The symmetry in transverse geometry comes organized in the form of certain Hopf algebras, which play a role similar to that of \mathfrak{gl}_n as structure group for Hopf algebras \mathbb{H}, which admit a nontrivial deformation to a QDE algebra \mathbb{H}. Much like a classical Lie algebra deforms to a QDE algebra, the structure bundle \mathfrak{gl}_n in transverse geometry comes organized in the form of certain algebras.

Fundamental Class

Rankin-Cohen deformations along the transverse
Each $Z \in \mathfrak{g}(u)$ acts on \mathcal{W}_J as a linear transformation:

$$\phi_{\ast \Omega}(f)Z = (\phi_{\ast \Omega}f)Z \quad \forall f \in \mathcal{W}_J$$

$$0 = [\gamma X, \gamma Y] \quad [\gamma X, \gamma \lambda] \quad [\gamma \lambda, \gamma X] - [\gamma \lambda, \gamma Y] = [\gamma \lambda, \gamma \lambda]$$

The affine extension $\mathfrak{g}(u)$ of $\mathfrak{gl}(u)$ acts on $\mathcal{W}_J(u)$, implementing the action of the standard horizontal and vertical vector fields, implementing the action of the coordinate algebra \mathcal{A}, consisting of finite sums of monomials of the form $\phi_{\ast \Omega}(f) = \phi_{\ast \Omega}f \quad \forall f \in \mathcal{W}_J$.

with the product given by

$$(\mathcal{W}_J)_\phi = \mathcal{W}_J \quad \phi_{\ast \Omega}f \quad \forall f \in \mathcal{W}_J$$

Each \(Z \in \mathfrak{g}(u)\) acts on \(\mathcal{W}_J\) as a linear transformation:

\[
\phi_{\ast \Omega}(f)Z = (\phi_{\ast \Omega}f)Z \quad \forall f \in \mathcal{W}_J
\]

\[
0 = [\gamma X, \gamma Y] \quad [\gamma X, \gamma \lambda] \quad [\gamma \lambda, \gamma X] - [\gamma \lambda, \gamma Y] = [\gamma \lambda, \gamma \lambda]
\]

The generators satisfy obvious product rules when acting on \mathcal{H}, giving a coproduct $\mathcal{H} \otimes \mathcal{H} \rightarrow \mathcal{H} : \triangleright$ compatible with the algebra structure, and satisfying all the Hopf algebra axioms.

\[
\begin{align*}
\triangleright \in \mathcal{H} & \quad \triangleright (\triangleright) \otimes (\triangleright) \triangleright = \triangleright \\
\mathcal{H} \otimes \mathcal{H} & \rightarrow \mathcal{H} : \triangleright \quad \text{giving a coproduct}
\end{align*}
\]

By multiplicativity

\[
\begin{align*}
\triangleright (\triangleright) (\triangleright) \triangleright + \triangleright (\triangleright) (\triangleright) \triangleright & = (\triangleright (\triangleright) \triangleright \\
\triangleright (\triangleright) (\triangleright) \triangleright + \triangleright (\triangleright) (\triangleright) \triangleright & = (\triangleright (\triangleright) \triangleright \\
\end{align*}
\]

The generators satisfy obvious product rules when acting on \mathcal{H}, giving

\[
\begin{align*}
\triangleright (\triangleright) (\triangleright) (\triangleright) (\triangleright) (\triangleright) (\triangleright) & = \triangleright (\triangleright) (\triangleright) (\triangleright) (\triangleright) (\triangleright) (\triangleright) \\
\triangleright (\triangleright) (\triangleright) (\triangleright) (\triangleright) (\triangleright) (\triangleright) & = \triangleright (\triangleright) (\triangleright) (\triangleright) (\triangleright) (\triangleright) (\triangleright)
\end{align*}
\]

with

\[
\begin{align*}
\triangleright (\triangleright) (\triangleright) (\triangleright) (\triangleright) (\triangleright) (\triangleright) & = \triangleright (\triangleright) (\triangleright) (\triangleright) (\triangleright) (\triangleright) (\triangleright) \\
\end{align*}
\]

The resulting Hopf algebra \mathcal{H} is actually independent of the choices made, and can alternatively be described as a bicrossproduct of \mathcal{G}. Let \mathcal{A} be the algebra of linear transformations of \mathcal{H} generated by the operators $A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z$.
The Hopf algebra \mathcal{H} is the universal enveloping algebra of the Lie algebra with basis $\{\mathfrak{h}^\mathfrak{g}\}$ and brackets

$$\mathfrak{h}^\mathfrak{g} \cdot \mathfrak{h}^\mathfrak{g} = \mathfrak{h}^\mathfrak{g}$$

The counit is determined by

$$\epsilon = (\lambda)S$$

and the property

$$\epsilon g - = (\mathfrak{h}^\mathfrak{g})S \quad \lambda^\mathfrak{g} + X^- = (\lambda)S \quad \lambda^- = (\lambda)S$$

The antipode is determined by

$$\mathcal{H} \ni \mathfrak{h}^\mathfrak{g} \cdot \mathfrak{h}^\mathfrak{g} = \mathfrak{h}^\mathfrak{g}$$

Together with the multiplicity property

$$\mathfrak{h}^\mathfrak{g} \cdot \mathfrak{h}^\mathfrak{g} = \mathfrak{h}^\mathfrak{g} \quad \lambda \cdot \mathfrak{h}^\mathfrak{g} + X \cdot \mathfrak{h}^\mathfrak{g} = X \mathfrak{h}^\mathfrak{g} \quad \lambda \cdot \mathfrak{h}^\mathfrak{g} = \lambda \mathfrak{h}^\mathfrak{g}$$

As coalgebras,

$$0 = [\mathfrak{h}^\mathfrak{g}, \mathfrak{h}^\mathfrak{g}] \quad I + \mathfrak{h}^\mathfrak{g} = [\mathfrak{h}^\mathfrak{g} \cdot X] \quad \mathfrak{u} \cdot \mathfrak{h}^\mathfrak{g} = [\mathfrak{h}^\mathfrak{g} \cdot \lambda] \quad \lambda = [X \cdot \lambda]$$

and brackets

$$\{I \leq \mathfrak{u}, \mathfrak{h}^\mathfrak{g} \cdot \lambda, X\}$$

As algebra \mathcal{H} is the universal enveloping algebra of the Lie algebra with basis $\mathfrak{h}^\mathfrak{g}$ and brackets

$$\mathfrak{h}^\mathfrak{g} \cdot \mathfrak{h}^\mathfrak{g} = \mathfrak{h}^\mathfrak{g}$$

The Hopf algebra \mathcal{H} is
Given a \(^{1}M \) of dimension \(1 \), but the twisted antipode does not satisfy \(^{1}\mathcal{H} \otimes \otimes^{1}\mathcal{H} \). The twisted antipode is defined as \(\delta \mathcal{A} \) on the crossed product algebra \(\mathcal{T} = \mathbb{R} \times \mathcal{W} \simeq (^{1}\mathcal{W})^{+} \). Given an \(\mathbb{R} \) manifold \(\mathcal{Y} \) and a subgroup \(\mathbb{D} \subseteq \text{Diff}_{+}(^{1}\mathcal{W}) \), the twisted antipode acts on the crossed product algebra \(\mathcal{T} = \mathbb{R} \times \mathcal{W} \simeq (^{1}\mathcal{W})^{+} \).
Thus, the effective action on \mathcal{A} is that of the quotient Hopf algebra

$$\frac{\mathcal{A}}{\mathcal{H}} = \mathcal{L}$$

by the ideal and coideal – generated by the primitive element $\mathcal{O}_i \in \mathcal{H}$.

Thus, the effective action on \mathcal{A} is that of the quotient Hopf algebra

$$\mathcal{A} \otimes ((\mathcal{H}_i D)_{i_f})_\infty ^c \mathcal{O} = \mathcal{A} \otimes \mathcal{H} \ni \mathcal{O}_i \mathcal{O}_i = \mathcal{O}_i$$

acts as

$$0 \equiv \left(\left(\frac{xp}{\phi p} \mathcal{O}_i \right) \frac{xp}{p} \right) \mathcal{O}_i - \left(\frac{xp}{\phi p} \mathcal{O}_i \right) \frac{xp}{\phi p} =: \{ x : \phi \}$$

linear fractional transformations. One has $\phi \in \mathcal{L} \Leftrightarrow \phi$ is Schwarzian derivative.

In particular take projective (i.e. $PSL(2,\mathbb{R})_\infty \mathcal{A} = \mathcal{L}$).
\[
(1 \times \left(((1_W)^+ f) \otimes O \right)_{\text{V}})_{\omega} \in \text{PF cyclic classes of } PH \circledast \text{Fundamental classes of } O
\]

Last but not least \(\chi \) is a Hopf cyclic \(\omega \)-cocycle, \(\lambda \otimes \lambda \omega = \lambda \otimes \lambda - \lambda \otimes \lambda = 0 \).

Thus \((1) H \mapsto H \in PH \circledast \text{Fundamental classes of } O \)

\[
\int \left(\frac{1}{x} f \cdot \left(((1_W)^+ f) \otimes O \right)_{\text{V}} \cdot \left((1_x)^+ (1_W)^+ f \right) \right) = \left((1^* \Omega 1 f)^0 \cdot \star \Omega 0 f \right)^{\star \chi} = \left((1^* \Omega 1 f)^0 \cdot \star \Omega 0 f \right)^{\star \chi}
\]

Into the Godbillon-Vey class:

\[
(1_x) \otimes \left(\left((1_x)^+ f \right) \otimes O \right)_{\omega} = \left((1_x) \otimes \cdots \right) \otimes \left((1_x) \right)_{\omega}^{\star \chi}
\]

\[
\text{which is mapped by the characteristic homomorphism}
\]

\[
\left(\left(1 \otimes \left(\left(1_W \right)^+ f \right) \otimes O \right)_{\omega} \right)_{\omega} = \left(1 \otimes \omega \right)_{\omega} = \left(1 \otimes \omega \right)_{\omega} = \left(1 \right)_{\omega}^{\star \chi} = \left(1 \right)_{\omega}^{\star \chi}
\]

Thus a cyclic cocycle, hence a cyclic cocycle. One has

\[
\left(1 \otimes \left(\left(1_W \right)^+ f \right) \otimes O \right)_{\omega} \in [\omega] \text{ gives a class }
\]

Which cyclic classes
A deformation of a Hopf algebra is a Hopf algebra structure on the topological module \(\mathcal{H}\) over the ring \(R\), such that

\[
\Delta^2 + \gamma^2 + \alpha + \beta = 0
\]

Moreover, if \(R_{F_{[2]}^{-1}}\) satisfies \(\text{QYBE}\), then

\[
R_{F_{[2]}^{-1}}(2) = R_{F_{[2]}^{-1}}[i, j, k] + [j, k, l] + [j, k, o]
\]

If and only if \(R\) satisfies the classical Yang-Baxter equation

\[
\Delta = \Delta^2 + \gamma^2 + \alpha + \beta
\]

with

\[
\gamma = \gamma^2 + \alpha + \beta
\]

Example: QVE algebras [Drinfeld, 1983]. Let \(\mathcal{H}\) be a finite-dimensional real Lie algebra, and let \(\mathfrak{g} \in \mathfrak{g} \otimes \mathfrak{g}\) be skew-symmetric. There exists a deformation

[\[\mathcal{H}\]]_{[\mathfrak{g}]} of \([\mathfrak{g}]\) given by a twisting of the form

\[
\mu = \mu^2 + \mu^3 + \mu^4 + \mu^5 + \mu^6 + \mu^7 + \mu^8 + \mu^9 + \mu^{10}
\]

Moreover, let \(\mathcal{H}\) be an invertible element such that

\[
\mathcal{H} \otimes \mathcal{H} = \mathcal{H} \otimes \mathcal{H}
\]

and

\[
\mathcal{H} \otimes \mathcal{H} = \mathcal{H} \otimes \mathcal{H}
\]

Twisting a Hopf algebra into a Hopf algebra \([\mathfrak{g}]\mathcal{H}\) with \(\mathcal{H} = \mathcal{H} \otimes \mathcal{H}\) satisfies QYBE

\[
\mu = \mu^2 + \mu^3 + \mu^4 + \mu^5 + \mu^6 + \mu^7 + \mu^8 + \mu^9 + \mu^{10}
\]

and

\[
\mathcal{H} \otimes \mathcal{H} = \mathcal{H} \otimes \mathcal{H}
\]

such that

\[
\mathcal{H} = \mathcal{H} \otimes \mathcal{H}
\]

Definition. A deformation of a Hopf algebra \(\mathcal{H}\) is a Hopf algebra structure on the topological module \(\mathcal{H}\) over the ring \(\mathcal{C}\), such that

Deformations of Hopf Algebras by Twisting
Given a Hopf algebra H, a necessary condition for $\mathcal{H} \otimes \mathcal{H} \in \mathcal{H}$ to define the R-C QUANTIZED Hopf algebra is:

$$(\mathcal{H} \otimes \mathcal{H})(\mathcal{H} \otimes \mathcal{H}) = \mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H}$$

To illustrate its degree of complexity, here is the 3rd component:

$$\mathcal{H} [\Psi] \otimes \mathcal{H} \in \mathcal{H}$$

The series $\mathcal{T} \mathcal{H} \in \mathcal{T} \mathcal{H}$ as:

$$\mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H} = \mathcal{T} \mathcal{H}$$

which is precisely the same as:

$$\mathcal{H} \otimes I + (\mathcal{H} \otimes \mathcal{H}) = \mathcal{H} \otimes \mathcal{H}$$

is that $\mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H} = \mathcal{T} \mathcal{H}$
The proof of Theorem A involves the framework of modular forms.

\[\sum_{u=s+1}^{u=t} \beta_{(u)} \left(I - \gamma + u \right) \left(I - \delta + u \right)^{u-t} =: \beta_{(t)} \left(\sum_{u=s+1}^{u=t} \beta_{(u)} \right) \]

Assume \(\gamma \in (q \otimes \nu)_A \). Then any twisting element induces an associative deformation of \(\mathcal{H} \).
by requiring that the determinant belongs to $\mathcal{O} \equiv \mathbb{Q} \cap \mathbb{A}$. A modular form of weight ω is a holomorphic function f satisfying

$$f\big|_\omega \mathbb{Z} \equiv \omega \big| f \quad \text{for all } \omega \in \mathcal{O}.$$

Equivalently, $\omega \mathbb{Z} \subsetneq \mathbb{Q} \mathbb{Z}$ where $\mathbb{Q} \mathbb{Z}$ is the group of all integral multiples of \mathbb{Q}.

A richer algebra emerges when besides the modular group, one considers its principal congruence subgroups and the projective limit of Riemann surfaces.

$$\lim_{\mathbb{P} \to 0} \mathbb{P} \mathbb{Z} \equiv \mathbb{Q} \mathbb{Z}.$$

A graded algebra emerges which is also holomorphic at ∞, i.e., at $z = \infty$.

$$f \big|_{z = \infty} = \left(\frac{p+zc}{q+zd} \right)_{z = \infty} f \big|_{z = \infty} = (z)^{a+b} f \big|_{z = \infty},$$

where $a, b \in \mathbb{Z}$ and the subgroup $\mathbb{P} \mathbb{Z}$ is defined by requiring that the determinant belongs to $\mathcal{O} \equiv \mathbb{Q} \cap \mathbb{A}$.

1 Modular forms and actions of \(\mathbb{H} \).
Foreach \(\nu \), one has a graded algebra of forms of level \(\nu \), and \(\wp \) is the discriminant.

\[
\wp(z) = b \prod_{i=1}^{\infty} b(z^{i}) = (z)^{2} \nabla
\]

\[
\lambda \cdot (\wp \otimes \nu) \frac{zp}{p} - \frac{zp}{p} \frac{\nu z}{1} = \lambda \cdot (\nabla \otimes \nu) \frac{zp}{p} - \frac{zp}{p} \frac{\nu z}{1} = \lambda
\]

Most natural action. First, let \(\lambda \) act on \(\nu \) as the Ramanujan operator.

bundle of \(S \) by discrete subgroups of \(D \).

There are natural actions of the Hopf algebras on the crossed products of the polynomial functions on the frame \(\mathcal{H} \), on the crossed products of the polynomial functions on the frame \(\mathcal{H} \), and analogous to the

\[
\wp \in \mathcal{H}, \quad \nu \in \mathcal{V}, \quad \wp \nabla \in \mathcal{V}
\]

with the product given by:

\[
\wp \cdot \wp \in \mathcal{H}, \quad \wp \cdot \wp \in \mathcal{V}
\]

consisting of finite sums of symbols of the form \(\wp \).

One can then form the crossed product algebra.

\[
((\mathcal{N} \ast \mathcal{V})_{\mathfrak{G}} \xrightarrow{\lim} \mathcal{V})_{\mathcal{N}} \rightarrow \mathcal{V}_{\mathcal{N}} \]

For each \(\mathcal{N} \), one has a graded algebra of forms of al levels. They define the algebra of modular forms of all levels. The group \(\mathcal{G} \) acts, sideways, on the tower defining the price.
Secondly, let
\[\Delta \in \mathcal{H} \] act on \(\lambda \) as the grading operator.

For any \(\lambda \in \mathcal{H} \) and \(\Delta \in \mathcal{G} \), one has
\[\lambda \cdot \Delta = (\lambda) \quad \text{where} \quad (\lambda) \Delta (\lambda) = (\lambda) \Delta (\lambda) \]

Proposition. There is a unique Hopf action of \(\mathcal{H} \) on \(\mathcal{G} \) determined by
\[\Delta \quad \text{is the holomorphic (but not modular) Eisenstein series of weight 2. One can show} \]
\[\frac{\zeta(u + z \omega)}{1} \sum_{\gamma \in \mathcal{G}} \sum_{p \leq u} \zeta \gamma \gamma = (\zeta) \gamma \gamma \]

where
\[\frac{\nabla}{\zeta} \| \frac{z \rho}{p} \| \frac{1}{\gamma} \]

Equivalently, for any \(\lambda \in \mathcal{H} \) and \(\Delta \in \mathcal{G} \), one has
\[\lambda \in \mathcal{H} \quad \text{and} \quad \Delta \in \mathcal{G} \quad \text{where} \quad \lambda \Delta (\lambda) = (\lambda) \Delta (\lambda) \]
Remark. The Schwarzian cocycle acts as inner derivation, namely, there is no choice of \(\varphi \) for which

\[
0 \equiv \frac{d}{dx} \left(\varphi \frac{d}{dx} + \left(\lambda \right) \right) = \varphi \cdot \frac{d}{dx}
\]
as and the Schwarzian cocycle acts on \(\lambda \). Then \(\lambda = \lambda(\varphi) \) and \((\lambda) \) acts on \(\varphi \) such that

\[
0 = (\varphi) \quad \text{such that} \quad \left((\lambda) + \varphi \right) Z \in \mathcal{A} \mathcal{W} \quad \forall \mathcal{A} \mathcal{H} \subset \mathcal{A} \mathcal{W}
\]

Proposition. \(\left((\lambda) \right) \mathcal{H} = \mathcal{W} \mathcal{H} \equiv \mathcal{A} \mathcal{W} \quad \forall \mathcal{A} \mathcal{H} \supset \mathcal{W} \mathcal{H} \), such that \(\mathcal{A} \mathcal{W} \), \(\mathcal{A} \mathcal{W} \mathcal{H} \), and \(\mathcal{A} \mathcal{W} \mathcal{H} \mathcal{W} \) form an invertible element

\[
\cdot \left((\lambda) \mathcal{H} \right) \mathcal{W} \mathcal{H} = \left((\lambda) \mathcal{H} \right) \mathcal{W} \mathcal{H} \mathcal{W}
\]

The perturbed action on \(\mathcal{A} \mathcal{H} \) of \(\mathcal{W} \mathcal{H} \mathcal{W} \) is an invertible element of the convolution algebra of linear maps \(\mathcal{H} \mathcal{W} \mathcal{H} \).

Perturbations by \(\lambda \)-cocycles. \(\mathcal{H} \)-cocycle acts as inner derivation,

\[
\cdot \left[\lambda \right] = \left[\lambda \right] \quad \forall \mathcal{A} \mathcal{H} \subset \mathcal{A} \mathcal{W}
\]

Implemented by the weight modular form \(\lambda \mathcal{H} \).

Remark. The Schwarzian cocycle acts as inner derivation,
The normal order form of \(B \) suggests that the higher Rankin-Cohen brackets for an action of \(\mathcal{H} \) on a graded algebra \(\mathcal{A} \), such that

\[(u X) S \]

such that \(\mathcal{A} \) satisfies the higher Rankin-Cohen brackets for an action of \(\mathcal{H} \) on \(\mathcal{A} \), suggests that the higher Rankin-Cohen brackets for an action of \(\mathcal{H} \) on \(\mathcal{A} \), such that

\[(u X) S \]

should be of the form:

\[\frac{\mathcal{C}}{u} = \mathcal{C} | \lambda \]

However, these are not stable under \(\mathbb{Z}_1 \)-cocycle perturbations. E.g., by direct computation:

\[(q \lambda \cup (p) (1 + \lambda \zeta) \lambda - (q)(1 + \lambda \zeta) \lambda \cup (p) \lambda - (q) \lambda \cup (p)(1 + \lambda \zeta) \lambda + (q)(1 + \lambda \zeta) \lambda (p)(1 + \lambda \zeta) (X) S + (q)(1 + \lambda \zeta) \lambda (p) (X) S =: (q \psi (p)) \mathcal{C} \]

with

\[\lambda \]

obtained from recurrence relations.

\[(q \lambda \cup (p)(1 + \lambda \zeta) \lambda - (q)(1 + \lambda \zeta) \lambda \cup (p) \lambda - (q) \lambda \cup (p)(1 + \lambda \zeta) \lambda + (q)(1 + \lambda \zeta) \lambda (p)(1 + \lambda \zeta) (X) S + (q)(1 + \lambda \zeta) \lambda (p)(X) S =: (q \psi (p)) \mathcal{C} \]

The stable formula turns out to be of the form:

\[(q \psi (p)) \mathcal{C} \]

with

\[\mathcal{C} \]

obtained from recurrence relations.

The following 'naturality' property of the resulting RC-brackets plays a crucial role:

\[(q \psi (p)) \mathcal{C} \]

However, these are not stable under \(\mathbb{Z}_1 \)-cocycle perturbations. E.g., by direct computation:

\[(q \lambda \cup (p)(1 + \lambda \zeta) \lambda - (q)(1 + \lambda \zeta) \lambda \cup (p) \lambda - (q) \lambda \cup (p)(1 + \lambda \zeta) \lambda + (q)(1 + \lambda \zeta) \lambda (p)(1 + \lambda \zeta) (X) S + (q)(1 + \lambda \zeta) \lambda (p)(X) S =: (q \psi (p)) \mathcal{C} \]

with

\[\mathcal{C} \]

obtained from recurrence relations.

The following 'naturality' property of the resulting RC-brackets plays a crucial role:

\[(q \psi (p)) \mathcal{C} \]

However, these are not stable under \(\mathbb{Z}_1 \)-cocycle perturbations. E.g., by direct computation:

\[(q \lambda \cup (p)(1 + \lambda \zeta) \lambda - (q)(1 + \lambda \zeta) \lambda \cup (p) \lambda - (q) \lambda \cup (p)(1 + \lambda \zeta) \lambda + (q)(1 + \lambda \zeta) \lambda (p)(1 + \lambda \zeta) (X) S + (q)(1 + \lambda \zeta) \lambda (p)(X) S =: (q \psi (p)) \mathcal{C} \]

with

\[\mathcal{C} \]

obtained from recurrence relations.

The following 'naturality' property of the resulting RC-brackets plays a crucial role:

\[(q \psi (p)) \mathcal{C} \]

However, these are not stable under \(\mathbb{Z}_1 \)-cocycle perturbations. E.g., by direct computation:

\[(q \lambda \cup (p)(1 + \lambda \zeta) \lambda - (q)(1 + \lambda \zeta) \lambda \cup (p) \lambda - (q) \lambda \cup (p)(1 + \lambda \zeta) \lambda + (q)(1 + \lambda \zeta) \lambda (p)(1 + \lambda \zeta) (X) S + (q)(1 + \lambda \zeta) \lambda (p)(X) S =: (q \psi (p)) \mathcal{C} \]

with

\[\mathcal{C} \]

obtained from recurrence relations.

The following 'naturality' property of the resulting RC-brackets plays a crucial role:

\[(q \psi (p)) \mathcal{C} \]

However, these are not stable under \(\mathbb{Z}_1 \)-cocycle perturbations. E.g., by direct computation:

\[(q \lambda \cup (p)(1 + \lambda \zeta) \lambda - (q)(1 + \lambda \zeta) \lambda \cup (p) \lambda - (q) \lambda \cup (p)(1 + \lambda \zeta) \lambda + (q)(1 + \lambda \zeta) \lambda (p)(1 + \lambda \zeta) (X) S + (q)(1 + \lambda \zeta) \lambda (p)(X) S =: (q \psi (p)) \mathcal{C} \]

with

\[\mathcal{C} \]

obtained from recurrence relations.

The following 'naturality' property of the resulting RC-brackets plays a crucial role:

\[(q \psi (p)) \mathcal{C} \]

However, these are not stable under \(\mathbb{Z}_1 \)-cocycle perturbations. E.g., by direct computation:

\[(q \lambda \cup (p)(1 + \lambda \zeta) \lambda - (q)(1 + \lambda \zeta) \lambda \cup (p) \lambda - (q) \lambda \cup (p)(1 + \lambda \zeta) \lambda + (q)(1 + \lambda \zeta) \lambda (p)(1 + \lambda \zeta) (X) S + (q)(1 + \lambda \zeta) \lambda (p)(X) S =: (q \psi (p)) \mathcal{C} \]
Lemma. Let H act on an algebra A with G-invariant inner, and let $u \in A$ be invertible.

Theorem B. The following $*$-product defines an associative deformation of A and H:

\[u (q \cdot a) \mapsto (q \cdot a)^u A \]
\[\tilde{T} \otimes \mathbb{1} + \mathbb{1} \otimes \tilde{T} = (\tilde{T}) \nabla \]

The element \(\tilde{\mathcal{H}} \in (\tilde{\mathcal{O}}) \tilde{\mathcal{G}}' + (\tilde{\mathcal{O}}) \tilde{\mathcal{G}} - \tilde{\mathcal{G}} =: \tilde{T} \)

\(\mathcal{O} \times (\tilde{\mathcal{O}}) \mathcal{G} \subset \mathcal{G} \otimes \mathcal{G} \otimes \mathcal{G} \).

Next form the algebra \(\tilde{\mathcal{H}} \) as a \(\mathcal{G} \)-module with left and right action

\[\mathcal{O} \times \mathcal{G} \times \mathcal{G} \times \mathcal{G} \]

\(\mathcal{O} \otimes \mathcal{G} \otimes \mathcal{G} \).
Let Q, Q', T, T' be maps of bimodules defined by U, V.

In particular, each RC-bracket uniquely determines an element $\mathcal{R} \subset \mathcal{H} \mathcal{R} \subset \mathcal{H} \mathcal{R}$. Moreover, by Theorem B one gets:

Ellipticity Lemma. For each $n \in \mathbb{N}$, one has

$$\mathcal{E} \mathcal{H} \mathcal{R} \subset \mathcal{H} \mathcal{R} \subset \mathcal{H} \mathcal{R}$$

be the map of d, d'-bimodules defined by

$$\left((\mathcal{O} + \mathcal{C}) \mathcal{T} \mathcal{O} \times \cdots \times (\mathcal{O} + \mathcal{C}) \mathcal{T} \mathcal{O}\right)_{\text{Hom}} \left(\mathcal{H} \mathcal{R} \subset \mathcal{H} \mathcal{R} \subset \mathcal{H} \mathcal{R}\right).$$

The proof of Theorem A follows by specializing $\mathcal{E} \mathcal{H} \mathcal{R}$ to D. i.e. sending $\mathcal{E} \mathcal{H} \mathcal{R} \mathcal{R} \mathcal{H} \mathcal{R} \mathcal{R} \mathcal{R}$ onto the Hopf-algebraic homomorphism $\mathcal{H} \mathcal{R} \mathcal{R} \mathcal{H} \mathcal{R} \mathcal{R} \mathcal{R} \mathcal{R} \mathcal{R}$ via the perturbation proposition.
We end by recording the most significant consequence of Theorem C.