi_m(W)$ and $SH^+_{i,S^1}(W)$ allows us to distinguish components of the Sasaki moduli space.
All Sasakian structures are:

- Nested structures: \textbf{Sasakian} \subset strictly pseudo-convex CR \subset Contact
All Sasakian structures are:

- Nested structures: \(\text{Sasakian} \subset \text{strictly pseudo-convex CR} \subset \text{Contact} \)
- with nested symmetry groups: \(T^k \subset \text{Aut}(S) \subset \text{CR}(D, J) \subset \text{Con}(M, D) \).

Construction of Sasaki Manifolds
All Sasakian structures are:

- Nested structures: \textbf{Sasakian} \subset \textbf{strictly pseudo-convex CR} \subset \textbf{Contact}
- with nested symmetry groups: $T^k \subset \text{Aut}(S) \subset \text{CR}(D, J) \subset \text{Con}(M, D)$.

- \textbf{Contactomorphism Group}: $\text{Con}(M, D) = \{ \phi \in \text{Diff}(M) | \phi_* D \subset D \}$

Construction of Sasaki Manifolds
Sasaki Manifolds

All Sasakian structures are:

- Nested structures: Sasakian \subset strictly pseudo-convex CR \subset Contact
- with nested symmetry groups: $T^k \subset \text{Aut}(S) \subset \text{CR}(D, J) \subset \text{Con}(M, D)$.

1. **Contactomorphism Group**: $\text{Con}(M, D) = \{ \phi \in \text{Diff}(M) \mid \phi_* D \subset D \}$
2. **CR automorphism group**: $\text{CR}(D, J) = \{ \phi \in \text{Con}(M, D) \mid \phi_* J = J\phi_* \}$

Construction of Sasaki Manifolds
All Sasakian structures are:

- Nested structures: **Sasakian** \(\subset\) **strictly pseudo-convex CR** \(\subset\) **Contact**

- with nested symmetry groups: \(T^k \subset \text{Aut}(S) \subset \text{CR}(D, J) \subset \text{Con}(M, D)\).

1. **Contactomorphism Group:** \(\text{Con}(M, D) = \{\phi \in \text{Diff}(M) | \phi_* D \subset D\}\)
2. **CR automorphism group:** \(\text{CR}(D, J) = \{\phi \in \text{Con}(M, D) | \phi_* J = J \phi_*\}\)
3. **Sasakian automorphism group:** \(\text{Aut}(S) = \{\phi \in \text{CR}(D, J) | \phi_* \xi = \xi, \phi^* g = g\}\)

Construction of Sasaki Manifolds
All Sasakian structures are:

- Nested structures: Sasakian \subset strictly pseudo-convex CR \subset Contact
- with nested symmetry groups: $T^k \subset \text{Aut}(S) \subset \text{CR}(D, J) \subset \text{Con}(M, D)$.

1. **Contactomorphism Group**: $\text{Con}(M, D) = \{ \phi \in \text{Diff}(M) \mid \phi^* D \subset D \}$
2. **CR automorphism group**: $\text{CR}(D, J) = \{ \phi \in \text{Con}(M, D) \mid \phi^* J = J\phi^* \}$
3. **Sasakian automorphism group**: $\text{Aut}(S) = \{ \phi \in \text{CR}(D, J) \mid \phi^* \xi = \xi, \phi^* g = g \}$
4. **maximal torus**: T^k in $\text{Aut}(S)$ with $1 \leq k \leq n + 1$.

Construction of Sasaki Manifolds
All Sasakian structures are:

- Nested structures: **Sasakian** ⊂ **strictly pseudo-convex CR** ⊂ **Contact**
- with nested symmetry groups: $T^k \subset \text{Aut}(S) \subset \text{CR}(D, J) \subset \text{Con}(M, D)$.

1. **Contactomorphism Group**: $\text{Con}(M, D) = \{ \phi \in \text{Diff}(M) | \phi_* D \subset D \}$
2. **CR automorphism group**: $\text{CR}(D, J) = \{ \phi \in \text{Con}(M, D) | \phi_* J = J \phi_* \}$
3. **Sasakian automorphism group**: $\text{Aut}(S) = \{ \phi \in \text{CR}(D, J) | \phi_* \xi = \xi, \phi^* g = g \}$
4. **maximal torus**: T^k in $\text{Aut}(S)$ with $1 \leq k \leq n + 1$.

Construction of Sasaki Manifolds

- Total space M of an S^1-orbibundle over a projective algebraic orbifold.
Sasaki Manifolds

All Sasakiian structures are:

- Nested structures: \(\text{Sasakian} \subset \text{strictly pseudo-convex CR} \subset \text{Contact} \)
- with nested symmetry groups: \(T^k \subset \text{Aut}(S) \subset \text{CR}(\mathcal{D}, J) \subset \text{Con}(M, D) \).

1. **Contactomorphism Group**: \(\text{Con}(M, D) = \{ \phi \in \text{Diff}(M) \mid \phi_* D \subset D \} \)
2. **CR automorphism group**: \(\text{CR}(\mathcal{D}, J) = \{ \phi \in \text{Con}(M, D) \mid \phi_* J = J \phi_* \} \)
3. **Sasakian automorphism group**: \(\text{Aut}(S) = \{ \phi \in \text{CR}(\mathcal{D}, J) \mid \phi_* \xi = \xi, \phi^* g = g \} \)
4. **maximal torus**: \(T^k \) in \(\text{Aut}(S) \) with \(1 \leq k \leq n + 1 \).

Construction of Sasaki Manifolds

1. Total space \(M \) of an \(S^1 \)-orbibundle over a projective algebraic orbifold.
2. Sasakian manifold with many symmetries, e.g. toric contact structures of Reeb type.
All Sasakian structures are:

- Nested structures: **Sasakian ⊂ strictly pseudo-convex CR ⊂ Contact**
- with nested symmetry groups: \(T^k \subset \text{Aut}(S) \subset \text{CR}(D, J) \subset \text{Con}(M, D) \).

1. **Contactomorphism Group**: \(\text{Con}(M, D) = \{ \phi \in \text{Diff}(M) \mid \phi_* D \subset D \} \)
2. **CR automorphism group**: \(\text{CR}(D, J) = \{ \phi \in \text{Con}(M, D) \mid \phi_* J = J \phi_* \} \)
3. **Sasakian automorphism group**: \(\text{Aut}(S) = \{ \phi \in \text{CR}(D, J) \mid \phi_* \xi = \xi, \phi^* g = g \} \)
4. **maximal torus**: \(T^k \) in \(\text{Aut}(S) \) with \(1 \leq k \leq n + 1 \).

Construction of Sasaki Manifolds

1. Total space \(M \) of an \(S^1 \)-orbibundle over a projective algebraic orbifold.
2. Sasakian manifold with many symmetries, e.g. toric contact structures of Reeb type.
3. Links of weighted homogeneous polynomials, e.g. **Brieskorn manifolds**.
Sasaki Manifolds

All Sasakian structures are:

- Nested structures: \(\text{Sasakian} \subset \text{strictly pseudo-convex CR} \subset \text{Contact} \)

- with nested symmetry groups: \(T^k \subset \text{Aut}(S) \subset \text{CR}(D, J) \subset \text{Con}(M, D) \).

1. Contactomorphism Group: \(\text{Con}(M, D) = \{ \phi \in \text{Diff}(M) \mid \phi^* D \subset D \} \)
2. CR automorphism group: \(\text{CR}(D, J) = \{ \phi \in \text{Con}(M, D) \mid \phi^* J = J \phi^* \} \)
3. Sasakian automorphism group: \(\text{Aut}(S) = \{ \phi \in \text{CR}(D, J) \mid \phi^* \xi = \xi, \phi^* g = g \} \)
4. Maximal torus: \(T^k \) in \(\text{Aut}(S) \) with \(1 \leq k \leq n + 1 \).

Construction of Sasaki Manifolds

1. Total space \(M \) of an \(S^1 \)-orbibundle over a projective algebraic orbifold.
2. Sasakian manifold with many symmetries, e.g. toric contact structures of Reeb type.
3. Links of weighted homogeneous polynomials, e.g. Brieskorn manifolds.
All Sasakian structures are:

- **Nested structures**: \(\text{Sasakian} \subset \text{strictly pseudo-convex CR} \subset \text{Contact} \)
- With nested symmetry groups: \(T^k \subset \text{Aut}(S) \subset \text{CR}(D, J) \subset \text{Con}(M, D) \).

1. **Contactomorphism Group**: \(\text{Con}(M, D) = \{ \phi \in \text{Diff}(M) | \phi^* D \subset D \} \)
2. **CR automorphism group**: \(\text{CR}(D, J) = \{ \phi \in \text{Con}(M, D) | \phi^* J = J \phi^* \} \)
3. **Sasakian automorphism group**: \(\text{Aut}(S) = \{ \phi \in \text{CR}(D, J) | \phi^* \xi = \xi, \phi^* g = g \} \)
4. **Maximal torus**: \(T^k \) in \(\text{Aut}(S) \) with \(1 \leq k \leq n + 1 \).

Construction of Sasaki Manifolds

1. Total space \(M \) of an \(S^1 \)-orbibundle over a projective algebraic orbifold.
2. Sasakian manifold with many symmetries, e.g. toric contact structures of Reeb type.
3. Links of weighted homogeneous polynomials, e.g. Brieskorn manifolds.

The first construction is general. We concentrate here on constructions (3) and (4).
All Sasakian structures are:

- Nested structures: Sasakian \subset strictly pseudo-convex CR \subset Contact

with nested symmetry groups: $T^k \subset \text{Aut}(S) \subset \text{CR}(\mathcal{D}, J) \subset \text{Con}(M, \mathcal{D})$.

1. **Contactomorphism Group**: $\text{Con}(M, \mathcal{D}) = \{ \phi \in \text{Diff}(M) \mid \phi^* \mathcal{D} \subset \mathcal{D} \}$
2. **CR automorphism group**: $\text{CR}(\mathcal{D}, J) = \{ \phi \in \text{Con}(M, \mathcal{D}) \mid \phi^* J = J \phi^* \}$
3. **Sasakian automorphism group**: $\text{Aut}(S) = \{ \phi \in \text{CR}(\mathcal{D}, J) \mid \phi^* \xi = \xi, \phi^* g = g \}$
4. **maximal torus**: T^k in $\text{Aut}(S)$ with $1 \leq k \leq n + 1$.

Construction of Sasaki Manifolds

1. Total space M of an S^1-orbibundle over a projective algebraic orbifold.
2. Sasakian manifold with many symmetries, e.g. toric contact structures of Reeb type.
3. Links of weighted homogeneous polynomials, e.g. Brieskorn manifolds.

The first construction is general. We concentrate here on constructions (3) and (4).

Constructions (3) and (4) are complementary. Links are highly connected, i.e. in dimension $2n + 1$ they are $n - 1$-connected; whereas, the join construction always adds to $H^2(M, \mathbb{Q})$.
All Sasaki structures are:

- Nested structures: **Sasakian ⊂ strictly pseudo-convex CR ⊂ Contact**

 with nested symmetry groups: $T^k \subset \text{Aut}(S) \subset \text{CR}(D, J) \subset \text{Con}(M, D)$.

1. **Contactomorphism Group**: $\text{Con}(M, D) = \{ \phi \in \text{Diff}(M) \mid \phi_* D \subset D \}$
2. **CR automorphism group**: $\text{CR}(D, J) = \{ \phi \in \text{Con}(M, D) \mid \phi_* J = J \phi_* \}$
3. **Sasakian automorphism group**: $\text{Aut}(S) = \{ \phi \in \text{CR}(D, J) \mid \phi_* \xi = \xi, \phi^* g = g \}$
4. **maximal torus**: T^k in $\text{Aut}(S)$ with $1 \leq k \leq n + 1$.

Construction of Sasaki Manifolds

1. Total space M of an S^1-orbibundle over a projective algebraic orbifold.
2. Sasaki manifold with many symmetries, e.g. toric contact structures of Reeb type.
3. Links of weighted homogeneous polynomials, e.g. **Brieskorn manifolds**.

The first construction is general. We concentrate here on constructions (3) and (4).

Constructions (3) and (4) are **complementary**. Links are highly connected, i.e. in dimension $2n + 1$ they are $n - 1$-connected; whereas, the join construction always adds to $H^2(M, \mathbb{Q})$.

They can intersect in dimension five, but otherwise are complementary.
Sasaki Manifolds

All Sasaki structures are:

- Nested structures: \(\text{Sasakian} \subset \text{strictly pseudo-convex CR} \subset \text{Contact} \)

- with nested symmetry groups: \(T^k \subset \text{Aut}(S) \subset \text{CR}(D, J) \subset \text{Con}(M, D) \).

1. **Contactomorphism Group**: \(\text{Con}(M, D) = \{ \phi \in \text{Diff}(M) \mid \phi_* D \subset D \} \)
2. **CR automorphism group**: \(\text{CR}(D, J) = \{ \phi \in \text{Con}(M, D) \mid \phi_* J = J \phi_* \} \)
3. **Sasakian automorphism group**: \(\text{Aut}(S) = \{ \phi \in \text{CR}(D, J) \mid \phi_* \xi = \xi, \phi_* g = g \} \)
4. **maximal torus**: \(T^k \) in \(\text{Aut}(S) \) with \(1 \leq k \leq n + 1 \).

Construction of Sasaki Manifolds

1. Total space \(M \) of an \(S^1 \)-orbibundle over a projective algebraic orbifold.
2. Sasaki manifold with many symmetries, e.g. toric contact structures of Reeb type.
3. Links of weighted homogeneous polynomials, e.g. Brieskorn manifolds.

The first construction is general. We concentrate here on constructions (3) and (4).

Constructions (3) and (4) are complementary. Links are highly connected, i.e. in dimension \(2n + 1 \) they are \(n - 1 \)-connected; whereas, the join construction always adds to \(H^2(M, \mathbb{Q}) \).

They can intersect in dimension five, but otherwise are complementary.

On a highly connected manifold of dimension greater than five, any contact structure \(D \) satisfies \(c_1(D) = 0 \).
Sasaki Manifolds

All Sasakian structures are:

- Nested structures: $\text{Sasakian} \subset \text{strictly pseudo-convex CR} \subset \text{Contact}$
- with nested symmetry groups: $T^k \subset \text{Aut}(S) \subset \text{CR}(D, J) \subset \text{Con}(M, D)$.

1. **Contactomorphism Group**: $\text{Con}(M, D) = \{ \phi \in \text{Diff}(M) | \phi^* D \subset D \}$
2. **CR automorphism group**: $\text{CR}(D, J) = \{ \phi \in \text{Con}(M, D) | \phi^* J = J \phi^* \}$
3. **Sasakian automorphism group**: $\text{Aut}(S) = \{ \phi \in \text{CR}(D, J) | \phi^* \xi = \xi, \phi^* g = g \}$
4. **maximal torus**: T^k in $\text{Aut}(S)$ with $1 \leq k \leq n + 1$.

Construction of Sasaki Manifolds

1. Total space M of an S^1-orbibundle over a projective algebraic orbifold.
2. Sasakian manifold with many symmetries, e.g. toric contact structures of Reeb type.
3. Links of weighted homogeneous polynomials, e.g. **Brieskorn manifolds**.

The first construction is general. We concentrate here on constructions (3) and (4).

Constructions (3) and (4) are **complementary**. Links are highly connected, i.e. in dimension $2n + 1$ they are $n - 1$-connected; whereas, the join construction always adds to $H^2(M, \mathbb{Q})$.

They can intersect in dimension five, but otherwise are complementary.

On a highly connected manifold of dimension greater than five, any contact structure D satisfies $c_1(D) = 0$.

On a simply connected rational homology sphere, $c_1(D) = 0$.
Three Types of **Deformations** of Sasakian Structures

1. **Fix CR structure** (D, J), deform characteristic foliation F. This gives rise to Sasaki cones. After this type of deformation the transverse holonomy becomes irreducible.

2. **Fix contact structure** D, deform transverse complex structure (CR) J. This gives rise to Sasaki bouquets. Here Sasaki cones in bouquets are related to conjugacy classes of tori in the contactomorphism group $\text{Con}(M, D)$.

3. **Fix characteristic foliation** F, deform contact structure D. This is used to obtain extremal Sasaki metrics. This type of deformation does not change the transverse holonomy nor the isotopy class of contact structure.

Denote by $F(M)$ the space of all Sasakian structures on M, and by $F(M, \xi, \bar{J})$ the subspace of $F(M)$ with Reeb vector field ξ and transverse complex structure \bar{J}. The identification space $F(M)/F(M, \xi, \bar{J})$ is the pre-moduli space of Sasaki classes.

The moduli space $\mathcal{M}(M)$ of Sasaki classes is the quotient of $F(M)/F(M, \xi, \bar{J})$ by $\text{Diff}(M)$. $\mathcal{M}(M)$ can be non-Hausdorff.

We think of an element of $\mathcal{M}(M)$ as represented by a basic cohomology class $[d\eta]_{B} \in H^{1,1}(F_{\xi})$.

We are mainly interested in those classes with $c_{1}(F_{\xi})$ positive and with $c_{1}(D) = c$ which we denote by $\mathcal{M}(M, c)$. By the transverse Yau Theorem $\mathcal{M}(M, c)$ has a representative with positive Ricci curvature.
Three Types of **Deformations** of Sasakian Structures

1. Fix CR structure (\mathcal{D}, J), deform characteristic foliation \mathcal{F}. This gives rise to **Sasaki cones**. After this type of deformation the transverse holonomy becomes irreducible.

2. Fix contact structure \mathcal{D}, deform transverse complex structure (CR) J. This gives rise to **Sasaki bouquets**. Here Sasaki cones in bouquets are related to conjugacy classes of tori in the contactomorphism group $\text{Con}(\mathcal{M}, \mathcal{D})$.

3. Fix characteristic foliation \mathcal{F}, deform contact structure \mathcal{D}. This is used to obtain **extremal Sasaki metrics**. This type of deformation does not change the transverse holonomy nor the isotopy class of contact structure.

Denote by $\mathcal{F}(\mathcal{M})$ the space of all Sasakian structures on \mathcal{M}, and by $\mathcal{F}(\mathcal{M}, \xi, \bar{J})$ the subspace of $\mathcal{F}(\mathcal{M})$ with Reeb vector field ξ and transverse complex structure \bar{J}. The identification space $\mathcal{F}(\mathcal{M})/\mathcal{F}(\mathcal{M}, \xi, \bar{J})$ is the pre-moduli space of Sasaki classes.

The moduli space $\mathcal{M}(\mathcal{M})$ of Sasaki classes is the quotient of $\mathcal{F}(\mathcal{M})/\mathcal{F}(\mathcal{M}, \xi, \bar{J})$ by $\text{Diff}(\mathcal{M})$. $\mathcal{M}(\mathcal{M})$ can be non-Hausdorff.

We think of an element of $\mathcal{M}(\mathcal{M})$ as represented by a basic cohomology class $[d\eta]_B \in H^1_1(\mathcal{F}_\xi)$.

We are mainly interested in those classes with $c_1(\mathcal{F}_\xi)$ positive and with $c_1(\mathcal{D}) = c$, which we denote by $\mathcal{M}(\mathcal{M})_+^c$.

By the transverse Yau Theorem $\mathcal{M}(\mathcal{M})_+^c$ has a representative with positive Ricci curvature.
Three Types of **Deformations** of Sasakian Structures

1. Fix CR structure \((\mathcal{D}, J)\), deform characteristic foliation \(\mathcal{F}\). This gives rise to **Sasaki cones**. After this type of deformation the transverse holonomy becomes **irreducible**.

2. Fix contact structure \(\mathcal{D}\), deform transverse complex structure (CR) \(J\). This gives rise to **Sasaki bouquets**. Here Sasaki cones in bouquets are related to conjugacy classes of tori in the contactomorphism group \(\text{Con}(M, \mathcal{D})\).

Denote by \(\mathcal{F}(M)\) the space of all Sasakian structures on \(M\), and by \(\mathcal{F}(M, \xi, \bar{J})\) the subspace of \(\mathcal{F}(M)\) with Reeb vector field \(\xi\) and transverse complex structure \(\bar{J}\). The identification space \(\mathcal{F}(M)/\mathcal{F}(M, \xi, \bar{J})\) is the pre-moduli space of Sasaki classes.

The moduli space \(\mathcal{M}(M)\) of Sasaki classes is the quotient of \(\mathcal{F}(M)/\mathcal{F}(M, \xi, \bar{J})\) by \(\text{Diff}(M)\). \(\mathcal{M}(M)\) can be non-Hausdorff.

We think of an element of \(\mathcal{M}(M)\) as represented by a basic cohomology class \([d\eta]_{B} \in H^{1,1}(\mathcal{F}(\xi))\).

We are mainly interested in those classes with \(c_{1}(\mathcal{F}(\xi))\) positive and with \(c_{1}(\mathcal{D}) = c\), which we denote by \(\mathcal{M}(M)^{+}, c\).

By the transverse Yau Theorem \(\mathcal{M}(M)^{+}, c\) has a representative with positive Ricci curvature.
Three Types of **Deformations** of Sasakian Structures

1. Fix CR structure \((D, J)\), deform characteristic foliation \(F\). This gives rise to **Sasaki cones**. After this type of deformation the transverse holonomy becomes irreducible.

2. Fix contact structure \(D\), deform transverse complex structure (CR) \(J\). This gives rise to **Sasaki bouquets**. Here Sasaki cones in bouquets are related to conjugacy classes of tori in the contactomorphism group \(\text{Con}(M, D)\).

3. Fix characteristic foliation \(F\), deform contact structure \(D\). This is used to obtain **extremal Sasaki metrics**. This type of deformation does not change the transverse holonomy nor the isotopy class of contact structure.
Three Types of **Deformations** of Sasakian Structures

1. Fix CR structure \((\mathcal{D}, J)\), deform characteristic foliation \(\mathcal{F}\). This gives rise to **Sasaki cones**. After this type of deformation the transverse holonomy becomes **irreducible**.

2. Fix contact structure \(\mathcal{D}\), deform transverse complex structure (CR) \(J\). This gives rise to **Sasaki bouquets**. Here Sasaki cones in bouquets are related to conjugacy classes of tori in the contactomorphism group \(\text{Con}(M, \mathcal{D})\).

3. Fix characteristic foliation \(\mathcal{F}\), deform contact structure \(\mathcal{D}\). This is used to obtain **extremal Sasaki metrics**. This type of deformation does not change the transverse holonomy nor the isotopy class of contact structure.

Denote by \(\mathcal{S}(M)\) the space of all Sasakian structures on \(M\), and by \(\mathcal{S}(M, \xi, \tilde{J})\) the subspace of \(\mathcal{S}(M)\) with Reeb vector field \(\xi\) and transverse complex structure \(\tilde{J}\). The identification space \(\mathcal{S}(M)/\mathcal{S}(M, \xi, \tilde{J})\) is the pre-moduli space of Sasaki classes.
Deformations of Sasakian Structures and Sasaki Classes

Three Types of **Deformations** of Sasakian Structures

1. Fix CR structure \((\mathcal{D}, J)\), deform characteristic foliation \(\mathcal{F}\). This gives rise to **Sasaki cones**. After this type of deformation the transverse holonomy becomes irreducible.

2. Fix contact structure \(\mathcal{D}\), deform transverse complex structure (CR) \(J\). This gives rise to **Sasaki bouquets**. Here Sasaki cones in bouquets are related to conjugacy classes of tori in the contactomorphism group \(\text{Con}(M, \mathcal{D})\).

3. Fix characteristic foliation \(\mathcal{F}\), deform contact structure \(\mathcal{D}\). This is used to obtain **extremal Sasaki metrics**. This type of deformation does not change the transverse holonomy nor the isotopy class of contact structure.

Denote by \(\mathfrak{S}(M)\) the space of all Sasakian structures on \(M\), and by \(\mathfrak{S}(M, \xi, \bar{J})\) the subspace of \(\mathfrak{S}(M)\) with Reeb vector field \(\xi\) and transverse complex structure \(\bar{J}\). The identification space \(\mathfrak{S}(M)/\mathfrak{S}(M, \xi, \bar{J})\) is the pre-moduli space of Sasaki classes.

The moduli space \(\mathcal{M}(M)\) of Sasaki classes is the quotient of \(\mathfrak{S}(M)/\mathfrak{S}(M, \xi, \bar{J})\) by \(\text{Diff}(M)\).
Deformations of Sasakian Structures and Sasaki Classes

Three Types of **Deformations** of Sasakian Structures

1. Fix **CR structure** \((\mathcal{D}, J)\), deform **characteristic foliation** \(\mathcal{F}\). This gives rise to **Sasaki cones**. After this type of deformation the **transverse holonomy** becomes irreducible.

2. Fix **contact structure** \(\mathcal{D}\), deform **transverse complex structure** (CR) \(J\). This gives rise to **Sasaki bouquets**. Here Sasaki cones in bouquets are related to **conjugacy classes of tori** in the contactomorphism group \(\mathcal{C}on(M, \mathcal{D})\).

3. Fix **characteristic foliation** \(\mathcal{F}\), deform **contact structure** \(\mathcal{D}\). This is used to obtain **extremal Sasaki metrics**. This type of deformation does not change the **transverse holonomy** nor the **isotopy class** of contact structure.

Denote by \(\mathcal{F}(M)\) the space of all Sasakian structures on \(M\), and by \(\mathcal{F}(M, \xi, \bar{J})\) the subspace of \(\mathcal{F}(M)\) with Reeb vector field \(\xi\) and **transverse complex structure** \(\bar{J}\). The identification space \(\mathcal{F}(M)/\mathcal{F}(M, \xi, \bar{J})\) is the **pre-moduli space** of Sasaki classes.

The moduli space \(\mathcal{M}(M)\) of Sasaki classes is the quotient of \(\mathcal{F}(M)/\mathcal{F}(M, \xi, \bar{J})\) by \(\text{Diff}(M)\).

\(\mathcal{M}(M)\) can be **non-Hausdorff**.
Three Types of **Deformations** of Sasakian Structures

1. **Fix CR structure** (\mathcal{D}, J), deform characteristic foliation \mathcal{F}. This gives rise to **Sasaki cones**. After this type of deformation the transverse holonomy becomes irreducible.

2. **Fix contact structure** \mathcal{D}, deform transverse complex structure (CR) J. This gives rise to **Sasaki bouquets**. Here Sasaki cones in bouquets are related to conjugacy classes of tori in the contactomorphism group $\text{Con}(M, \mathcal{D})$.

3. **Fix characteristic foliation** \mathcal{F}, deform contact structure \mathcal{D}. This is used to obtain **extremal Sasaki metrics**. This type of deformation does not change the transverse holonomy nor the isotopy class of contact structure.

Denote by $\mathcal{S}(M)$ the space of all Sasakian structures on M, and by $\mathcal{S}(M, \xi, \bar{J})$ the subspace of $\mathcal{S}(M)$ with Reeb vector field ξ and transverse complex structure \bar{J}. The identification space $\mathcal{S}(M)/\mathcal{S}(M, \xi, \bar{J})$ is the pre-moduli space of Sasaki classes.

The moduli space $\mathcal{M}(M)$ of Sasaki classes is the quotient of $\mathcal{S}(M)/\mathcal{S}(M, \xi, \bar{J})$ by $\text{Diff}(M)$.

$\mathcal{M}(M)$ can be non-Hausdorff.

We think of an element of $\mathcal{M}(M)$ as represented by a basic cohomology class $[d\eta]_B \in H^{1,1}(\mathcal{F}_\xi)$.
Three Types of **Deformations** of Sasakian Structures

1. **Fix CR structure** \((\mathcal{D}, J)\), deform characteristic foliation \(F\). This gives rise to **Sasaki cones**. After this type of deformation the transverse holonomy becomes irreducible.

2. **Fix contact structure** \(\mathcal{D}\), deform transverse complex structure (CR) \(J\). This gives rise to **Sasaki bouquets**. Here Sasaki cones in bouquets are related to conjugacy classes of tori in the contactomorphism group \(\text{Con}(M, \mathcal{D})\).

3. **Fix characteristic foliation** \(F\), deform contact structure \(\mathcal{D}\). This is used to obtain **extremal Sasaki metrics**. This type of deformation does not change the transverse holonomy nor the isotopy class of contact structure.

Denote by \(\mathcal{S}(M)\) the space of all Sasakian structures on \(M\), and by \(\mathcal{S}(M, \xi, \bar{J})\) the subspace of \(\mathcal{S}(M)\) with Reeb vector field \(\xi\) and transverse complex structure \(\bar{J}\). The identification space \(\mathcal{S}(M)/\mathcal{S}(M, \xi, \bar{J})\) is the pre-moduli space of Sasaki classes.

The moduli space \(\mathcal{M}(M)\) of Sasaki classes is the quotient of \(\mathcal{S}(M)/\mathcal{S}(M, \xi, \bar{J})\) by \(\text{Diff}(M)\).

\(\mathcal{M}(M)\) can be non-Hausdorff.

We think of an element of \(\mathcal{M}(M)\) as represented by a basic cohomology class \([d\eta]_B \in H^{1,1}(\mathcal{F}_\xi)\).

We are mainly interested in those classes with \(c_1(\mathcal{F}_\xi)\) positive and with \(c_1(\mathcal{D}) = c\) which we denote by \(\mathcal{M}_{+,c}\).
Three Types of **Deformations** of Sasakian Structures

1. **Fix CR structure** (D, J), deform characteristic foliation F. This gives rise to **Sasaki cones**. After this type of deformation the transverse holonomy becomes irreducible.

2. **Fix contact structure** D, deform transverse complex structure (CR) J. This gives rise to **Sasaki bouquets**. Here Sasaki cones in bouquets are related to conjugacy classes of tori in the contactomorphism group $\mathcal{C}on(M, D)$.

3. **Fix characteristic foliation** F, deform contact structure D. This is used to obtain **extremal Sasaki metrics**. This type of deformation does not change the transverse holonomy nor the isotopy class of contact structure.

Denote by $\mathcal{F}(M)$ the space of all Sasakian structures on M, and by $\mathcal{F}(M, \xi, \bar{J})$ the subspace of $\mathcal{F}(M)$ with Reeb vector field ξ and transverse complex structure \bar{J}. The identification space $\mathcal{F}(M)/\mathcal{F}(M, \xi, \bar{J})$ is the pre-moduli space of Sasaki classes.

The **moduli space** $\mathcal{M}(M)$ of Sasaki classes is the quotient of $\mathcal{F}(M)/\mathcal{F}(M, \xi, \bar{J})$ by $Diff(M)$.

$\mathcal{M}(M)$ can be non-Hausdorff.

We think of an element of $\mathcal{M}(M)$ as represented by a basic cohomology class $[d\eta]_B \in H^{1,1}(F_\xi)$.

We are mainly interested in those classes with $c_1(F_\xi)$ positive and with $c_1(D) = c$ which we denote by $\mathcal{M}_{+,c}$.

By the transverse Yau Theorem $\mathcal{M}_{+,c}$ has a representative with **positive Ricci curvature**.
A Brieskorn manifold \(L(a) \) is a link of a Brieskorn-Pham polynomial \(f(z) = z^{a_0} + \cdots z^{a_n} \), namely \(L(a) = \{ f(z) = 0 \} \cap S^{2n+1} \) with \(a = (a_0, \ldots, a_n) \in \mathbb{Z}^{n+1}_{\geq 2} \).
A Brieskorn manifold $L(\mathbf{a})$ is a link of a Brieskorn-Pham polynomial $f(\mathbf{z}) = z_0^{a_0} + \cdots z_n^{a_n}$, namely $L(\mathbf{a}) = \{f(\mathbf{z}) = 0\} \cap S^{2n+1}$ with $\mathbf{a} = (a_0, \ldots, a_n) \in \mathbb{Z}_{\geq 2}^{n+1}$.

$L(\mathbf{a})$ has a natural Sasakian structure.
A Brieskorn manifold $L(a)$ is a link of a Brieskorn-Pham polynomial $f(z) = z_0^{a_0} + \cdots z_n^{a_n}$, namely $L(a) = \{f(z) = 0\} \cap S^{2n+1}$ with $a = (a_0, \ldots, a_n) \in \mathbb{Z}_{\geq 2}^{n+1}$.

$L(a)$ has a natural Sasakian structure.

By smoothing singularity $L(a)$ is Stein hence Liouville fillable.
A Brieskorn manifold $L(a)$ is a link of a Brieskorn-Pham polynomial $f(z) = z_0^{a_0} + \cdots + z_n^{a_n}$, namely $L(a) = \{ f(z) = 0 \} \cap S^{2n+1}$ with $a = (a_0, \ldots, a_n) \in \mathbb{Z}^{n+1}_{\geq 2}$.

$L(a)$ has a natural Sasakian structure.

By smoothing singularity $L(a)$ is Stein hence Liouville fillable.

On $L(a)$ the mean Euler characteristic $\chi_m(W)$ is a rational number that can be computed.
A Brieskorn manifold \(L(a) \) is a link of a Brieskorn-Pham polynomial \(f(z) = z_0^{a_0} + \cdots z_n^{a_n} \), namely \(L(a) = \{ f(z) = 0 \} \cap S^{2n+1} \) with \(a = (a_0, \ldots, a_n) \in \mathbb{Z}_{\geq 2}^{n+1} \).

\(L(a) \) has a natural Sasakian structure.

By smoothing singularity \(L(a) \) is Stein hence Liouville fillable.

On \(L(a) \) the mean Euler characteristic \(\chi_m(W) \) is a rational number that can be computed.

Simply connected Rational Homology Spheres in Dimension Five
A Brieskorn manifold $L(a)$ is a link of a Brieskorn-Pham polynomial $f (z) = z_0^{a_0} + \cdots z_n^{a_n}$, namely $L(a) = \{ f(z) = 0 \} \cap S^{2n+1}$ with $a = (a_0, \ldots, a_n) \in \mathbb{Z}_{\geq 2}^{n+1}$.

$L(a)$ has a natural Sasakian structure.

By smoothing singularity $L(a)$ is Stein hence Liouville fillable.

On $L(a)$ the mean Euler characteristic $\chi_m(W)$ is a rational number that can be computed.

Simply connected Rational Homology Spheres in Dimension Five

Smale manifolds M_r with $H_2(M_r, \mathbb{Z}) = \mathbb{Z}_r + \mathbb{Z}_r$ and connected sums kM_r.
A Brieskorn manifold $L(a)$ is a link of a Brieskorn-Pham polynomial $f(z) = z_0^{a_0} + \cdots z_n^{a_n}$, namely $L(a) = \{f(z) = 0\} \cap S^{2n+1}$ with $a = (a_0, \ldots, a_n) \in \mathbb{Z}^{n+1}_{\geq 2}$.

$L(a)$ has a natural Sasakian structure.

By smoothing singularity $L(a)$ is Stein hence Liouville fillable.

On $L(a)$ the mean Euler characteristic $\chi_m(W)$ is a rational number that can be computed.

Simply connected Rational Homology Spheres in Dimension Five

Smale manifolds M_r with $H_2(M_r, \mathbb{Z}) = \mathbb{Z}_r + \mathbb{Z}_r$ and connected sums kM_r.

Theorem (B-,Macarini,van Koert)

On the rational homology spheres $M = S^5, M_2, M_3, M_5, 2M_3, 4M_2$ we have $|\pi_0(\mathcal{M}_{+0}(M))| = \aleph_0$.

Moreover, each component belongs to a distinct contact structure, so there are infinitely many inequivalent contact structures of positive Sasaki type on each of the above rational homology 5-spheres.
A Brieskorn manifold $L(a)$ is a link of a Brieskorn-Pham polynomial $f(z) = z_0^{a_0} + \cdots z_n^{a_n}$, namely $L(a) = \{f(z) = 0\} \cap S^{2n+1}$ with $a = (a_0, \ldots, a_n) \in \mathbb{Z}_{\geq 2}^{n+1}$.

$L(a)$ has a natural Sasakian structure.

By smoothing singularity $L(a)$ is Stein hence Liouville fillable.

On $L(a)$ the mean Euler characteristic $\chi_m(W)$ is a **rational number** that can be computed.

Simply connected Rational Homology Spheres in Dimension Five

Smale manifolds M_r with $H_2(M_r, \mathbb{Z}) = \mathbb{Z}_r + \mathbb{Z}_r$ and connected sums kM_r.

Theorem (B-, Macarini, van Koert)

On the rational homology spheres $M = S^5, M_2, M_3, M_5, 2M_3, 4M_2$ we have $|\pi_0(\mathcal{M}_{+,0}(M))| = \aleph_0$. Moreover, each component belongs to a distinct contact structure, so there are infinitely many inequivalent contact structures of positive Sasaki type on each of the above rational homology 5-spheres.

Proof: Represent M by a sequence of Brieskorn links $L(a)$ and compute the mean Euler characteristic.
A Brieskorn manifold $L(a)$ is a link of a Brieskorn-Pham polynomial $f(z) = z_0^{a_0} + \cdots + z_n^{a_n}$, namely $L(a) = \{f(z) = 0\} \cap S^{2n+1}$ with $a = (a_0, \ldots, a_n) \in \mathbb{Z}_{>2}^{n+1}$.

$L(a)$ has a natural Sasakian structure.

By smoothing singularity $L(a)$ is Stein hence Liouville fillable.

On $L(a)$ the mean Euler characteristic $\chi_m(W)$ is a rational number that can be computed.

Simply connected Rational Homology Spheres in Dimension Five

Smale manifolds M_r with $H_2(M_r, \mathbb{Z}) = \mathbb{Z}_r + \mathbb{Z}_r$ and connected sums kM_r.

Theorem (B-, Macarini, van Koert)

On the rational homology spheres $M = S^5, M_2, M_3, M_5, 2M_3, 4M_2$ we have $|\pi_0(\mathcal{M}_{+,0}(M))| = \aleph_0$. Moreover, each component belongs to a distinct contact structure, so there are infinitely many inequivalent contact structures of positive Sasaki type on each of the above rational homology 5-spheres.

Proof: Represent M by a sequence of Brieskorn links $L(a)$ and compute the mean Euler characteristic.

Example: M_2 can be represented by the links $L(2, 3, 3, 3 + 6k)$ and $\chi_m(W) = \frac{3 + 10k}{6 + 4k}$.
A Brieskorn manifold \(L(\mathbf{a}) \) is a link of a Brieskorn-Pham polynomial \(f(z) = z_0^{a_0} + \cdots z_n^{a_n} \), namely \(L(\mathbf{a}) = \{ f(z) = 0 \} \cap S^{2n+1} \) with \(\mathbf{a} = (a_0, \ldots, a_n) \in \mathbb{Z}^{n+1}_{\geq 2} \).

\(L(\mathbf{a}) \) has a natural Sasakian structure.

By smoothing singularity \(L(\mathbf{a}) \) is Stein hence Liouville fillable.

On \(L(\mathbf{a}) \) the mean Euler characteristic \(\chi_m(W) \) is a rational number that can be computed.

Simply connected Rational Homology Spheres in Dimension Five

Smale manifolds \(M_r \) with \(H_2(M_r, \mathbb{Z}) = \mathbb{Z}_r + \mathbb{Z}_r \) and connected sums \(kM_r \).

Theorem (B-, Macarini, van Koert)

On the rational homology spheres \(M = S^5, M_2, M_3, M_5, 2M_3, 4M_2 \) we have \(|\pi_0(\mathfrak{M}_{+0}(M))| = \aleph_0 \). Moreover, each component belongs to a distinct contact structure, so there are infinitely many inequivalent contact structures of positive Sasaki type on each of the above rational homology 5-spheres.

Proof: Represent \(M \) by a sequence of Brieskorn links \(L(\mathbf{a}) \) and compute the mean Euler characteristic.

Example: \(M_2 \) can be represented by the links \(L(2, 3, 3, 3 + 6k) \) and \(\chi_m(W) = \frac{3+10k}{6+4k} \).

All except \(4M_2 \) are known to admit **Sasaki-Einstein metrics**.
We denote the Sasaki-Einstein moduli space on M by $\mathcal{M}^{SE}(M)$ (excludes standard round sphere).
We denote the Sasaki-Einstein moduli space on M by $\mathcal{M}^{SE}(M)$ (excludes standard round sphere).

There is a natural map $c : \mathcal{M}^{SE}(M) \to \mathcal{M}_{+0}(M)$.
We denote the Sasaki-Einstein moduli space on \(M\) by \(\mathcal{M}^{SE}(M)\) (excludes standard round sphere).

There is a natural map \(c: \mathcal{M}^{SE}(M) \rightarrow \mathcal{M}_{+,0}(M)\).

82 families of SE metrics on \(S^5\) (B-, Galicki, Kollár; Ghigi, Kollár; B-, Macarini, van Koert; Sun, Li).

There are 6 pairs that cannot be distinguished by \(\chi_m(W)\) or \(\text{SH}_+, S_1(W)\).

55 components are single points.

There are other components of real dimension 2, 4, 6, 8, 10, 20.

SE metrics on higher homotopy spheres

On the 28 oriented homotopy spheres homeomorphic to \(S^7\), the lower bounds on \(|\pi_0(\mathcal{M}^{SE}(\Sigma^7))|\) vary between 424 and 229.

\(|\pi_0(\mathcal{M}^{SE}(S^9))| \geq 983\) and \(|\pi_0(\mathcal{M}^{SE}(\Sigma^9))| \geq 494\).

\(|\pi_0(\mathcal{M}^{SE}(S^{4n+1}))|\) grows double exponentially with dimension.

Other Results for \(\mathcal{M}_{+,0}\):

\(|\pi_0(\mathcal{M}^{+,0}(S^2 \times S^3))| = \aleph_0\) and \(|\pi_0(\mathcal{M}^{+,0}(S^2 \times S^2 \times S^2 \times S^2))| = |\pi_0(\mathcal{M}^{+,0}(S^2 \times S^2 \times \Sigma(4n+1)))| = \aleph_0\).
We denote the Sasaki-Einstein moduli space on M by $\mathcal{M}^{SE}(M)$ (excludes standard round sphere).

There is a natural map $c : \mathcal{M}^{SE}(M) \longrightarrow \mathcal{M}_{+,0}(M)$.

82 families of SE metrics on S^5 (B-, Galicki, Kollár; Ghigi, Kollár; B-, Macarini, van Koert; Sun, Li).

Lower bound: $|\pi_0(\mathcal{M}^{SE}(S^5))| \geq 76$ (B-, Macarini, van Koert).
We denote the Sasaki-Einstein moduli space on M by $\mathcal{M}^{SE}(M)$ (excludes standard round sphere).

There is a natural map $c : \mathcal{M}^{SE}(M) \longrightarrow \mathcal{M}_{+,0}(M)$.

82 families of SE metrics on S^5 (B-, Galicki, Kollár; Ghigi, Kollár; B-, Macarini, van Koert; Sun, Li).

Lower bound: $|\pi_0(\mathcal{M}^{SE}(S^5))| \geq 76$ (B-, Macarini, van Koert).

There are 6 pairs that cannot be distinguished by $\chi_m(W)$ or $SH^{+,S^1}(W)$.
We denote the Sasaki-Einstein moduli space on M by $\mathcal{M}^{SE}(M)$ (excludes standard round sphere).

There is a natural map $c : \mathcal{M}^{SE}(M) \rightarrow \mathcal{M}_{+0}(M)$.

82 families of SE metrics on S^5 (B-,Galicki,Kollár; Ghigi,Kollár; B-,Macarini,van Koert; Sun,Li).

Lower bound: $|\pi_0(\mathcal{M}^{SE}(S^5))| \geq 76$ (B-,Macarini,van Koert).

There are 6 pairs that cannot be distinguished by $\chi_m(W)$ or $SH^+_{S^1}(W)$.

55 components are single points.
We denote the Sasaki-Einstein moduli space on M by $\mathcal{M}^{SE}(M)$ (excludes standard round sphere).

There is a natural map $c : \mathcal{M}^{SE}(M) \to \mathcal{M}_+\cdot_0(M)$.

82 families of SE metrics on S^5 (B-,Galicki,Kollár; Ghigi,Kollár; B-,Macarini,van Koert; Sun,Li).

Lower bound: $|\pi_0(\mathcal{M}^{SE}(S^5))| \geq 76$ (B-,Macarini,van Koert).

There are 6 pairs that cannot be distinguished by $\chi_m(W)$ or $SH^+;S^1(W)$.

55 components are single points.

There are other components of real dimension $2, 4, 6, 8, 10, 20$.
We denote the Sasaki-Einstein moduli space on M by $\mathcal{M}^{SE}(M)$ (excludes standard round sphere).

There is a natural map $c: \mathcal{M}^{SE}(M) \to \mathcal{M}_{+0}(M)$.

82 families of SE metrics on S^5 (B-, Galicki, Kollár; Ghigi, Kollár; B-, Macarini, van Koert; Sun, Li).

Lower bound: $|\pi_0(\mathcal{M}^{SE}(S^5))| \geq 76$ (B-, Macarini, van Koert).

There are 6 pairs that cannot be distinguished by $\chi_m(W)$ or $SH^{+;S^1}(W)$.

55 components are single points.

There are other components of real dimension $2, 4, 6, 8, 10, 20$.

SE metrics on higher homotopy spheres.
Sasaki-Einstein Moduli

We denote the Sasaki-Einstein moduli space on M by $\mathcal{M}^{SE}(M)$ (excludes standard round sphere).

There is a natural map $c : \mathcal{M}^{SE}(M) \to \mathcal{M}_{+,0}(M)$.

82 families of SE metrics on S^5 (B-, Galicki, Kollár; Ghigi, Kollár; B-, Macarini, van Koert; Sun, Li).

Lower bound: $|\pi_0(\mathcal{M}^{SE}(S^5))| \geq 76$ (B-, Macarini, van Koert).

There are 6 pairs that cannot be distinguished by $\chi_m(W)$ or $SH^+;S^1(W)$.

55 components are single points.

There are other components of real dimension 2, 4, 6, 8, 10, 20.

SE metrics on higher homotopy spheres

On the 28 oriented homotopy spheres homeomorphic to S^7, the lower bounds on $|\pi_0(\mathcal{M}^{SE}(\Sigma^7))|$ vary between 424 and 229.
We denote the Sasaki-Einstein moduli space on M by $\mathcal{M}^{SE}(M)$ (excludes standard round sphere).

There is a natural map $c : \mathcal{M}^{SE}(M) \rightarrow \mathcal{M}_{+,0}(M)$.

82 families of SE metrics on S^5 (B-,Galicki,Kollár; Ghigi,Kollár; B-,Macarini,van Koert; Sun,Li).

Lower bound: $|\pi_0(\mathcal{M}^{SE}(S^5))| \geq 76$ (B-,Macarini,van Koert).

There are 6 pairs that cannot be distinguished by $\chi_m(W)$ or $SH^+;S^1(W)$.

55 components are single points.

There are other components of real dimension 2, 4, 6, 8, 10, 20.

SE metrics on higher homotopy spheres

On the 28 oriented homotopy spheres homeomorphic to S^7, the lower bounds on $|\pi_0(\mathcal{M}^{SE}(\Sigma^7))|$ vary between 424 and 229.

$|\pi_0(\mathcal{M}^{SE}(S^9))| \geq 983$ and $|\pi_0(\mathcal{M}^{SE}(\Sigma^9))| \geq 494$.
We denote the Sasaki-Einstein moduli space on M by $\mathcal{M}^{SE}(M)$ (excludes standard round sphere).

There is a natural map $c : \mathcal{M}^{SE}(M) \to \mathcal{M}_{+,0}(M)$.

82 families of SE metrics on S^5 (B-, Galicki, Kollár; Ghigi, Kollár; B-, Macarini, van Koert; Sun, Li).

Lower bound: $|\pi_0(\mathcal{M}^{SE}(S^5))| \geq 76$ (B-, Macarini, van Koert).

There are 6 pairs that cannot be distinguished by $\chi_m(W)$ or $SH^+;S^1(W)$.

55 components are single points.

There are other components of real dimension 2, 4, 6, 8, 10, 20.

SE metrics on higher homotopy spheres

On the 28 oriented homotopy spheres homeomorphic to S^7, the lower bounds on $|\pi_0(\mathcal{M}^{SE}(\Sigma^7))|$ vary between 424 and 229.

$|\pi_0(\mathcal{M}^{SE}(S^9))| \geq 983$ and $|\pi_0(\mathcal{M}^{SE}(\Sigma^9))| \geq 494$.

$|\pi_0(\mathcal{M}^{SE}(S^{4n+1}))|$ grows double exponentially with dimension.
We denote the Sasaki-Einstein moduli space on M by $\mathcal{M}^{SE}(M)$ (excludes standard round sphere).

There is a natural map $c: \mathcal{M}^{SE}(M) \to \mathcal{M}_{+0}(M)$.

82 families of SE metrics on S^5 (B-, Galicki, Kollár; Ghigi, Kollár; B-, Macarini, van Koert; Sun, Li).

Lower bound: $|\pi_0(\mathcal{M}^{SE}(S^5))| \geq 76$ (B-, Macarini, van Koert).

There are 6 pairs that cannot be distinguished by $\chi_m(W)$ or $SH^+; S^1(W)$.

55 components are single points.

There are other components of real dimension $2, 4, 6, 8, 10, 20$.

SE metrics on higher homotopy spheres

On the 28 oriented homotopy spheres homeomorphic to S^7, the lower bounds on $|\pi_0(\mathcal{M}^{SE}(\Sigma^7))|$ vary between 424 and 229.

$|\pi_0(\mathcal{M}^{SE}(S^9))| \geq 983$ and $|\pi_0(\mathcal{M}^{SE}(\Sigma^9))| \geq 494$.

$|\pi_0(\mathcal{M}^{SE}(S^{4n+1}))|$ grows double exponentially with dimension.

Other Results for \mathcal{M}_{+0}
We denote the Sasaki-Einstein moduli space on M by $\mathcal{M}^{SE}(M)$ (excludes standard round sphere).

There is a natural map $c : \mathcal{M}^{SE}(M) \rightarrow \mathcal{M}_{+,0}(M)$.

82 families of SE metrics on S^5 (B-, Galicki, Kollár; Ghigi, Kollár; B-, Macarini, van Koert; Sun, Li).

Lower bound: $|\pi_0(\mathcal{M}^{SE}(S^5))| \geq 76$ (B-, Macarini, van Koert).

There are 6 pairs that cannot be distinguished by $\chi_m(W)$ or $SH^+;S^1(W)$.

55 components are single points.

There are other components of real dimension 2, 4, 6, 8, 10, 20.

SE metrics on higher homotopy spheres

On the 28 oriented homotopy spheres homeomorphic to S^7, the lower bounds on $|\pi_0(\mathcal{M}^{SE}(\Sigma^7))|$ vary between 424 and 229.

$|\pi_0(\mathcal{M}^{SE}(S^9))| \geq 983$ and $|\pi_0(\mathcal{M}^{SE}(\Sigma^9))| \geq 494$.

$|\pi_0(\mathcal{M}^{SE}(S^{4n+1}))|$ grows double exponentially with dimension.

Other Results for $\mathcal{M}_{+,0}$

$|\pi_0(\mathcal{M}_{+,0}(k(S^2 \times S^3))| = \aleph_0$ and

$|\pi_0(\mathcal{M}_{+,0}(S^{2n} \times S^{2n+1}))| = |\pi_0(\mathcal{M}_{+,0}(S^{2n} \times S^{2n+1} \# \Sigma^{4n+1}))| = \aleph_0$.
Sasaki-Einstein Moduli

- We denote the Sasaki-Einstein moduli space on \mathcal{M} by $\mathcal{M}^{SE}(\mathcal{M})$ (excludes standard round sphere).
- There is a natural map $c: \mathcal{M}^{SE}(\mathcal{M}) \to \mathcal{M}_{+},0(\mathcal{M})$.
- 82 families of SE metrics on S^5 (B-, Galicki, Kollár; Ghigi, Kollár; B-, Macarini, van Koert; Sun, Li).
- Lower bound: $|\pi_0(\mathcal{M}^{SE}(S^5))| \geq 76$ (B-, Macarini, van Koert).
- There are 6 pairs that cannot be distinguished by $\chi_m(W)$ or $SH^+;S^1(W)$.
- 55 components are single points.
- There are other components of real dimension 2, 4, 6, 8, 10, 20.

SE metrics on higher homotopy spheres

- On the 28 oriented homotopy spheres homeomorphic to S^7, the lower bounds on $|\pi_0(\mathcal{M}^{SE}(\Sigma^7))|$ vary between 424 and 229.
- $|\pi_0(\mathcal{M}^{SE}(S^9))| \geq 983$ and $|\pi_0(\mathcal{M}^{SE}(\Sigma^9))| \geq 494$.
- $|\pi_0(\mathcal{M}^{SE}(S^{4n+1}))|$ grows double exponentially with dimension.

Other Results for $\mathcal{M}_{+},0$

- $|\pi_0(\mathcal{M}_{+},0(k(S^2 \times S^3))| = \aleph_0$ and
- $|\pi_0(\mathcal{M}_{+},0(S^{2n} \times S^{2n+1}))| = |\pi_0(\mathcal{M}_{+},0(S^{2n} \times S^{2n+1} \# \Sigma^{4n+1}))| = \aleph_0$.
- $\mathcal{T} = \text{unit tangent sphere bundle over } S^{2n+1}$, then $|\pi_0(\mathcal{M}_{+},0(\mathcal{T}))| = \aleph_0$.
Sasakian structure $S = (\xi, \eta, \Phi, g)$ with scalar curvature s_g.
Sasakian structure $S = (\xi, \eta, \Phi, g)$ with scalar curvature s_g.

Calabi-Sasaki Energy functional $E(g) = \int_M s_g^2 d\mu_g$.
Extremal Sasakian metrics (B-Galicki-Simanca)

- Sasakian structure $S = (\xi, \eta, \Phi, g)$ with scalar curvature s_g.
- Calabi-Sasaki Energy functional $E(g) = \int_M s_g^2 d\mu_g$.
- Deform contact structure $\eta \mapsto \eta + td^c \varphi$ within its isotopy class where φ is basic.
Sasakian structure $\mathcal{S} = (\xi, \eta, \Phi, g)$ with scalar curvature s_g.

Calabi-Sasaki Energy functional $E(g) = \int_M s_g^2 d\mu_g$.

Deform contact structure $\eta \mapsto \eta + td^c\varphi$ within its isotopy class where φ is basic.

This gives critical point of $E(g) \iff \partial_g^\# s_g$ is transversely holomorphic.
Sasakian structure $S = (\xi, \eta, \Phi, g)$ with scalar curvature s_g.

Calabi-Sasaki Energy functional $E(g) = \int_M s_g^2 d\mu_g$,

Deform contact structure $\eta \mapsto \eta + td^c\varphi$ within its isotopy class where φ is basic.

This gives critical point of $E(g) \iff \partial_{s_g}^\# s_g$ is transversely holomorphic.

We say that g is **extremal** if it is critical point of E.
Sasakian structure $S = (\xi, \eta, \Phi, g)$ with scalar curvature s_g.

Calabi-Sasaki Energy functional $E(g) = \int_M s_g^2 d\mu_g$.

Deform contact structure $\eta \mapsto \eta + td^c \varphi$ within its isotopy class where φ is basic.

This gives critical point of $E(g) \iff \partial_g^\# s_g$ is transversely holomorphic.

We say that g is extremal if it is critical point of E.

g is extremal Sasaki metric \iff the transverse metric g_D is extremal Kähler metric.
Sasakian structure $\mathcal{S} = (\xi, \eta, \Phi, g)$ with scalar curvature s_g.

Calabi-Sasaki Energy functional $E(g) = \int_M s_g^2 d\mu_g$.

Deform contact structure $\eta \mapsto \eta + t d^c \varphi$ within its isotopy class where φ is basic.

This gives critical point of $E(g) \iff \partial_g^\# s_g$ is transversely holomorphic.

We say that g is extremal if it is critical point of E.

g is extremal Sasaki metric \iff the transverse metric g_D is extremal Kähler metric.

Special case: constant scalar curvature Sasakian (CSC). If $c_1(D) = 0 \Rightarrow$ Sasaki-$$Einstein (S\eta E)$ with Ricci curvature $\text{Ric}_g = ag + b\eta \otimes \eta$, a, b constants. If $b = 0$ get Sasaki-Einstein (SE).
Sasakian structure $S = (\xi, \eta, \Phi, g)$ with scalar curvature s_g.

Calabi-Sasaki Energy functional $E(g) = \int_M s_g^2 d\mu_g$.

Deform contact structure $\eta \mapsto \eta + td^c \varphi$ within its isotopy class where φ is basic.

This gives critical point of $E(g) \iff \partial_g^\# s_g$ is transversely holomorphic.

We say that g is **extremal** if it is critical point of E.

g is extremal Sasaki metric \iff the transverse metric g_D is extremal Kähler metric.

Special case: constant scalar curvature Sasakian (**CSC**). If $c_1(D) = 0 \Rightarrow$ Sasaki-η-Einstein ($S\eta E$) with Ricci curvature $\text{Ric}_g = ag + b\eta \otimes \eta$, a, b constants. If $b = 0$ get Sasaki-Einstein (**SE**).

If $S = (\xi, \eta, \Phi, g)$ is extremal (or CSC) then so is $S_a = (a^{-1}\xi, a\eta, \Phi, g_a)$ for any $a > 0.$
Sasaki cones and bouquets

- Sasaki cones

1. The Lie algebra of T_k of the Sasaki cone (unreduced):

 $\{\xi' \in t_k | \eta(\xi') > 0\}$

 where $S = (\xi, \eta, \Phi, g)$ belongs to (D, J) is Sasaki.

2. $\kappa(D, J) = t_k + k(D, J)/W$ where W is the Weyl group of $CR(D, J)$.

3. $\kappa(D, J)$ is finite dimensional moduli of Sasaki structures with underlying CR structure (D, J).

4. $1 \leq \dim \kappa(D, J) \leq n + 1$ and if $\dim \kappa(D, J) = n + 1$, M is toric Sasaki.

5. The set of extremal rays $e(D, J)$ is open in $\kappa(D, J)$.

Sasaki bouquets

- A contact structure D of Sasaki type with a space of compatible CR structures $J(D)$

- A map $Q: J(D) \rightarrow \{conjugacy classes of tori in the contactomorphism group Con(M, D)\}$

- Get bouquet $[\alpha \kappa(D, J_\alpha)$ of Sasaki cones, $J_\alpha \in J(D)$, α ranges over distinct conjugacy classes.

- A bouquet consisting of N Sasaki cones is called an N-bouquet, denoted by B^N. The Sasaki cones in an N-bouquet can have different dimension. The pre-moduli space is typically non-Hausdorff.
Sasaki cones and bouquets

- **Sasaki cones**
 - t_k the Lie algebra of T^k
Sasaki cones and bouquets

Sasaki cones

1. t_k the Lie algebra of T^k
2. **Sasaki cone** (unreduced): $t_k^+(\mathcal{D}, J) = \{ \xi' \in t_k \mid \eta(\xi') > 0 \}$ s.t. $S = (\xi, \eta, \Phi, g) \in (\mathcal{D}, J)$ is Sasakian.
Sasaki cones and bouquets

Sasaki cones

1. t_k the Lie algebra of T^k
2. **Sasaki cone** (unreduced): $t^+_k(D, J) = \{ \xi' \in t_k | \eta(\xi') > 0, \}$ s.t. $S = (\xi, \eta, \Phi, g) \in (D, J)$ is Sasakian.
3. **Sasaki cone** (reduced): $\kappa(D, J) = t^+_k(D, J)/W$ where W is the Weyl group of $CR(D, J)$

Charles Boyer (University of New Mexico)
Moduli Problems in Sasakian Geometry
May 21, 2015, Recent Advances in Kähler Geometry, UC Berkeley
Sasaki cones and bouquets

- **Sasaki cones**
 1. \mathfrak{t}_k the Lie algebra of T^k
 2. **Sasaki cone (unreduced)**: $\mathfrak{t}^+_k(D, J) = \{ \xi' \in \mathfrak{t}_k \mid \eta(\xi') > 0 \}$ s.t. $\mathcal{S} = (\xi, \eta, \Phi, g) \in (D, J)$ is Sasakian.
 3. **Sasaki cone (reduced)**: $\kappa(D, J) = \mathfrak{t}^+_k(D, J)/\mathcal{W}$ where \mathcal{W} is the Weyl group of $\mathcal{CR}(D, J)$
 4. $\kappa(D, J)$ is finite dim'l **moduli of Sasakian structures** with underlying CR structure (D, J).

- **Sasaki bouquets**
 1. A contact structure D of Sasaki type with a space of compatible CR structures $J(D)$
 2. A map $Q: J(D) \to \{\text{conjugacy classes of tori in the contactomorphism group} \ \text{Con}(M, D)\}$
 3. Get **bouquet** $[\alpha] \kappa(D, J_\alpha)$ of Sasaki cones, $J_\alpha \in J(D)$, α ranges over distinct conjugacy classes.
 4. A bouquet consisting of N Sasaki cones is called an **N-bouquet**, denoted by B_N. The Sasaki cones in an N-bouquet can have different dimension. The pre-moduli space is typically non-Hausdorff.

Charles Boyer (University of New Mexico)
Moduli Problems in Sasakian Geometry
May 21, 2015, Recent Advances in Kähler Geometry, 1/18
Sasaki cones and bouquets

- **Sasaki cones**
 1. t_k the Lie algebra of T^k
 2. **Sasaki cone** (unreduced): $t^+_k(D, J) = \{ \xi' \in t_k \mid \eta(\xi') > 0, \}$ s.t. $S = (\xi, \eta, \Phi, g) \in (D, J)$ is Sasakian.
 3. **Sasaki cone** (reduced): $\kappa(D, J) = t^+_k(D, J)/W$ where W is the Weyl group of $\mathcal{CR}(D, J)$
 4. $\kappa(D, J)$ is finite dim'l **moduli of Sasakian structures** with underlying CR structure (D, J).
 5. $1 \leq \dim \kappa(D, J) \leq n + 1$ and if $\dim \kappa(D, J) = n + 1$, M is **toric Sasakian**.

- **Sasaki bouquets**
 1. a contact structure D of Sasaki type with a space of compatible CR structures $J(D)$
 2. a map $Q: J(D) \to \{\text{conjugacy classes of tori in the contactomorphism group } \text{Con}(M, D)\}$
 3. Get bouquet $[\alpha] \kappa(D, J_\alpha)$ of Sasaki cones, $J_\alpha \in J(D)$, α ranges over distinct conjugacy classes.
 4. A bouquet consisting of N Sasaki cones is called an N-bouquet, denoted by B_N. The Sasaki cones in an N-bouquet can have different dimension. The pre-moduli space is typically non-Hausdorff.
Sasaki cones and bouquets

Sasaki cones

1. t_k the Lie algebra of T^k
2. Sasaki cone (unreduced): $t_k^+ (\mathcal{D}, J) = \{ \xi' \in t_k \mid \eta(\xi') > 0 \}$ s.t. $S = (\xi, \eta, \Phi, g) \in (\mathcal{D}, J)$ is Sasakian.
3. Sasaki cone (reduced): $\kappa (\mathcal{D}, J) = t_k^+ (\mathcal{D}, J) / \mathcal{W}$ where \mathcal{W} is the Weyl group of $CR(\mathcal{D}, J)$
4. $\kappa (\mathcal{D}, J)$ is finite dim'l moduli of Sasakian structures with underlying CR structure (\mathcal{D}, J).
5. $1 \leq \dim \kappa (\mathcal{D}, J) \leq n + 1$ and if $\dim \kappa (\mathcal{D}, J) = n + 1$, M is toric Sasakian.
6. The set of extremal rays $\epsilon (\mathcal{D}, J)$ is open in $\kappa (\mathcal{D}, J)$.
Sasaki cones and bouquets

- **Sasaki cones**
 1. t_k the Lie algebra of T^k
 2. **Sasaki cone** (unreduced): $t_k^+(\mathcal{D}, J) = \{ \xi' \in t_k \mid \eta(\xi') > 0 \}$ s.t. $S = (\xi, \eta, \Phi, g) \in (\mathcal{D}, J)$ is Sasakian.
 3. **Sasaki cone** (reduced): $\kappa(\mathcal{D}, J) = t_k^+(\mathcal{D}, J)/\mathcal{W}$ where \mathcal{W} is the Weyl group of $\text{CR}(\mathcal{D}, J)$
 4. $\kappa(\mathcal{D}, J)$ is finite dim'l **moduli of Sasakian structures** with underlying CR structure (\mathcal{D}, J).
 5. $1 \leq \dim \kappa(\mathcal{D}, J) \leq n + 1$ and if $\dim \kappa(\mathcal{D}, J) = n + 1$, M is **toric Sasakian**.
 6. The set of extremal rays $\epsilon(\mathcal{D}, J)$ is open in $\kappa(\mathcal{D}, J)$.

- **Sasaki bouquets**
Sasaki cones and bouquets

- **Sasaki cones**
 1. t_k the Lie algebra of T^k
 2. **Sasaki cone** (unreduced): $t_k^+(\mathcal{D}, J) = \{ \xi' \in t_k \mid \eta(\xi') > 0 \}$ s.t. $\mathcal{S} = (\xi, \eta, \Phi, g) \in (\mathcal{D}, J)$ is Sasakian.
 3. **Sasaki cone** (reduced): $\kappa(\mathcal{D}, J) = t_k^+(\mathcal{D}, J)/\mathcal{W}$ where \mathcal{W} is the Weyl group of $\text{CR}(\mathcal{D}, J)$
 4. $\kappa(\mathcal{D}, J)$ is finite dim'l **moduli of Sasakian structures** with underlying CR structure (\mathcal{D}, J).
 5. $1 \leq \dim \kappa(\mathcal{D}, J) \leq n + 1$ and if $\dim \kappa(\mathcal{D}, J) = n + 1$, \mathcal{M} is **toric Sasakian**.
 6. The set of extremal rays $\varepsilon(\mathcal{D}, J)$ is open in $\kappa(\mathcal{D}, J)$.

- **Sasaki bouquets**
 1. a contact structure \mathcal{D} of Sasaki type with a space of **compatible CR structures** $\mathcal{J}(\mathcal{D})$
Sasaki cones and bouquets

Sasaki cones

1. t_k the Lie algebra of T^k
2. **Sasaki cone** (unreduced): $t^+_k(D, J) = \{ \xi' \in t_k \mid \eta(\xi') > 0 \}$ s.t. $S = (\xi, \eta, \Phi, g) \in (D, J)$ is Sasakian.
3. **Sasaki cone** (reduced): $\kappa(D, J) = t^+_k(D, J)/W$ where W is the Weyl group of $CR(D, J)$
4. $\kappa(D, J)$ is finite dim'l **moduli of Sasakian structures** with underlying CR structure (D, J).
5. $1 \leq \dim \kappa(D, J) \leq n + 1$ and if $\dim \kappa(D, J) = n + 1$, M is **toric Sasakian**.
6. The set of extremal rays $\varepsilon(D, J)$ is open in $\kappa(D, J)$.

Sasaki bouquets

1. a contact structure D of Sasaki type with a space of **compatible CR structures** $J(D)$
2. a map $Q : J(D) \to \{ \text{conjugacy classes of tori} \}$ in the contactomorphism group $\text{Con}(M, D)$

Charles Boyer (University of New Mexico)
Sasaki cones and bouquets

- **Sasaki cones**
 1. t_k the Lie algebra of T^k
 2. **Sasaki cone** (unreduced): $t_k^+ (\mathcal{D}, J) = \{ \xi' \in t_k \mid \eta(\xi') > 0 \}$ s.t. $S = (\xi, \eta, \Phi, g) \in (\mathcal{D}, J)$ is Sasakian.
 3. **Sasaki cone** (reduced): $\kappa(\mathcal{D}, J) = t_k^+ (\mathcal{D}, J) / \mathcal{W}$ where \mathcal{W} is the Weyl group of $\mathcal{CR}(\mathcal{D}, J)$
 4. $\kappa(\mathcal{D}, J)$ is finite dim'l moduli of Sasakian structures with underlying CR structure (\mathcal{D}, J).
 5. $1 \leq \dim \kappa(\mathcal{D}, J) \leq n + 1$ and if $\dim \kappa(\mathcal{D}, J) = n + 1$, M is toric Sasakian.
 6. The set of extremal rays $\mathcal{E}(\mathcal{D}, J)$ is open in $\kappa(\mathcal{D}, J)$.

- **Sasaki bouquets**
 1. a contact structure \mathcal{D} of Sasaki type with a space of compatible CR structures $\mathcal{J}(\mathcal{D})$
 2. a map $\mathcal{Q} : \mathcal{J}(\mathcal{D}) \to \{ \text{conjugacy classes of tori} \}$ in the contactomorphism group $\mathcal{Con}(M, \mathcal{D})$
 3. Get bouquet $\bigcup_{\alpha} \kappa(\mathcal{D}, J_{\alpha})$ of Sasaki cones, $J_{\alpha} \in \mathcal{J}(\mathcal{D})$, α ranges over distinct conjugacy classes.
Sasaki cones and bouquets

- **Sasaki cones**
 1. t_k the Lie algebra of T^k
 2. **Sasaki cone** (unreduced): $t^+_k(D, J) = \{ \xi' \in t_k \mid \eta(\xi') > 0, \}$ s.t. $S = (\xi, \eta, \Phi, g) \in (D, J)$ is Sasakian.
 3. **Sasaki cone** (reduced): $\kappa(D, J) = t^+_k(D, J)/\mathcal{W}$ where \mathcal{W} is the Weyl group of $\mathcal{CR}(D, J)$
 4. $\kappa(D, J)$ is finite dim'l moduli of Sasakian structures with underlying CR structure (D, J).
 5. $1 \leq \dim \kappa(D, J) \leq n + 1$ and if $\dim \kappa(D, J) = n + 1$, M is toric Sasakian.
 6. The set of extremal rays $\mathcal{e}(D, J)$ is open in $\kappa(D, J)$.

- **Sasaki bouquets**
 1. a contact structure D of Sasaki type with a space of compatible CR structures $\mathcal{J}(D)$
 2. a map $\mathcal{Q}: \mathcal{J}(D) \to \{\text{conjugacy classes of tori}\}$ in the contactomorphism group $\mathcal{C}on(M, D)$
 3. Get bouquet $\bigcup_{\alpha} \kappa(D, J_{\alpha})$ of Sasaki cones, $J_{\alpha} \in \mathcal{J}(D)$, α ranges over distinct conjugacy classes.
 4. A bouquet consisting of N Sasaki cones is called an **N-bouquet**, denoted by \mathcal{B}_N. The Sasaki cones in an N-bouquet can have different dimension. The pre-moduli space is typically non-Hausdorff.
Sasaki cones and bouquets

Sasaki cones

1. \(t_k \) the Lie algebra of \(T^k \)
2. **Sasaki cone (unreduced):** \(t_k^+ (\mathcal{D}, J) = \{ \xi' \in t_k \mid \eta(\xi') > 0 \} \) s.t. \(S = (\xi, \eta, \Phi, g) \in (\mathcal{D}, J) \) is Sasakian.
3. **Sasaki cone (reduced):** \(\kappa(\mathcal{D}, J) = t_k^+ (\mathcal{D}, J) / W \) where \(W \) is the Weyl group of \(CR(\mathcal{D}, J) \).
4. \(\kappa(\mathcal{D}, J) \) is finite dim'l *moduli of Sasakian structures* with underlying CR structure \((\mathcal{D}, J) \).
5. \(1 \leq \dim \kappa(\mathcal{D}, J) \leq n + 1 \) and if \(\dim \kappa(\mathcal{D}, J) = n + 1 \), \(M \) is *toric Sasakian*.
6. The set of extremal rays \(e(\mathcal{D}, J) \) is open in \(\kappa(\mathcal{D}, J) \).

Sasaki bouquets

1. a contact structure \(\mathcal{D} \) of Sasaki type with a space of *compatible CR structures* \(\mathcal{J}(\mathcal{D}) \)
2. a map \(\mathcal{Q} : \mathcal{J}(\mathcal{D}) \to \{ \text{conjugacy classes of tori} \} \) in the contactomorphism group \(\text{Con}(M, \mathcal{D}) \).
3. Get *bouquet* \(\bigcup_{\alpha} \kappa(\mathcal{D}, J_{\alpha}) \) of Sasaki cones, \(J_{\alpha} \in \mathcal{J}(\mathcal{D}) \), \(\alpha \) ranges over distinct conjugacy classes.
4. A bouquet consisting of \(N \) Sasaki cones is called an *N-bouquet*, denoted by \(\mathcal{B}_N \). The Sasaki cones in an N-bouquet can have different dimension. The *pre-moduli space* is typically non-Hausdorff.
5. the Sasaki cones \(\kappa(\mathcal{D}, J_{\alpha}) \) can be distinguished by *equivariant Gromov-Witten invariants*.
Join Construction: Given quasi-regular Sasakian manifolds \(\pi_i : M_i \rightarrow \mathbb{Z}_i \) with
\[\text{Dim } M_i = 2n_i + 1 \] for \(i = 1, 2 \).

The dimension of
\[M_1 \ast_{l_1, l_2} M_2 \] is
\[2(n_1 + n_2) + 1. \]
Join Construction: Given quasi-regular Sasakian manifolds $\pi_i : M_i \rightarrow Z_i$ with $\dim M_i = 2n_i + 1$ for $i = 1, 2$.

Form (l_1, l_2)-join $\pi : M_1 \star_{l_1,l_2} M_2 \rightarrow Z_1 \times Z_2$ as an S^1-orbibundle.
Join Construction: Given quasi-regular Sasakian manifolds $\pi_i : M_i \rightarrow \mathcal{Z}_i$ with $\dim M_i = 2n_i + 1$ for $i = 1, 2$.

- Form (l_1, l_2)-join $\pi : M_1 \star_{l_1,l_2} M_2 \rightarrow \mathcal{Z}_1 \times \mathcal{Z}_2$ as an S^1-orbibundle.
- $M_1 \star_{l_1,l_2} M_2$ has a natural quasi-regular Sasakian structure S_{l_1,l_2} for all relatively prime positive integers l_1, l_2. Fixing l_1, l_2 fixes the contact orbifold. It is a smooth manifold iff $\gcd(v_1 l_2, v_2 l_1) = 1$ where v_i is the order of orbifold \mathcal{Z}_i.

The dimension of $M_1 \star_{l_1,l_2} M_2$ is $2(n_1 + n_2) + 1$. The join $M_1 \star_{l_1,l_2} M_2$ has reducible transverse holonomy a subgroup of $U(n_1) \times U(n_2)$.

Take $\pi_2 : M_2 \rightarrow \mathcal{Z}_2$ to be the S^1-orbibundle $\pi_2 : S^3_{w} \rightarrow \mathbb{CP}^1[w]$ determined by a weighted S^1 action on S^3 with weights $w = (w_1, w_2)$ satisfying $\gcd(l_2, l_1 w_i) = 1$, and M_1 regular Sasakian manifold whose quotient is a compact Kähler manifold N. In this case the Join Construction and Admissible Construction of Apostolov, Calderbank, Gauduchon, Tønnesen-Friedman fit as hand and glove.

An S^1 orbibundle $M \star_{l_1,l_2} S^3_{w} \rightarrow N \times \mathbb{CP}^1[w]$, where N is compact Kähler. The join $M \star_{l_1,l_2} S^3_{w}$ can be realized as a lens space bundle over N with fiber the lens space $L(l_2; l_1 w_1, l_1, w_2)$.

I present two fundamental theorems about $M \star_{l_1,l_2} S^3_{w}$ and then present brief outlines of their proofs. Finally, I discuss the special case of S^3-bundles over a Riemann surface Σ_g.

Charles Boyer (University of New Mexico)

Moduli Problems in Sasakian Geometry

May 21, 2015. Recent Advances in Kähler Geometry, Vanderbilt University
The Join Construction (B-, Galicki, Ornea)

- **Join Construction**: Given quasi-regular Sasakian manifolds $\pi_i : M_i \to Z_i$ with $\text{Dim } M_i = 2n_i + 1$ for $i = 1, 2$.

- Form (l_1, l_2)-join $\pi : M_1 \star_{l_1, l_2} M_2 \to Z_1 \times Z_2$ as an S^1-orbibundle.

- $M_1 \star_{l_1, l_2} M_2$ has a natural quasi-regular Sasakian structure S_{l_1, l_2} for all relatively prime positive integers l_1, l_2. Fixing l_1, l_2 fixes the contact orbifold. It is a smooth manifold iff $\gcd(v_1 l_2, v_2 l_1) = 1$ where v_i is the order of orbifold Z_i.

- The dimension of $M_1 \star_{l_1, l_2} M_2$ is $2(n_1 + n_2) + 1$.

Join Construction: Given quasi-regular Sasakian manifolds $\pi_i : M_i \rightarrow Z_i$ with $\text{Dim } M_i = 2n_i + 1$ for $i = 1, 2$.

Form (l_1, l_2)-join $\pi : M_1 \star_{l_1, l_2} M_2 \rightarrow Z_1 \times Z_2$ as an S^1-orbibundle.

$M_1 \star_{l_1, l_2} M_2$ has a natural quasi-regular Sasakian structure S_{l_1, l_2} for all relatively prime positive integers l_1, l_2. Fixing l_1, l_2 fixes the contact orbifold. It is a smooth manifold iff $\gcd(v_1 l_2, v_2 l_1) = 1$ where v_i is the order of orbifold Z_i.

The dimension of $M_1 \star_{l_1, l_2} M_2$ is $2(n_1 + n_2) + 1$.

The join $M_1 \star_{l_1, l_2} M_2$ has **reducible transverse holonomy** a subgroup of $U(n_1) \times U(n_2)$.
The Join Construction (B-, Galicki, Ornea)

- **Join Construction**: Given quasi-regular Sasakian manifolds \(\pi_i : M_i \rightarrow Z_i \) with
 \[\text{Dim } M_i = 2n_i + 1 \]
 for \(i = 1, 2 \).

- Form \((l_1, l_2)\)-join \(\pi : M_1 \star_{l_1, l_2} M_2 \rightarrow Z_1 \times Z_2 \) as an \(S^1 \)-orbibundle.

- \(M_1 \star_{l_1, l_2} M_2 \) has a natural quasi-regular Sasakian structure \(S_{l_1, l_2} \) for all relatively prime positive integers \(l_1, l_2 \). Fixing \(l_1, l_2 \) fixes the contact orbifold. It is a smooth manifold iff
 \[\gcd(v_1 l_2, v_2 l_1) = 1 \]
 where \(v_i \) is the order of orbifold \(Z_i \).

- The dimension of \(M_1 \star_{l_1, l_2} M_2 \) is \(2(n_1 + n_2) + 1 \).

- The join \(M_1 \star_{l_1, l_2} M_2 \) has **reducible transverse holonomy** a subgroup of \(U(n_1) \times U(n_2) \).

- Take \(\pi_2 : M_2 \rightarrow Z_2 \) to be the \(S^1 \) orbibundle \(\pi_2 : S^3_w \rightarrow CP^1[w] \) determined by a weighted \(S^1 \) action on \(S^3 \) with weights \(w = (w_1, w_2) \) satisfying \(\gcd(l_2, l_1 w_1) = 1 \), and \(M_1 = M \) regular Sasaki manifold whose quotient is a compact Kähler manifold \(N \).
Join Construction: Given quasi-regular Sasakian manifolds $\pi_i : M_i \to \mathbb{Z}_i$ with $\dim M_i = 2n_i + 1$ for $i = 1, 2$.

Form (l_1, l_2)-join $\pi : M_1 \ast_{l_1, l_2} M_2 \to \mathbb{Z}_1 \times \mathbb{Z}_2$ as an S^1-orbibundle.

$M_1 \ast_{l_1, l_2} M_2$ has a natural quasi-regular Sasakian structure S_{l_1, l_2} for all relatively prime positive integers l_1, l_2. Fixing l_1, l_2 fixes the contact orbifold. It is a smooth manifold iff $\gcd(v_1 l_2, v_2 l_1) = 1$ where v_i is the order of orbifold \mathbb{Z}_i.

The dimension of $M_1 \ast_{l_1, l_2} M_2$ is $2(n_1 + n_2) + 1$.

The join $M_1 \ast_{l_1, l_2} M_2$ has **reducible transverse holonomy** a subgroup of $U(n_1) \times U(n_2)$.

Take $\pi_2 : M_2 \to \mathbb{Z}_2$ to be the S^1 orbibundle $\pi_2 : S^3_w \to \mathbb{C}P^1[w]$ determined by a weighted S^1 action on S^3 with weights $w = (w_1, w_2)$ satisfying $\gcd(l_2, l_1 w_1) = 1$, and $M_1 = M$ regular Sasaki manifold whose quotient is a compact Kähler manifold N.

In this case the **Join Construction** and **Admissible Contraction** of Apostolov, Calderbank, Gauduchon, Tønnesen-Friedman fit as hand and glove.
Join Construction: Given quasi-regular Sasakian manifolds \(\pi_i : M_i \longrightarrow Z_i \) with
\[
\text{Dim } M_i = 2n_i + 1 \quad \text{for } i = 1, 2.
\]
Form \((l_1, l_2)\)-join \(\pi : M_1 \ast_{l_1, l_2} M_2 \longrightarrow Z_1 \times Z_2 \) as an \(S^1 \)-orbibundle.

\(M_1 \ast_{l_1, l_2} M_2 \) has a natural quasi-regular Sasakian structure \(S_{l_1, l_2} \) for all relatively prime positive integers \(l_1, l_2 \). Fixing \(l_1, l_2 \) fixes the contact orbifold. It is a smooth manifold iff \(\gcd(v_1 l_2, v_2 l_1) = 1 \) where \(v_i \) is the order of orbifold \(Z_i \).

The dimension of \(M_1 \ast_{l_1, l_2} M_2 \) is \(2(n_1 + n_2) + 1 \).

The join \(M_1 \ast_{l_1, l_2} M_2 \) has **reducible transverse holonomy** a subgroup of \(U(n_1) \times U(n_2) \).

Take \(\pi_2 : M_2 \longrightarrow Z_2 \) to be the \(S^1 \) orbibundle \(\pi_2 : S^3_w \longrightarrow \mathbb{CP}^1[w] \) determined by a weighted \(S^1 \) action on \(S^3 \) with weights \(w = (w_1, w_2) \) satisfying \(\gcd(l_2, l_1 w_1) = 1 \), and \(M_1 = M \) regular Sasaki manifold whose quotient is a compact Kähler manifold \(N \).

In this case the **Join Construction** and **Admissible Contraction** of Apostolov, Calderbank, Gauduchon, Tønnesen-Friedman fit as hand and glove.

An \(S^1 \) orbibundle \(M \ast_{l_1, l_2} S^3_w \longrightarrow N \times \mathbb{CP}^1[w] \), where \(N \) is compact Kähler.
Join Construction: Given quasi-regular Sasakian manifolds \(\pi_i : M_i \rightarrow Z_i \) with \(\text{Dim } M_i = 2n_i + 1 \) for \(i = 1, 2 \).

Form \((l_1, l_2)\)-join \(\pi : M_1 \star_{l_1, l_2} M_2 \rightarrow Z_1 \times Z_2 \) as an \(S^1 \)-orbibundle.

\(M_1 \star_{l_1, l_2} M_2 \) has a natural quasi-regular Sasakian structure \(S_{l_1, l_2} \) for all relatively prime positive integers \(l_1, l_2 \). Fixing \(l_1, l_2 \) fixes the contact orbifold. It is a smooth manifold iff \(\text{gcd}(\upsilon_1 l_2, \upsilon_2 l_1) = 1 \) where \(\upsilon_i \) is the order of orbifold \(Z_i \).

The dimension of \(M_1 \star_{l_1, l_2} M_2 \) is \(2(n_1 + n_2) + 1 \).

The join \(M_1 \star_{l_1, l_2} M_2 \) has **reducible transverse holonomy** a subgroup of \(U(n_1) \times U(n_2) \).

Take \(\pi_2 : M_2 \rightarrow Z_2 \) to be the \(S^1 \) orbibundle \(\pi_2 : S^3_w \rightarrow \mathbb{CP}^1[w] \) determined by a weighted \(S^1 \) action on \(S^3 \) with weights \(w = (w_1, w_2) \) satisfying \(\text{gcd}(l_2, l_1 w_1) = 1 \), and \(M_1 = M \) regular Sasaki manifold whose quotient is a compact Kähler manifold \(N \).

In this case the **Join Construction** and Admissible Contraction of Apostolov, Calderbank, Gauduchon, Tønnesen-Friedman fit as hand and glove.

An \(S^1 \) orbibundle \(M \star_{l_1, l_2} S^3_w \rightarrow N \times \mathbb{CP}^1[w] \), where \(N \) is compact Kähler.

The join \(M \star_{l_1, l_2} S^3_w \) can be realized as a lens space bundle over \(N \) with fiber the lens space \(L(l_2; l_1 w_1, l_1, w_2) \).
Join Construction: Given quasi-regular Sasakian manifolds $\pi_i : M_i \to Z_i$ with \(\text{Dim } M_i = 2n_i + 1 \) for \(i = 1, 2 \).

Form \((l_1, l_2)\)-join $\pi : M_1 \star_{l_1, l_2} M_2 \to Z_1 \times Z_2$ as an S^1-orbibundle.

$M_1 \star_{l_1, l_2} M_2$ has a natural quasi-regular Sasakian structure S_{l_1, l_2} for all relatively prime positive integers l_1, l_2. Fixing l_1, l_2 fixes the contact orbifold. It is a smooth manifold iff $\gcd(v_1 l_2, v_2 l_1) = 1$ where v_i is the order of orbifold Z_i.

The dimension of $M_1 \star_{l_1, l_2} M_2$ is $2(n_1 + n_2) + 1$.

The join $M_1 \star_{l_1, l_2} M_2$ has reducible transverse holonomy a subgroup of $U(n_1) \times U(n_2)$.

Take $\pi_2 : M_2 \to Z_2$ to be the S^1 orbibundle $\pi_2 : S^3_w \to \mathbb{CP}^1[w]$ determined by a weighted S^1 action on S^3 with weights $w = (w_1, w_2)$ satisfying $\gcd(l_2, l_1 w_1) = 1$, and $M_1 = M$ regular Sasaki manifold whose quotient is a compact Kähler manifold N.

In this case the **Join Construction** and **Admissible Construction** of Apostolov, Calderbank, Gauduchon, Tønnesen-Friedman fit as hand and glove.

An S^1 orbibundle $M \star_{l_1, l_2} S^3_w \to N \times \mathbb{CP}^1[w]$, where N is compact Kähler.

The join $M \star_{l_1, l_2} S^3_w$ can be realized as a lens space bundle over N with fiber the lens space $L(l_2; l_1 w_1, l_1, w_2)$.

I present two **fundamental theorems** about $M \star_{l_1, l_2} S^3_w$ and then present brief outlines of their proofs. Finally, I discuss the special case of S^3-bundles over a Riemann surface Σ_g.
Existence of **extremal** and **CSC** Sasaki metrics by deforming in the Sasaki cone.
Existence of extremal and CSC Sasaki metrics by deforming in the Sasaki cone

Theorem (B-, Tønnesen-Friedman)

Let $M_{l_1,l_2,w} = M \ast_{l_1,l_2} S^3_w$ be the S^3_w-join with a regular Sasaki manifold M which is an S^1-bundle over a compact Kähler manifold N with constant scalar curvature. Then for each vector $w = (w_1, w_2) \in \mathbb{Z}^+ \times \mathbb{Z}^+$ with relatively prime components satisfying $w_1 > w_2$ there exists a Reeb vector field ξ_v in a 2-dimensional sub cone, the w-cone, of the Sasaki cone on $M_{l_1,l_2,w}$ such that the corresponding ray of Sasakian structures $S_a = (a^{-1} \xi_v, a \eta_v, \phi, g_a)$ has constant scalar curvature.

If the scalar curvature s_N of N is nonnegative, then the w-cone is exhausted by extremal Sasaki metrics. If the scalar curvature s_N of N is positive and l_2 is large enough there are infinitely many contact CR structures with at least 3 rays of CSC Sasaki structures in the w-cone. When N is positive KE get SE metric on $M_{l_1,l_2,w}$ for appropriate choice of (l_1, l_2). The SE metrics of 3 were previously obtained by physicists (Gauntlett, Martelli, Sparks, Waldram) by another method. Most of the CSC Sasaki structures are irregular.

Relation to CR Yamabe Problem (Jerison and Lee): For a Sasaki structure the Webster pseudo-Hermitian metric coincides with the transverse Kähler metric. So a CSC Sasaki metric provides a solution to the CR Yamabe Problem. It is known that when the CR Yamabe invariant $\lambda(M)$ is nonpositive, the CSC metric is unique. However, when $\lambda(M) > 0$ there can be several CSC solutions. Our results provides many such examples.
Existence of **extremal** and **CSC** Sasaki metrics by deforming in the Sasaki cone

Theorem (B-, Tønnesen-Friedman)

Let $M_{l_1/l_2,w} = M \star_{l_1/l_2} S^3_w$ be the S^3_w-join with a regular Sasaki manifold M which is an S^1-bundle over a compact Kähler manifold N with constant scalar curvature. Then for each vector $w = (w_1, w_2) \in \mathbb{Z}^+ \times \mathbb{Z}^+$ with relatively prime components satisfying $w_1 > w_2$ there exists a Reeb vector field ξ_v in a 2-dimensional sub cone, the w-cone, of the Sasaki cone on $M_{l_1/l_2,w}$ such that the corresponding ray of Sasakian structures $S_a = (a^{-1}\xi_v, a\eta_v, \Phi, g_a)$ has constant scalar curvature.

1. If the scalar curvature s_N of N is nonnegative, then the w-cone is exhausted by **extremal** Sasaki metrics.

2. If the scalar curvature s_N of N is positive and l_2 is large enough there are infinitely many contact CR structures with at least 3 rays of CSC Sasakian structures in the w-cone.

3. When N is positive constant Euler characteristic SE metric on $M_{l_1/l_2,w}$ for appropriate choice of (l_1, l_2). The SE metrics of 3 were previously obtained by physicists (Gauntlett, Martelli, Sparks, Waldram) by another method.

Most of the CSC Sasakian structures are irregular.

Relation to CR Yamabe Problem

(Jerison and Lee): For a Sasaki structure the Webster pseudo-Hermitian metric coincides with the transverse Kähler metric. So a CSC Sasaki metric provides a solution to the CR Yamabe Problem. It is known that when the CR Yamabe invariant $\lambda(M)$ is nonpositive, the CSC metric is unique. However, when $\lambda(M) > 0$ there can be several CSC solutions. Our results provide many such examples.
Existence of **extremal** and **CSC** Sasaki metrics by deforming in the Sasaki cone

Theorem (B-, Tønnesen-Friedman)

Let $M_{l_1,l_2,w} = M \star_{l_1,l_2} S^3_w$ be the S^3_w-join with a regular Sasaki manifold M which is an S^1-bundle over a compact Kähler manifold N with constant scalar curvature. Then for each vector $w = (w_1, w_2) \in \mathbb{Z}^+ \times \mathbb{Z}^+$ with relatively prime components satisfying $w_1 > w_2$ there exists a Reeb vector field ξ_v in a 2-dimensional sub cone, the w-cone, of the Sasaki cone on $M_{l_1,l_2,w}$ such that the corresponding ray of Sasakian structures $S_a = (a^{-1}\xi_v, a\eta_v, \Phi, g_a)$ has **constant scalar curvature**.

1. If the scalar curvature s_N of N is **nonnegative**, then the w-cone is exhausted by **extremal** Sasaki metrics.
2. If the scalar curvature s_N of N is **positive** and l_2 is large enough there are infinitely many contact CR structures with at least 3 rays of **CSC** Sasakian structures in the w-cone.
Fundamental Theorem (B-, Tønnesen-Friedman)

- Existence of extremal and CSC Sasaki metrics by deforming in the Sasaki cone

Theorem (B-, Tønnesen-Friedman)

Let $M_{l_1,l_2,w} = M \star_{l_1,l_2} S^3_w$ be the S^3-join with a regular Sasaki manifold M which is an S^1-bundle over a compact Kähler manifold N with constant scalar curvature. Then for each vector $w = (w_1, w_2) \in \mathbb{Z}^+ \times \mathbb{Z}^+$ with relatively prime components satisfying $w_1 > w_2$ there exists a Reeb vector field ξ_v in a 2-dimensional sub cone, the w-cone, of the Sasaki cone on $M_{l_1,l_2,w}$ such that the corresponding ray of Sasakian structures $S_a = (a^{-1} \xi_v, a\eta_v, \Phi, g_a)$ has constant scalar curvature.

1. If the scalar curvature s_N of N is nonnegative, then the w-cone is exhausted by extremal Sasaki metrics.
2. If the scalar curvature s_N of N is positive and l_2 is large enough there are infinitely many contact CR structures with at least 3 rays of CSC Sasakian structures in the w-cone.
3. When N is positive KE get SE metric on $M_{l_1,l_2,w}$ for appropriate choice of (l_1, l_2).

The SE metrics of 3 were previously obtained by physicists (Gauntlett, Martelli, Sparks, Waldram) by another method. Most of the CSC Sasakian structures are irregular.

Relation to CR Yamabe Problem (Jerison and Lee): For a Sasaki structure the Webster pseudo-Hermitian metric coincides with the transverse Kähler metric. So a CSC Sasaki metric provides a solution to the CR Yamabe Problem. It is known that when the CR Yamabe invariant $\lambda(M)$ is nonpositive, the CSC metric is unique. However, when $\lambda(M) > 0$ there can be several CSC solutions. Our results provides many such examples.
Fundamental Theorem (B-, Tønnesen-Friedman)

- Existence of extremal and CSC Sasaki metrics by deforming in the Sasaki cone

Theorem (B-, Tønnesen-Friedman)

Let $M_{l_1, l_2, w} = M \star_{l_1, l_2} S^3_w$ be the S^3_w-join with a regular Sasaki manifold M which is an S^1-bundle over a compact Kähler manifold N with constant scalar curvature. Then for each vector $w = (w_1, w_2) \in \mathbb{Z}^+ \times \mathbb{Z}^+$ with relatively prime components satisfying $w_1 > w_2$ there exists a Reeb vector field ξ_v in a 2-dimensional sub cone, the w-cone, of the Sasaki cone on $M_{l_1, l_2, w}$ such that the corresponding ray of Sasakian structures $S_a = (a^{-1} \xi_v, a\eta_v, \Phi, g_a)$ has constant scalar curvature.

1. If the scalar curvature s_N of N is nonnegative, then the w-cone is exhausted by extremal Sasaki metrics.
2. If the scalar curvature s_N of N is positive and l_2 is large enough there are infinitely many contact CR structures with at least 3 rays of CSC Sasakian structures in the w-cone.
3. When N is positive KE get SE metric on $M_{l_1, l_2, w}$ for appropriate choice of (l_1, l_2).

The SE metrics of 3 were previously obtained by physicists (Gauntlett, Martelli, Sparks, Waldram) by another method.
Fundamental Theorem (B-, Tønnesen-Friedman)

- Existence of **extremal** and **CSC** Sasaki metrics by deforming in the Sasaki cone

Theorem (B-, Tønnesen-Friedman)

Let \(M_{l_1, l_2, w} = M \times_{l_1, l_2} S^3_w \) be the \(S^3_w \)-join with a regular Sasaki manifold \(M \) which is an \(S^1 \)-bundle over a compact Kähler manifold \(N \) with constant scalar curvature. Then for each vector \(w = (w_1, w_2) \in \mathbb{Z}^+ \times \mathbb{Z}^+ \) with relatively prime components satisfying \(w_1 > w_2 \) there exists a Reeb vector field \(\xi_v \) in a 2-dimensional sub cone, the \(w \)-cone, of the Sasaki cone on \(M_{l_1, l_2, w} \) such that the corresponding ray of Sasakian structures \(S_a = (a^{-1} \xi_v, a\eta_v, \Phi, g_a) \) has **constant scalar curvature**.

1. If the scalar curvature \(s_N \) of \(N \) is nonnegative, then the \(w \)-cone is exhausted by extremal Sasaki metrics.
2. If the scalar curvature \(s_N \) of \(N \) is positive and \(l_2 \) is large enough there are infinitely many contact CR structures with at least 3 rays of CSC Sasaki structures in the \(w \)-cone.
3. When \(N \) is positive KE get SE metric on \(M_{l_1, l_2, w} \) for appropriate choice of \((l_1, l_2)\).

The SE metrics of 3 were previously obtained by physicists (Gauntlett, Martelli, Sparks, Waldram) by another method.

Most of the **CSC** Sasaki structures are **irregular**.
Fundamental Theorem (B-, Tønnesen-Friedman)

- Existence of **extremal** and **CSC** Sasaki metrics by deforming in the Sasaki cone

Theorem (B-, Tønnesen-Friedman)

Let $M_{l_1, l_2, w} = M \ast_{l_1, l_2} S^3_w$ be the S^3_w-join with a regular Sasaki manifold M which is an S^1-bundle over a compact Kähler manifold N with constant scalar curvature. Then for each vector $w = (w_1, w_2) \in \mathbb{Z}^+ \times \mathbb{Z}^+$ with relatively prime components satisfying $w_1 > w_2$ there exists a Reeb vector field ξ_v in a 2-dimensional sub cone, the w-cone, of the Sasaki cone on $M_{l_1, l_2, w}$ such that the corresponding ray of Sasakian structures $S_a = (a^{-1} \xi_v, a \eta_v, \Phi, g_a)$ has **constant scalar curvature**.

1. If the scalar curvature s_N of N is **nonnegative**, then the w-cone is exhausted by **extremal** Sasaki metrics.
2. If the scalar curvature s_N of N is **positive** and l_2 is large enough there are infinitely many contact CR structures with at least 3 rays of **CSC** Sasakian structures in the w-cone.
3. When N is positive KE get **SE** metric on $M_{l_1, l_2, w}$ for appropriate choice of (l_1, l_2).

- The **SE** metrics of 3 were previously obtained by physicists (Gauntlett, Martelli, Sparks, Waldram) by another method.
- Most of the **CSC** Sasakian structures are **irregular**.
- Relation to **CR Yamabe Problem** (Jerison and Lee): For a Sasaki structure the Webster pseudo-Hermitian metric coincides with the transverse Kähler metric. So a **CSC** Sasaki metric provides a solution to the CR Yamabe Problem. It is know that when the **CR Yamabe invariant** $\lambda(M)$ is **nonpositive**, the CSC metric is unique. However, when $\lambda(M) > 0$ there can be several CSC solutions. Our results provides many such examples.
Outline of proof of Fundamental Theorem:

- The existence of an extra Hamiltonian Killing vector field from S^3_w gives the 2-dimensional Sasaki w-cone t^+_w.

Lifing to $M_{l_1, l_2, w}$ gives extremal (CSC) Sasaki metrics in the quasi-regular case. The irregular case uses a continuity argument together with the fact that quasi-regular Sasaki structures are dense in the Sasaki cone.

The existence of multiple rays of CSC Sasaki metrics comes from a sign changing count.
Outline of proof of Fundamental Theorem:

- The existence of an extra Hamiltonian Killing vector field from S^3_w gives the 2-dimensional Sasaki w-cone t^+_w.
- The quotient space of the S^1-action generated by any quasi-regular Reeb vector field $\xi_v \in t^+_w$ is a ruled orbifold $(S_n, \Delta_{mv_1, mv_2})$ with a branch divisor

$$\Delta_{mv_1, mv_2} = \left(1 - \frac{1}{mv_1}\right)D_1 + \left(1 - \frac{1}{mv_2}\right)D_2$$

consisting of the zero D_1 and infinity D_2 sections of the projective bundle $S_n = \mathbb{P}(1 \oplus L_n)$ over N with ramification indices mv_1, mv_2, respectively and n an integer determined by l_1, l_2, w, v.
Outline of proof of Fundamental Theorem:

- The existence of an extra Hamiltonian Killing vector field from S^3_w gives the 2-dimensional Sasaki w-cone t_w^+.
- The quotient space of the S^1-action generated by any quasi-regular Reeb vector field $\xi_v \in t_w^+$ is a ruled orbifold $(S_n, \Delta_{mv_1, mv_2})$ with a branch divisor

$$\Delta_{mv_1, mv_2} = \left(1 - \frac{1}{mv_1}\right)D_1 + \left(1 - \frac{1}{mv_2}\right)D_2$$

consisting of the zero D_1 and infinity D_2 sections of the projective bundle $S_n = \mathbb{P}(\mathcal{L} \oplus L_n)$ over N with ramification indices mv_1, mv_2, respectively and n an integer determined by l_1, l_2, w, v.

- For $n \neq 0$, apply the admissible construction of Apostolov, Calderbank, Gauduchon, Tønnesen-Friedman on Hamiltonian 2-forms to the ruled Kähler orbifolds $(S_n, \Delta_{mv_1, mv_2})$.

When $\Theta(z)(1 + rz)dz$ is a $(d + 3)$ order $(d + 2)$ order polynomial we get extremal (CSC) Kähler metrics. Here d is the complex dimension of N. Lifiting to $M_{l_1, l_2, w, v}$ gives extremal (CSC) Sasaki metrics in the quasi-regular case. The irregular case uses a continuity argument together with the fact that quasi-regular Sasaki structures are dense in the Sasaki cone. The existence of multiple rays of CSC Sasaki metrics comes from a sign changing count.
Outline of proof of Fundamental Theorem:

- The existence of an extra Hamiltonian Killing vector field from S^3_w gives the 2-dimensional Sasaki w-cone t^+_w.
- The quotient space of the S^1-action generated by any quasi-regular Reeb vector field $\xi_v \in t^+_w$ is a ruled orbifold $(S^n, \Delta_{mv_1, mv_2})$ with a branch divisor

$$\Delta_{mv_1, mv_2} = \left(1 - \frac{1}{mv_1}\right)D_1 + \left(1 - \frac{1}{mv_2}\right)D_2$$

consisting of the zero D_1 and infinity D_2 sections of the projective bundle $S^n = \mathbb{P} (\mathbb{L} \oplus L_n)$ over N with ramification indices mv_1, mv_2, respectively and n an integer determined by l_1, l_2, w, v.
- For $n \neq 0$, apply the admissible construction of Apostolov, Calderbank, Gauduchon, Tønnesen-Friedman on Hamiltonian 2-forms to the ruled Kähler orbifolds $(S^n, \Delta_{mv_1, mv_2})$.
- This gives the Kähler orbifold metric $g(S^n, \Delta) = \frac{1+r_3}{r} g_{\Sigma_g} + \frac{d_3^2}{\Theta(3)} + \Theta(3)\theta^2$ where θ is a connection 1-form, $d\theta = n\omega_N$, $0 < r < 1$, $\Theta(3) > 0$ and $-1 < 3 < 1$, $\Theta(\pm1) = 0$, $\Theta'(-1) = \frac{2}{mv_2}$, $\Theta'(1) = -\frac{2}{mv_1}$.
Outline of proof of Fundamental Theorem:

- The existence of an extra Hamiltonian Killing vector field from S^3_w gives the 2-dimensional Sasaki w-cone t^+_w.
- The quotient space of the S^1-action generated by any quasi-regular Reeb vector field $\xi_v \in t^+_w$ is a ruled orbifold $(S_n, \Delta_{mv_1, mv_2})$ with a branch divisor

$$\Delta_{mv_1, mv_2} = (1 - \frac{1}{mv_1}) D_1 + (1 - \frac{1}{mv_2}) D_2$$

consisting of the zero D_1 and infinity D_2 sections of the projective bundle $S_n = \mathbb{P}(l \oplus L_n)$ over N with ramification indices mv_1, mv_2, respectively and n an integer determined by l_1, l_2, w, v.

- For $n \neq 0$, apply the admissible construction of Apostolov, Calderbank, Gauduchon, Tønnesen-Friedman on Hamiltonian 2-forms to the ruled Kähler orbifolds $(S_n, \Delta_{mv_1, mv_2})$

This gives the Kähler orbifold metric $g(S_n, \Delta) = \frac{1+r^3}{r} g_{\Sigma g} + \frac{d^2}{\Theta(3)} + \Theta(3) \theta^2$ where θ is a connection 1-form, $d\theta = n\omega_N$, $0 < r < 1$, $\Theta(3) > 0$ and $-1 < 3 < 1$, $\Theta(\pm 1) = 0$, $\Theta'(1) = -\frac{2}{mv_2}$, $\Theta'(1) = -\frac{2}{mv_1}$.

- When $\Theta(3)(1 + r^3)^d$ is a $(d + 3)$ order $(d + 2)$ order polynomial we get extremal (CSC) Kähler metrics. Here d is the complex dimension of N.
Outline of proof of Fundamental Theorem:

- The existence of an extra Hamiltonian Killing vector field from S^3_w gives the 2-dimensional Sasaki w-cone t^+_w.
- The quotient space of the S^1-action generated by any quasi-regular Reeb vector field $\xi_v \in t^+_w$ is a ruled orbifold $(S_n, \Delta_{mv_1, mv_2})$ with a branch divisor

$$\Delta_{mv_1, mv_2} = (1 - \frac{1}{mv_1}) D_1 + (1 - \frac{1}{mv_2}) D_2$$

consisting of the zero D_1 and infinity D_2 sections of the projective bundle $S_n = \mathbb{P}(l \oplus L_n)$ over N with ramification indices mv_1, mv_2, respectively and n an integer determined by l_1, l_2, w, v.
- For $n \neq 0$, apply the admissible construction of Apostolov, Calderbank, Gauduchon, Tønnesen-Friedman on Hamiltonian 2-forms to the ruled Kähler orbifolds $(S_n, \Delta_{mv_1, mv_2})$.
- This gives the Kähler orbifold metric $g_{(S_n, \Delta)} = \frac{1+r_3}{r} g_{\Sigma} + \frac{d_3^2}{\Theta(3)} + \Theta(3) \theta^2$ where θ is a connection 1-form, $d\theta = n \omega_N$, $0 < r < 1$, $\Theta(3) > 0$ and $-1 < 3 < 1$, $\Theta(\pm 1) = 0$, $\Theta'(1) = -\frac{2}{mv_1}$.
- When $\Theta(3)(1 + r_3)^d$ is a $(d + 3)$ order ($(d + 2)$ order) polynomial we get extremal (CSC) Kähler metrics. Here d is the complex dimension of N.
- Lifing to $M_{l_1, l_2, w}$ gives extremal (CSC) Sasaki metrics in the quasi-regular case.
Outline of proof of Fundamental Theorem:

- The existence of an extra Hamiltonian Killing vector field from S^3_w gives the 2-dimensional Sasaki w-cone t^+_w.

- The quotient space of the S^1-action generated by any quasi-regular Reeb vector field $\xi_v \in t^+_w$ is a ruled orbifold $(S_n, \Delta_{mv_1, mv_2})$ with a branch divisor

$$\Delta_{mv_1, mv_2} = \left(1 - \frac{1}{mv_1}\right)D_1 + \left(1 - \frac{1}{mv_2}\right)D_2$$

consisting of the zero D_1 and infinity D_2 sections of the projective bundle $S_n = \mathbb{P}(\mathcal{I} \oplus L_n)$ over N with ramification indices mv_1, mv_2, respectively and n an integer determined by l_1, l_2, w, v.

- For $n \neq 0$, apply the admissible construction of Apostolov, Calderbank, Gauduchon, Tønnesen-Friedman on Hamiltonian 2-forms to the ruled Kähler orbifolds $(S_n, \Delta_{mv_1, mv_2})$.

- This gives the Kähler orbifold metric $g_{(S_n, \Delta)} = \frac{1+r_3}{r} g_{\Sigma_g} + \frac{d_3^2}{\Theta(3)} + \Theta(3)\theta^2$ where θ is a connection 1-form, $d\theta = n\omega_N$, $0 < r < 1$, $\Theta(3) > 0$, and $-1 < 3 < 1$, $\Theta(\pm 1) = 0$, $\Theta'(-1) = \frac{2}{mv_1}$, $\Theta'(1) = -\frac{2}{mv_2}$.

- When $\Theta(3)(1 + r_3)^d$ is a $(d + 3)$ order ($d + 2$ order) polynomial we get extremal (CSC) Kähler metrics. Here d is the complex dimension of N.

- Lifing to $M_{l_1, l_2, w}$ gives extremal (CSC) Sasaki metrics in the quasi-regular case.

- The irregular case uses a continuity argument together with the fact that quasi-regular Sasaki structures are dense in the Sasaki cone.
Outline of proof of Fundamental Theorem:

- The existence of an extra Hamiltonian Killing vector field from S^3_w gives the 2-dimensional Sasaki w-cone t^+_w.
- The quotient space of the S^1-action generated by any quasi-regular Reeb vector field $\xi_v \in t^+_w$ is a ruled orbifold $(S_n, \Delta_{mv_1, mv_2})$ with a branch divisor

$$\Delta_{mv_1, mv_2} = (1 - \frac{1}{mv_1})D_1 + (1 - \frac{1}{mv_2})D_2$$

consisting of the zero D_1 and infinity D_2 sections of the projective bundle $S_n = \mathbb{P}(\mathbb{L} \oplus L_n)$ over N with ramification indices mv_1, mv_2, respectively and n an integer determined by l_1, l_2, w, v.
- For $n \neq 0$, apply the admissible construction of Apostolov, Calderbank, Gauduchon, Tønnesen-Friedman on Hamiltonian 2-forms to the ruled Kähler orbifolds $(S_n, \Delta_{mv_1, mv_2})$.
- This gives the Kähler orbifold metric $g_{(S_n, \Delta)} = \frac{1+r_3}{r}g_{\Sigma_g} + \frac{d_3^2}{\Theta(3)} + \Theta(3)\theta^2$ where θ is a connection 1-form, $d\theta = n\omega_N$, $0 < r < 1$, $\Theta(3) > 0$ and $-1 < 3 < 1$, $\Theta(\pm 1) = 0$, $\Theta'(-1) = \frac{2}{mv_2}$, $\Theta'(1) = -\frac{2}{mv_1}$.
- When $\Theta(3)(1 + r_3)^d$ is a $(d + 3)$ order ($(d + 2)$ order) polynomial we get extremal (CSC) Kähler metrics. Here d is the complex dimension of N.
- Lifing to $M_{l_1, l_2, w}$ gives extremal (CSC) Sasaki metrics in the quasi-regular case.
- The irregular case uses a continuity argument together with the fact that quasi-regular Sasaki structures are dense in the Sasaki cone.
- The existence of multiple rays of CSC Sasaki metrics comes from a sign changing count.
When $g = 0$ we get Sasakian structures on the two S^3-bundles over the S^2 for all relatively prime positive integers l_1, l_2. (B-,B-Pati) (Also E. Legendre).
When \(g = 0 \) we get Sasakian structures on the two \(S^3 \)-bundles over the \(S^2 \) for all relatively prime positive integers \(l_1, l_2 \). (B-,B-Pati) (Also E. Legendre).

When \(c_1(\mathcal{D}) = 0 \) we recover the SE metrics on \(Y^{p,q} \) of the physicists Guantlett, Martelli, Sparks, Waldram on the manifold \(S^2 \times S^3 \).
When $g = 0$ we get Sasakian structures on the two S^3-bundles over the S^2 for all relatively prime positive integers l_1, l_2. (B-,B-Pati) (Also E. Legendre).

When $c_1(D) = 0$ we recover the SE metrics on $Y^{p,q}$ of the physicists Guantlett, Martelli, Sparks, Waldram on the manifold $S^2 \times S^3$.

If contact homology is well-defined $Y^{p,q}$ and $Y^{p',q'}$ belong to distinct contact structures when $p' \neq p$ (Abreu,Macarini; B-,Pati).
When \(g = 0 \) we get Sasakian structures on the two \(S^3 \)-bundles over the \(S^2 \) for all relatively prime positive integers \(l_1, l_2 \). (B-,B-Pati) (Also E. Legendre).

When \(c_1(D) = 0 \) we recover the SE metrics on \(Y^{p,q} \) of the physicists Guantlett, Martelli, Sparks, Waldram on the manifold \(S^2 \times S^3 \).

If contact homology is well-defined \(Y^{p,q} \) and \(Y^{p',q'} \) belong to distinct contact structures when \(p' \neq p \) (Abreu,Macarini; B-,Pati).

For fixed \(p \) there are \(\phi(p) \) (Euler phi-function) inequivalent SE structures belonging to the same contact structure giving a \(\phi(p) \)-bouquet \(\mathcal{B}_{\phi(p)}(D_0) \) (B-,Pati).
When \(g = 0 \) we get Sasakian structures on the two \(S^3 \)-bundles over the \(S^2 \) for all relatively prime positive integers \(l_1, l_2 \). (B-,B-Pati) (Also E. Legendre).

When \(c_1(\mathcal{D}) = 0 \) we recover the SE metrics on \(Y^{p,q} \) of the physicists Guantlett, Martelli, Sparks, Waldram on the manifold \(S^2 \times S^3 \).

If contact homology is well-defined \(Y^{p,q} \) and \(Y^{p',q'} \) belong to distinct contact structures when \(p' \neq p \) (Abreu,Macarini; B-,Pati).

For fixed \(p \) there are \(\phi(p) \) (Euler phi-function) inequivalent SE structures belonging to the same contact structure giving a \(\phi(p) \)-bouquet \(\mathcal{B}_{\phi(p)}(\mathcal{D}_0) \) (B-,Pati).

So \(Y^{p,q} \) and \(Y^{p',q'} \) map to the same component of \(\mathcal{M}_{+,0} \) under \(c \).
S^3-bundles over Riemann surface Σ_g of genus g: Case 1: genus $g = 0$

When $g = 0$ we get Sasakian structures on the two S^3-bundles over the S^2 for all relatively prime positive integers l_1, l_2. (B-, B-Pati) (Also E. Legendre).

When $c_1(D) = 0$ we recover the SE metrics on $Y^{p,q}$ of the physicists Guantlett, Martelli, Sparks, Waldram on the manifold $S^2 \times S^3$.

If contact homology is well-defined $Y^{p,q}$ and $Y^{p',q'}$ belong to distinct contact structures when $p' \neq p$ (Abreu, Macarini; B-, Pati).

For fixed p there are $\phi(p)$ (Euler phi-function) inequivalent SE structures belonging to the same contact structure giving a $\phi(p)$-bouquet $\mathcal{B}_{\phi(p)}(D_0)$ (B-, Pati).

So $Y^{p,q}$ and $Y^{p,q'}$ map to the same component of $\mathcal{M}_{+,0}$ under c.

Example: A regular 4-bouquet $\mathcal{B}_4(D_{-6})$ on $S^2 \times S^3$ with $l_2 = 1$ and $c_1(D) = -6\gamma$. The base spaces are Hirzebruch surfaces S_0, S_2, S_4, S_6, respectively.
When \(g = 0 \) we get Sasakian structures on the two \(S^3 \)-bundles over the \(S^2 \) for all relatively prime positive integers \(l_1, l_2 \). (B-,B-Pati) (Also E. Legendre).

When \(c_1(D) = 0 \) we recover the SE metrics on \(Y^{p,q} \) of the physicists Guantlett, Martelli, Sparks, Waldram on the manifold \(S^2 \times S^3 \).

If contact homology is well-defined \(Y^{p,q} \) and \(Y^{p',q'} \) belong to distinct contact structures when \(p' \neq p \) (Abreu,Macarini; B-,Pati).

For fixed \(p \) there are \(\phi(p) \) (Euler phi-function) inequivalent SE structures belonging to the same contact structure giving a \(\phi(p) \)-bouquet \(\mathcal{B}_{\phi(p)}(D_0) \) (B-,Pati).

So \(Y^{p,q} \) and \(Y^{p',q'} \) map to the same component of \(\mathcal{M}_{+,0} \) under \(c \).

Example: A regular 4-bouquet \(\mathcal{B}_4(D_{-6}) \) on \(S^2 \times S^3 \) with \(l_2 = 1 \) and \(c_1(D) = -6\gamma \). The base spaces are Hirzebruch surfaces \(S_0, S_2, S_4, S_6 \), respectively.

If we take \(l_2 > 1 \) we get \(c_1(D) = (2l_2 - 8)\gamma \) and we loose the product base \(S_0 = \mathbb{CP}^1 \times \mathbb{CP}^1 \) and regularity giving a 3-bouquet on \(S^2 \times S^3 \) with orbifold Hirzebruch surfaces \((S_2, \Delta_{l_2}), (S_4, \Delta_{l_2}), (S_6, \Delta_{l_2}) \) as base spaces. In each case the fiber is \(\mathbb{CP}^1 / \mathbb{Z}/l_2 \).
When \(g = 0 \) we get Sasakian structures on the two \(S^3 \)-bundles over the \(S^2 \) for all relatively prime positive integers \(l_1, l_2 \). (B-,B-Pati) (Also E. Legendre).

When \(c_1(\mathcal{D}) = 0 \) we recover the SE metrics on \(Y^{p,q} \) of the physicists Guantlett, Martelli, Sparks, Waldram on the manifold \(S^2 \times S^3 \).

If contact homology is well-defined \(Y^{p,q} \) and \(Y^{p',q'} \) belong to distinct contact structures when \(p' \neq p \) (Abreu,Macarini; B-,Pati).

For fixed \(p \) there are \(\phi(p) \) (Euler phi-function) inequivalent SE structures belonging to the same contact structure giving a \(\phi(p)\)-bouquet \(\mathcal{B}_{\phi(p)}(\mathcal{D}_0) \) (B-,Pati).

So \(Y^{p,q} \) and \(Y^{p',q'} \) map to the same component of \(\mathcal{M}_{+,0} \) under \(\mathcal{C} \).

Example: A regular 4-bouquet \(\mathcal{B}_4(\mathcal{D}_{-6}) \) on \(S^2 \times S^3 \), with \(l_2 = 1 \) and \(c_1(\mathcal{D}) = -6\gamma \). The base spaces are Hirzebruch surfaces \(S_0, S_2, S_4, S_6 \), respectively.

If we take \(l_2 > 1 \) we get \(c_1(\mathcal{D}) = (2l_2 - 8)\gamma \) and we loose the product base \(S_0 = \mathbb{CP}^1 \times \mathbb{CP}^1 \) and regularity giving a 3-bouquet on \(S^2 \times S^3 \) with orbifold Hirzebruch surfaces \((S_2, \Delta_{l_2}), (S_4, \Delta_{l_2}), (S_6, \Delta_{l_2}) \) as base spaces. In each case the fiber is \(\mathbb{CP}^1 / \mathbb{Z}_{l_2} \).

In each case we have at least one CSC ray of Sasaki metrics in each Sasaki cone.
When $g = 0$ we get Sasakian structures on the two S^3-bundles over the S^2 for all relatively prime positive integers l_1, l_2. (B-,B-Pati) (Also E. Legendre).

When $c_1(D) = 0$ we recover the SE metrics on Y^p,q of the physicists Guantlett, Martelli, Sparks, Waldram on the manifold $S^2 \times S^3$.

If contact homology is well-defined Y^p,q and $Y^{p',q'}$ belong to distinct contact structures when $p' \neq p$ (Abreu,Macarini; B-,Pati).

For fixed p there are $\phi(p)$ (Euler phi-function) inequivalent SE structures belonging to the same contact structure giving a $\phi(p)$-bouquet $\mathcal{B}_{\phi(p)}(D_0)$ (B-,Pati).

So Y^p,q and $Y^{p',q'}$ map to the same component of $\mathcal{M}_{+,0}$ under c.

Example: A regular 4-bouquet $\mathcal{B}_4(D_{-6})$ on $S^2 \times S^3$ with $l_2 = 1$ and $c_1(D) = -6\gamma$. The base spaces are Hirzebruch surfaces S_0, S_2, S_4, S_6, respectively.

If we take $l_2 > 1$ we get $c_1(D) = (2l_2 - 8)\gamma$ and we loose the product base $S_0 = \mathbb{CP}^1 \times \mathbb{CP}^1$ and regularity giving a 3-bouquet on $S^2 \times S^3$ with orbifold Hirzebruch surfaces $(S_2, \Delta_{l_2}), (S_4, \Delta_{l_2}), (S_6, \Delta_{l_2})$ as base spaces. In each case the fiber is $\mathbb{CP}^1 / \mathbb{Z}_{l_2}$.

In each case we have at least one CSC ray of Sasaki metrics in each Sasaki cone.

If $l_2 > 53$ all three Sasaki cones have 3 CSC rays of Sasaki metrics.
When $g = 0$ we get Sasakian structures on the two S^3-bundles over the S^2 for all relatively prime positive integers l_1, l_2. (B-,B-Pati) (Also E. Legendre).

When $c_1(D) = 0$ we recover the SE metrics on $Y^{p,q}$ of the physicists Guantlett, Martelli, Sparks, Waldram on the manifold $S^2 \times S^3$.

If contact homology is well-defined $Y^{p,q}$ and $Y^{p',q'}$ belong to distinct contact structures when $p' \neq p$ (Abreu,Macarini; B-,Pati).

For fixed p there are $\phi(p)$ (Euler phi-function) inequivalent SE structures belonging to the same contact structure giving a $\phi(p)$-bouquet $\mathcal{B}_{\phi(p)}(D_0)$ (B-,Pati).

So $Y^{p,q}$ and $Y^{p,q'}$ map to the same component of $\mathcal{M}_{+,0}$ under c.

Example: A regular 4-bouquet $\mathcal{B}_4(D_{-6})$ on $S^2 \times S^3$ with $l_2 = 1$ and $c_1(D) = -6\gamma$. The base spaces are Hirzebruch surfaces S_0, S_2, S_4, S_6, respectively.

If we take $l_2 > 1$ we get $c_1(D) = (2l_2 - 8)\gamma$ and we loose the product base $S_0 = \mathbb{C}P^1 \times \mathbb{C}P^1$ and regularity giving a 3-bouquet on $S^2 \times S^3$ with orbifold Hirzebruch surfaces $(S_2, \Delta_{l_2}), (S_4, \Delta_{l_2}), (S_6, \Delta_{l_2})$ as base spaces. In each case the fiber is $\mathbb{C}P^1 / \mathbb{Z}_{l_2}$.

In each case we have at least one CSC ray of Sasaki metrics in each Sasaki cone.

If $l_2 > 53$ all three Sasaki cones have 3 CSC rays of Sasaki metrics.

Similar results hold for the non-trivial S^3-bundle over S^2, but no SE metrics.
When \(g > 0 \) we need \(l_2 = 1 \) to get \(S^3 \)-bundles over a Riemann surface \(\Sigma_g \). There are two diffeomorphism types, the trivial bundle \(\Sigma_g \times S^3 \), the non-trivial bundle \(\Sigma_g \tilde{\times} S^3 \).
When $g > 0$ we need $l_2 = 1$ to get S^3-bundles over a Riemann surface Σ_g. There are two diffeomorphism types, the trivial bundle $\Sigma_g \times S^3$, the non-trivial bundle $\Sigma_g \tilde{\times} S^3$.

On both manifolds there is a countably infinite number of inequivalent contact structures \mathcal{D}_k admitting a 2-dimensional cone of Sasakian structures which by our Fundamental Theorem 1 admits a unique ray of CSC Sasakian structures.
When $g > 0$ we need $l_2 = 1$ to get S^3-bundles over a Riemann surface Σ_g. There are two diffeomorphism types, the trivial bundle $\Sigma_g \times S^3$, the non-trivial bundle $\Sigma_\tilde{g} \times S^3$.

On both manifolds there is a countably infinite number of inequivalent contact structures D_k admitting a 2-dimensional cone of Sasakian structures which by our Fundamental Theorem 1 admits a unique ray of CSC Sasakian structures.

When $0 < g \leq 4$ all 2-dimensional Sasaki cones $\kappa(D_k, J)$ on S^3-bundles over Σ_g are exhausted by extremal Sasaki metrics.
When $g > 0$ we need $l_2 = 1$ to get S^3-bundles over a Riemann surface Σ_g. There are two diffeomorphism types, the trivial bundle $\Sigma_g \times S^3$, the non-trivial bundle $\Sigma_g \tilde{\times} S^3$.

On both manifolds there is a countably infinite number of inequivalent contact structures D_k admitting a 2-dimensional cone of Sasakian structures which by our Fundamental Theorem 1 admits a unique ray of CSC Sasakian structures.

When $0 < g \leq 4$ all 2-dimensional Sasaki cones $\kappa(D_k, J)$ on S^3-bundles over Σ_g are exhausted by extremal Sasaki metrics

For $g \geq 20$ there are rays in $\kappa(D_k, J)$ which admit no extremal Sasaki metrics.
When $g > 0$ we need $l_2 = 1$ to get S^3-bundles over a Riemann surface Σ_g. There are two
\textbf{diffeomorphism types}, the trivial bundle $\Sigma_g \times S^3$, the non-trivial bundle $\Sigma_g \tilde{\times} S^3$.

On both manifolds there is a countably infinite number of inequivalent \textbf{contact structures} \mathcal{D}_k admitting a 2-dimensional cone of Sasakian structures which by our Fundamental Theorem 1 admits a unique ray of \textbf{CSC} Sasakian structures.

When $0 < g \leq 4$ all 2-dimensional Sasaki cones $\kappa(\mathcal{D}_k, J)$ on S^3-bundles over Σ_g are
exhausted by \textbf{extremal Sasaki metrics}.

For $g \geq 20$ there are rays in $\kappa(\mathcal{D}_k, J)$ which admit \textbf{no} extremal Sasaki metrics.

For any genus $g \geq 1$ and for each positive integer k, the contact manifold $(\Sigma_g \times S^3, \mathcal{D}_k)$ has
a \textbf{k-bouquet} \mathcal{B}_k of 2-dimensional Sasaki cones.
When \(g > 0 \) we need \(l_2 = 1 \) to get \(S^3 \)-bundles over a **Riemann surface** \(\Sigma_g \). There are two **diffeomorphism types**, the trivial bundle \(\Sigma_g \times S^3 \), the non-trivial bundle \(\Sigma_g \wedge S^3 \).

On both manifolds there is a countably infinite number of inequivalent **contact structures** \(\mathcal{D}_k \) admitting a 2-dimensional cone of Sasakian structures which by our Fundamental Theorem 1 admits a unique ray of **CSC** Sasakian structures.

When \(0 < g \leq 4 \) all 2-dimensional Sasaki cones \(\kappa(\mathcal{D}_k, J) \) on \(S^3 \)-bundles over \(\Sigma_g \) are exhausted by **extremal Sasaki metrics**.

For \(g \geq 20 \) there are rays in \(\kappa(\mathcal{D}_k, J) \) which admit **no** extremal Sasaki metrics.

For any genus \(g \geq 1 \) and for each positive integer \(k \), the contact manifold \((\Sigma_g \times S^3, \mathcal{D}_k)\) has a **k-bouquet** \(\mathcal{B}_k \) of 2-dimensional Sasaki cones.

Example: The 4-bouquet in the \(g = 0 \) case persists on \(\Sigma_g \times S^3 \) for all genera \(g \), but the base spaces are **pseudo-Hirzebruch surfaces** in this case.
When $g > 0$ we need $l_2 = 1$ to get S^3-bundles over a Riemann surface Σ_g. There are two \textbf{diffeomorphism types}, the trivial bundle $\Sigma_g \times S^3$, the non-trivial bundle $\Sigma_g \widetilde{\times} S^3$.

On both manifolds there is a countably infinite number of inequivalent contact structures D_k admitting a 2-dimensional cone of Sasakian structures which by our Fundamental Theorem 1 admits a unique ray of \textbf{CSC} Sasakian structures.

When $0 < g \leq 4$ all 2-dimensional Sasaki cones $\kappa(D_k, J)$ on S^3-bundles over Σ_g are exhausted by \textbf{extremal Sasaki metrics}.

For $g \geq 20$ there are rays in $\kappa(D_k, J)$ which admit no extremal Sasaki metrics.

For any genus $g \geq 1$ and for each positive integer k, the contact manifold $(\Sigma_g \times S^3, D_k)$ has a \textbf{k-bouquet} \mathcal{B}_k of 2-dimensional Sasaki cones.

Example: The 4-bouquet in the $g = 0$ case persists on $\Sigma_g \times S^3$ for all genera g, but the base spaces are \textbf{pseudo-Hirzebruch surfaces} in this case.

The distinct Sasaki cones in the bouquet \mathcal{B}_k correspond to distinct conjugacy classes of maximal tori in $\mathcal{Con}(D_{l_1}, l_2, w)$. Uses the work of Buşe on \textbf{equivariant Gromov-Witten invariants}.
When $g > 0$ we need $l_2 = 1$ to get S^3-bundles over a Riemann surface Σ_g. There are two **diffeomorphism types**, the trivial bundle $\Sigma_g \times S^3$, the non-trivial bundle $\Sigma_g \tilde{\times} S^3$.

On both manifolds there is a countably infinite number of inequivalent contact structures D_k admitting a 2-dimensional cone of Sasakian structures which by our Fundamental Theorem 1 admits a unique ray of CSC Sasakian structures.

When $0 < g \leq 4$ all 2-dimensional Sasaki cones $\kappa(D_k, J)$ on S^3-bundles over Σ_g are exhausted by **extremal Sasaki metrics**

For $g \geq 20$ there are rays in $\kappa(D_k, J)$ which admit **no** extremal Sasaki metrics.

For any genus $g \geq 1$ and for each positive integer k, the contact manifold $(\Sigma_g \times S^3, D_k)$ has a **k-bouquet** \mathcal{B}_k of 2-dimensional Sasaki cones.

Example: The 4-bouquet in the $g = 0$ case persists on $\Sigma_g \times S^3$ for all genera g, but the base spaces are pseudo-Hirzebruch surfaces in this case.

The distinct Sasaki cones in the bouquet \mathcal{B}_k correspond to distinct conjugacy classes of maximal tori in $\text{Con}(D_{l_1, l_2, w})$. Uses the work of Bușe on equivariant Gromov-Witten invariants.

The construction can be ‘twisted’ by reducible representations of the fundamental group $\pi_1(\Sigma_g)$. The irreducible representations of $\pi_1(\Sigma_g)$ give 1-dimensional Sasaki cones. They arise from **stable** rank two vector bundles and have CSC Sasaki metrics.
When $g > 0$ we need $l_2 = 1$ to get S^3-bundles over a Riemann surface Σ_g. There are two **diffeomorphism types**, the trivial bundle $\Sigma_g \times S^3$, the non-trivial bundle $\Sigma_g \tilde{\times} S^3$.

On both manifolds there is a countably infinite number of inequivalent contact structures D_k admitting a 2-dimensional cone of Sasakian structures which by our Fundamental Theorem 1 admits a unique ray of **CSC** Sasakian structures.

When $0 < g \leq 4$ all 2-dimensional Sasaki cones $\kappa(D_k, J)$ on S^3-bundles over Σ_g are exhausted by **extremal Sasaki metrics**

For $g \geq 20$ there are rays in $\kappa(D_k, J)$ which admit no extremal Sasaki metrics.

For any genus $g \geq 1$ and for each positive integer k, the contact manifold $(\Sigma_g \times S^3, D_k)$ has a **k-bouquet** \mathcal{B}_k of 2-dimensional Sasaki cones.

Example: The 4-bouquet in the $g = 0$ case persists on $\Sigma_g \times S^3$ for all genera g, but the base spaces are pseudo-Hirzebruch surfaces in this case.

The distinct Sasaki cones in the bouquet \mathcal{B}_k correspond to distinct conjugacy classes of maximal tori in $\text{Con}(D_{l_1}, l_2, w)$. Uses the work of Buşe on equivariant Gromov-Witten invariants.

The construction can be ‘twisted’ by reducible representations of the fundamental group $\pi_1(\Sigma_g)$. The irreducible representations of $\pi_1(\Sigma_g)$ give 1-dimensional Sasaki cones. They arise from stable rank two vector bundles and have CSC Sasaki metrics.

When $l_2 > 1$ some of the same type of results have been obtained on 5-manifolds whose fundamental group is a non-Abelian extension of $\pi_1(\Sigma_g)$ in Castañoeda’s thesis.
THANK YOU!
References
