Sample Placement Exam 2

Name__
(print name)

I have neither given nor received aid on this exam, nor will I discuss it with anyone until all students have taken the departmental exam.

Pledged__

No calculators are allowed on the Placement Exam.

1. Find the equation of the line containing the point (-2, 1) and parallel to the curve 2y - 3x = 5.

 a. \(y = \frac{2}{3}x + \frac{7}{3} \)

 b. \(y = \frac{3}{2}x - 2 \)

 c. \(y = -\frac{2}{3}x - \frac{1}{3} \)

 d. \(y = \frac{3}{2}x + 4 \)

 e. none of these

2. What is the numerator when the denominator is rationalized: \(\frac{2}{h - \sqrt{h^2 - 4}} \)

 a. \(3h - 2 \)

 b. \(2h + \sqrt{h^2 - 4} \)

 c. \(h + 2\sqrt{h^2 - 4} \)

 d. \(h + \sqrt{h^2 - 4} \)

 e. none of these

3. Multiply: \((x - 1)^2(2x^2 - x + 1)\)

 a. \(2x^4 + 3x^3 - 3x^2 + x + 1 \)

 b. \(2x^4 - 5x^3 + 5x^2 - 3x + 1 \)

 c. \(2x^4 - x^3 - x^2 + x - 1 \)

 d. \(2x^4 - x^3 + 3x^2 - x + 1 \)

 e. none of these

4. For the piecewise function \(f(x) = \begin{cases} -5 & \text{if } x < -2 \\ 2 & \text{if } -2 \leq x < 2 \\ x + 1 & \text{if } x \geq 2 \end{cases} \), find the value of:

 \(2f(-3) - f(2) = \)

 a. -13

 b. -11

 c. -8

 d. -7

 e. none of these
5. Which of the following is a factor of \(y + 5x + 3a + 15ax \).

a. \(x + a \)
 b. \(y + 5 \)
 c. \(x + y \)
 d. \(3a + y \)
 e. none of these

6. Simplify: \(\left(\frac{27x^{-4}y^{-3}z^{3}}{x^{5}y^{0}z^{-3}} \right)^{-\frac{1}{3}} \)

a. \(\frac{3}{x^{2}y^{3}} \)
 b. \(-3x^{3}y \)
 c. \(\frac{x^{3}y^{3}}{3z^{2}} \)
 d. \(-3x^{3}y^{3} \)
 e. none of these

7. When \(\frac{(2x+1)^{\frac{1}{3}}(2-x)(3)(2x+1)^{\frac{2}{3}}}{2x+1} \) is expressed in simplified form the numerator is:

a. \(3x - 1 \)
 b. \(3x + 5 \)
 c. \(5 + 5x - 2x^{2} \)
 d. \(1 + 5x - 2x^{2} \)
 e. none of these

8. Solve for \(x \): \(4x^{2} - 2x - 3 = 0 \)

a. \(-1 \pm \sqrt{13} \)
 b. \(-2 \pm \sqrt{13} \)
 c. \(1 \pm \sqrt{13} \)
 d. \(1 \pm 2\sqrt{13} \)
 e. none of these

9. Express as a single radical. \(\frac{5}{\sqrt[4]{(x - 2)^{3}}} \cdot \sqrt{x - 2} \)

a. \(24\sqrt[4]{(x - 2)^{3}} \)
 b. \(20\sqrt[4]{(x - 2)^{3}} \)
 c. \(11\sqrt[4]{(x - 2)^{6}} \)
 d. \(10\sqrt[4]{(x - 2)^{7}} \)
 e. none of these

10. State the range of the function \(f(x) = \sqrt{x - 2} + 1 \) in interval notation.

a. \((-\infty, \infty) \)
 b. \([0, \infty) \)
 c. \([1, \infty) \)
 d. \([2, \infty) \)
 e. none of these
11. Divide and simplify: \(\frac{x^2 + 2xy + y^2}{x^3 - y^3} + \frac{2x^2 + xy - y^2}{x^2 - y^2} \)

 a. \(\frac{(x+y)^2}{(2x-y)(x^2-xy+y^2)} \)
 b. \(\frac{x^2-y^2}{(x^2-xy+y^2)(2x-y)} \)
 c. \(\frac{(x+y)^2}{(x^2+xy+y^2)(2x-y)} \)
 d. \(\frac{(x+y)^2}{(x-y)^2(x^2+xy+y^2)} \)
 e. none of these

12. Solve for x: \(\frac{x - 3}{x (2-x)} \geq 0 \)

 a. \((-\infty, 0) \cup (2,3]\)
 b. \([0,2) \cup [3,\infty) \)
 c. \((-\infty,0) \cup (0,2) \)
 d. \([3,\infty) \)
 e. none of these

13. Simplify: \(\frac{2 - 2 - x^2}{x^1 - 2^{\frac{1}{2}}} \)

 a. \(\frac{x + 2}{2x} \)
 b. \(-\frac{(x+2)}{2x} \)
 c. \(-(x+2) \)
 d. \(\frac{x - 2}{4-x} \)
 e. none of these

14. When \(\frac{x - 3}{x^2 + 3x} - \frac{4x}{x^2 - 9} \) is simplified the numerator is:

 a. \(-3(x-1)\)
 b. \(-(x-9)\)
 c. \(-\left(9+3x^2\right)\)
 d. \(1-4x\)
 e. none of these

15. Find the slope intercept form of the line that passes through the points \((-4,1)\) and \((4,-5)\).

 a. \(y = -\frac{1}{2}x + 7 \)
 b. \(y = \frac{3}{4}x + 8 \)
 c. \(y = -\frac{3}{4}x - 2 \)
 d. \(y = -\frac{3}{4}x - 8 \)
 e. none of these
16. Solve: \(2 - 4x + 5 < 12 \)

 a. \(-\frac{11}{4}, \frac{11}{4}\)
 b. \(-\infty, -\frac{11}{4}\) \(\cup\) \(\left(\frac{11}{4}, \infty\right)\)
 c. \(-\frac{11}{4}, \frac{11}{4}\)
 d. \(-\infty, -\frac{11}{4}\) \(\cup\) \(\left(\frac{11}{4}, \infty\right)\)
 e. none of these

17. What is the remainder when \(3a^3 + 2a^2 - 3a - 1\) is divided by \(a - 2\) ?

 a. -25
 b. -11
 c. 11
 d. 49
 e. none of these

18. Solve: \(2x^2 - 3x \geq 5\)

 a. \((-\infty, -1] \cup \left[\frac{5}{2}, \infty\right)\)
 b. \((-\infty, -\frac{5}{2}] \cup [1, \infty)\)
 c. \([-1, \frac{5}{2}]\)
 d. \((-\infty, 0] \cup \left[\frac{3}{2}, \infty\right)\)
 e. none of these

19. How many real roots does the following polynomial have: \(x^5 - 2x^4 - x + 2 = 0\)

 a. 0
 b. 1
 c. 3
 d. 5
 e. none of these

20. Express the domain of \(f(x) = \frac{\sqrt{x + 3}}{x^2 - 2x - 8}\) in interval notation.

 a. \([-3, 2) \cup (2, 4) \cup (4, \infty)\)
 b. \((-\infty, -3) \cup (-3, -2) \cup (-2, 4) \cup (4, \infty)\)
 c. \((-\infty, -2) \cup (-2, 4) \cup (4, \infty)\)
 d. \([-3, -2) \cup (-2, 4) \cup (4, \infty)\)
 e. none of these

21. Find all solutions for the following equation on the interval \([0, 2\pi)\).
 \[2\cos^2 x = \sin x + 1\]

 a. \(\frac{\pi}{2}, \frac{7\pi}{6}, \frac{11\pi}{6}\)
 b. \(\frac{\pi}{3}, \frac{5\pi}{3}\)
 c. \(\frac{2\pi}{3}, \frac{3\pi}{2}\)
 d. \(\frac{\pi}{6}, \frac{5\pi}{6}, \frac{3\pi}{2}\)
 e. none of these
22. Given \(\sec \theta = \frac{x}{4} \) and \(\frac{\pi}{2} < \theta < \pi \) which of the following is true?

a. \(\sin 2\theta = \frac{8(x^2 - 16)}{x^2} \)
 b. \(\cos 2\theta = \frac{x^2 - 32}{x^2} \)
 c. \(\sin 2\theta = \frac{2\sqrt{x^2 - 16}}{x} \)

d. \(\cos 2\theta = \frac{16}{x^2} \)
e. none of these

23. What is the domain of the tangent function?

a. All real numbers except those between \(-1\) and 1
b. All real numbers except \(\frac{\pi}{2} + k\pi \) where \(k \) is an integer
c. All real numbers except \(k\pi \) where \(k \) is an integer
d. All real numbers
e. All real numbers between 0 and \(2\pi \)

24. Simplify: \(\frac{1}{\sec x} (\tan x + \cot x) \)

a. \(\cos x \)
b. \(\frac{1}{\sin x \cos^2 x} \)
c. \(\csc x \)
d. \(\csc x \sec x \)
e. none of these

25. Complete the square of the following expression: \(16x^2 - 16x + 32 \)

a. \((x - \frac{1}{2})^2 + \frac{7}{4} \)
b. \(16(x - \frac{1}{2})^2 - 2 \)
c. \(16(x - \frac{1}{2})^2 + 28 \)
d. \((x + \frac{1}{2})^2 + \frac{7}{4} \)
e. none of these