Algebra and Trigonometry

Interval notation:	Closed interval	$[a,b] = \{x \mid a \le x \le b\}$
	Open interval	$(a,b) = \left\{ x \mid a < x < b \right\}$
	Half-open interval	$[a,b) = \left\{ x \mid a \le x < b \right\}$
	Half-open interval	$(a,b] = \left\{ x \mid a < x \le b \right\}$

Set notation: If *A* is a set of objects, we write $x \in A$ if *x* is an object belonging to the set *A*. If *A* and *B* are sets, the <u>union</u> of *A* and *B* is $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$. The <u>intersection</u> of *A* and *B* is $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$.

Absolute value: The <u>absolute value</u> of a real number x is defined by $|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$.

 Rules for absolute values:
 1. |-a| = |a| 2. |ab| = |a||b|

 3. $\left|\frac{a}{b}\right| = \frac{|a|}{|b|}$ 4. $|a+b| \le |a|+|b|$

Exponents: For a positive integer n, $a^n = \underbrace{a \cdot a \cdot a \cdot \dots \cdot a}_{n \text{ times}}$ and $a^{\frac{1}{n}} = \sqrt[n]{a}$. If $a \neq 0$, $a^{-n} = \frac{1}{a^n}$ and $a^0 = 1$.

Rules for exponents:1.
$$a^n \cdot a^m = a^{n+m}$$
2. $\frac{a^n}{a^m} = a^{n-m}$ 3. $a^{n/m} = \sqrt[m]{a^n}$ 4. $(ab)^n = a^n b^n$ 5. $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$ Rules for radicals:1. $\sqrt[n]{ab} = \sqrt[n]{a}\sqrt[n]{b}$ 2. $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$

Logarithms: If a > 0 and $a^y = x$, we say that $\log_a x = y$.

Rules for logarithms: 1. $\log_a(xz) = \log_a x + \log_a z$ 2. $\log_a\left(\frac{x}{z}\right) = \log_a x - \log_a z$ 3. $\log_a x^z = z \log_a x$ **Conjugates**: The <u>conjugate</u> of an expression $a + b\sqrt{c}$ containing a radical is $a - b\sqrt{c}$.

Multiplying an expression by its conjugate eliminates the radical: $(a + b\sqrt{c})(a - b\sqrt{c}) = a^2 - b^2c$.

Polynomials: A <u>polynomial</u> of degree *n* in *x* has the form $a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$. <u>Factors</u> of a polynomial are two or more polynomials of lower degree which multiply together to yield the given polynomial.

Rules for factoring:
1.
$$a^2 - b^2 = (a - b)(a + b)$$

2. $a^2 + 2ab + b^2 = (a + b)^2$
3. $a^2 - 2ab + b^2 = (a - b)^2$
4. $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$
5. $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$

Roots: A number *r* is a <u>root</u> of a polynomial $a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ provided that $a_n r^n + a_{n-1} r^{n-1} + ... + a_1 r + a_0 = 0$. An n^{th} degree polynomial can have at most *n* roots. Also, if a number *r* is a root of a polynomial, then x - r is a factor of the polynomial. The roots of a quadratic polynomial $ax^2 + bx + c$ can always be found from the

	<u>quadratic formula</u> : $r = -b$	$\frac{b \pm \sqrt{b^2 - 4ac}}{2a}.$
Rules for fractions:	1. $\frac{A}{B} \cdot \frac{C}{D} = \frac{AC}{BD}$	2. $\frac{A/B}{C/D} = \frac{A}{B} \div \frac{C}{D} = \frac{AD}{BC}$
	3. $\frac{P}{Q} + \frac{R}{Q} = \frac{P+R}{Q}$	$4. \ \frac{P}{Q} - \frac{R}{Q} = \frac{P - R}{Q}$
	5. $\frac{A}{B} + \frac{C}{D} = \frac{AD + BC}{BD}$	$6. \ \frac{A}{B} - \frac{C}{D} = \frac{AD - BC}{BD}$

Rules for inequalities: Let *a*, *b*, and *c* be any real numbers.

- 1. If a < b and b < c, then a < c. 3. If a < b and c is positive, then ac < bc.
- 2. If a < b, then a + c < b + c. 4. If a < b and c is negative, then ac > bc.

Inequalities and absolute values: Suppose *a* is a real number and f(x) is an expression involving *x*.

1. If
$$|f(x)| < a$$
, then $-a < f(x) < a$. 2. If $|f(x)| > a$, then $f(x) > a$ or $f(x) < -a$.

Functions: A <u>function</u> f is a rule that assigns to each element x in a set A one and only one element y in a set B, with notation y = f(x). The set A is the <u>domain</u> of f, and the <u>range</u> of f is the set $\{y \in B \mid y = f(x) \text{ for some } x \in A\}$.

Lines: A <u>vertical line</u> has an equation of the form x = k for some constant k. A line that is not vertical must contain points $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ with $x_1 \neq x_2$; the <u>slope</u> of this line is the number $m = \frac{y_2 - y_1}{x_2 - x_1}$. A <u>horizontal line</u> has slope 0. Two lines with slopes m_1 and m_2 are <u>parallel</u> if they have the same slope ($m_2 = m_1$); the lines are <u>perpendicular</u> if their slopes are negative reciprocals ($m_2 = -\frac{1}{m_1}$).

Equations for lines: 1. If a line has slope *m* and $P_1(x_1, y_1)$ is a point on the line, the point-slope form of the equation of the line is $y - y_1 = m(x - x_1)$.

- 2. If a line has slope *m* and *y*-intercept *b* (*i.e.*, it crosses the *y*-axis at y = b), the slope-intercept form of the equation of the line is y = mx + b.
- 3. If $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ are points on the line, the <u>two-point form</u> of the

equation of the line is $\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$.

Circles, parabolas, ellipses and hyperbolas: A <u>circle</u> is the set of all points P(x, y) that are a fixed distance *r* from a fixed point C(h,k). The <u>equation of a circle</u> with <u>radius</u> *r* and <u>center</u> C(h,k) is $(x - h)^2 + (y - k)^2 = r^2$.

A <u>parabola</u> is the set of all points P(x, y) that are equidistant from a fixed point *F*, called the <u>focus</u>, and a fixed line ℓ , called the <u>directrix</u>. The point halfway between the focus and the directrix is the <u>vertex</u> of the parabola.

An equation for a parabola with vertex (h,k) and a horizontal directrix is $(x-h)^2 = 4p(y-k)$. (Parabola opens up or down) A parabola with vertex (h,k) and a vertical directrix has the equation $(y-k)^2 = 4p(x-h)$. (Parabola opens right or left) The sign on the constant *p* determines which way the parabola opens.

An <u>ellipse</u> is the set of all points P(x, y) with the property that the sum of the distances from P(x, y) to the fixed points F_1 and F_2 is a fixed constant value. The points F_1 and F_2 are the <u>foci</u> of the ellipse, and the point midway between the foci is the <u>center</u>. An equation for an ellipse with center (h,k) is

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1.$$

A <u>hyperbola</u> is the set of all points P(x, y) with the property that the difference of the distances from P(x, y) to the foci F_1 and F_2 is a fixed constant value. A hyperbola with center (h,k) has equation

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1 \qquad \text{or} \qquad \frac{(y-k)^2}{b^2} - \frac{(x-h)^2}{a^2} = 1$$

Trigonometry: Trigonometric functions can be defined from an acute angle of a right triangle or a central angle of the unit circle. Angles may be expressed in terms of <u>degrees</u> or <u>radians</u>. The conversion formula for changing from one to the other is π radians = 180°.

Trigonometric functions of important angles:

θ	radians	$\sin \theta$	$\cos\theta$	$tan \theta$
0°	0	0	1	0
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\sqrt{3/2}$	$\frac{1}{\sqrt{3}}$
45°	$\pi/4$	$\sqrt{2}/2$	$\sqrt{2}/2$	1
60°	$\frac{\pi}{3}$	$\sqrt{3}/2$	$\frac{1}{2}$	$\sqrt{3}$
90°	$\pi/2$	1	0	undefined
180°	π	0	-1	0
270°	$3\pi/2$	-1	0	undefined

Trigonometric identities: The following equations are relationships that hold for all trigonometric functions:

$\sin^2\theta + \cos^2\theta = 1$	$\tan^2\theta + 1 = \sec^2\theta$	$c^2 \theta$	$1 + \cot^2 \theta =$	$\csc^2 \theta$
$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \beta$	$\cos\alpha\sin\beta$	$\cos(\alpha + \beta) =$	$\cos\alpha\cos\beta$ - $\sin\alpha$	$\sin \alpha \sin \beta$
$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \beta$	$\cos\alpha\sin\beta$	$\cos(\alpha - \beta) =$	$\cos\alpha\cos\beta$ + :	$\sin \alpha \sin \beta$
$\sin 2\theta = 2\sin\theta\cos\theta$	$\cos 2\theta$	$=\cos^2\theta - \sin^2\theta$	$^2\theta = 2\cos^2\theta$ -	$-1 = 1 - 2\sin^2\theta$
$\cos^2\theta = \frac{1+\cos 2\theta}{2} \qquad \text{sin}$	$n^2\theta = \frac{1 - \cos 2\theta}{2}$	$\sin(-\epsilon)$	θ) = $-\sin\theta$	$\cos(-\theta) = \cos\theta$

Two useful properties related to trigonometric functions are the **Law of Cosines** and the **Law of Sines**.

The familiar Pythagorean Theorem says that if A, B, and C are the sides of a right triangle and C is the side opposite the right angle, then $C^2 = A^2 + B^2$. The Law of Cosines is a generalization of the Pythagorean Theorem. If, as shown in the triangle below, θ is the angle opposite side C, then the **Law of Cosines** states that

The Law of Sines gives a relationship between the three sides and the three angles of a general triangle. If α is the angle opposite side *A*, β is the angle opposite side *B*, and θ is the angle opposite side *C*, then the **Law of Sines** states that

A	В	С
$\sin \alpha$	$= \frac{1}{\sin \beta}$	$\sin\theta$