Dan Ramras: 2/13/2012

G-discrete group R-ring all spectra naive.

Want to study $\text{K}_*(R[\mathbb{G}])$ via assembly map.

Assembly (old day, '70s)

\[\text{H} \longrightarrow \text{GL}_n(R[\mathbb{G}]) \longrightarrow \text{BH} \longrightarrow \text{BGL}_n(R[\mathbb{G}]) \]

\[\text{H}_* (\text{BH}; R[\mathbb{G}]) \longrightarrow \text{K}_* R[\mathbb{G}] \]

Integral Novikov conjecture: α is injective for G torsion-free.

Geometric description of α:

x-metric space (E_G)

$\mathcal{B}_p(x)$ - cat of locally finite, R-free R-mod. over x w/ bounded morphisms

$M \longrightarrow \mathcal{B}_p(x) \longrightarrow X$

$\text{morf. } \phi \longrightarrow \text{locally finite}$

For each $x \in \mathcal{B}_p(x)$ bounded:

$\text{dist}(x) > 0 \Rightarrow \phi(x) = 0$

Notation: $\text{K}_*(\mathcal{B}_p(x)) = \text{K}_* (x)$

Observation: If X/α is finite diameter (G acting isometrically on X)

then $\mathcal{B}_p(x)^{\alpha} \cong \mathcal{B}_{R[\mathbb{G}]} (X/\alpha) \cong \text{fin gen. free } R[\mathbb{G}]-\text{mod.}$

$X \longrightarrow \mathcal{B}_p(x)^{\alpha} \cong R(\mathbb{G})$

To get homology theory, need a local version.

$\mathcal{C}_*(x) \cong B (x \times [0,1])$

morphism $\mathcal{C}_*(x)$ into $R(\mathbb{G})$ have propagation $\to 0$ as $t \to 1$.
Have \(eB(X) \leq e(X) \leq e(X) \rightarrow e(X)/e(X)_{e} \) Kanubqi quotient/pan category

Thm: The boundary map in K-theory for this sequence agrees with Toda's x when \(X = EG \), \(B \alpha \) fin. (W = cx)

Carlson's descent principle:

If \(e(EG) \) has trivial K-theory, then \(\alpha \) is (split) injective:

\[
\begin{align*}
\Omega(K\mathbb{Z}^{\infty}(EG)^{k}) & \xrightarrow{\partial} K^{0}(EG)^{k} \\
\Omega(K\mathbb{Z}^{\infty}(EG)^{k}) & \xrightarrow{\Omega(\partial)} K^{0}(EG)^{k}
\end{align*}
\]

Thm (Bartels, Carlsson-Goldfarb)

\(\alpha \) is inj. for \(h \) a geom. finite gap with finite asymptotic dim.

finite asymptotic dimension (Amarev)

\(X \) has a.d. \(\leq n \) if \(\forall r \exists i \exists X_{i} = \bigcup X_{i} \), \(X_{i} = \{ x_{i} \} \), \(d(x_{i}, x_{i}) \geq r \)

+ \(\forall X_{i} \) uniformly bounded, \(\forall \)

Ex: \(R \) has asympt. dim. 1: \(r > 0 \)

\(R^{2} \) has asympt. dim. 2: \(r > 0 \)

Today: \(\text{ft w/ Tessera-Yu} \) Extend to finite dec. complexity

Ex: \(R^{2} \) has FDC, \(r > 0 \)

Step 2: decompose previous strips

Step 1

Thm (Amarev-Tessera-Yu): A large linear gap \(G \in GL_{n}R \) have FDC with word metric
FDC: \(C \) set of metric families

\[\forall x, y \in C \text{ if } \forall \chi, \eta \in \chi \cup \eta, \chi = \chi' \cup \eta', \eta = \chi'' \cup \eta'' \]

\[\forall \chi, \eta, \chi', \eta' \in C \]

\[\exists \chi'' \in C \]

\[\exists \eta'' \in C \]

\[\forall \chi, \eta \in C \text{ uniformly bounded} \]

For \(\chi \) an ordinal,

\[\chi = \beta + 1 \Rightarrow \chi' = \chi \cup \{ \eta \} \]

\[\chi' \text{ decomposes over } \chi'' \]

\[\exists \chi'' \in C \]

\[\forall \chi, \eta \leq \chi' \]

Defn: \(X \) has FDC if \(\{ \chi, \eta \} \in \chi'' \).

\[\text{iff uniform actually get FAD} \]

Thm (Ramos-Tessera-Yan): \(\alpha \) is injective for \(\alpha \) w FDC \(\Rightarrow \text{Ba. Fin. Cov.} \).

More specifically \(K^c(\text{Ba}) = * \) \(\Rightarrow \text{R}(\text{EG}) = * \).

Basic principle: \(K^c(\text{EG}) = * \) \(\Rightarrow \text{EG} \) is good, convex.

\[s: \mathbb{G}(x) \rightarrow \mathbb{L}(x) \]

need good model of \(\text{EG} \):

\[\mathbb{P}_x \text{ has vertex set } \mathbb{G} \text{ and simplexes } \varpi \leq \mathbb{G} \]

\[\text{Rips complex with } d(\varpi_i, \varpi_j) < s \]

\[\text{Rips complex approach to } \mathbb{G} \text{ as } s \rightarrow \infty \text{ capture large-scale features} \]

Idea of proof that \(K^c(\mathbb{G}) = * \)

\[\text{Use M-VReduce to decompose } K^c(\mathbb{P}_x \mathbb{G}) \text{ has } \mathbb{P}_x \mathbb{G} \text{ decompose } \mathbb{G} \]

\[x \in K^c(\mathbb{P}_x \mathbb{G}) \text{ comes from morph of length } R \text{ (say)} \]

Decompose \(\mathbb{G} \):

\[\mathbb{G} = \mathbb{U} \cup \mathbb{V} \]

\[\mathbb{U} = \mathbb{U}_1 \cup \mathbb{U}_2 \]

\[\mathbb{V} = \mathbb{V}_1 \cup \mathbb{V}_2 \]

\[\mathbb{U}_1 \cap \mathbb{V}_2 = \emptyset \]

\[\mathbb{U}_2 \cap \mathbb{V}_1 = \emptyset \]

\[\mathbb{U}_2 \text{ and } \mathbb{V}_1 \text{ lower-capacity} \]

so stuck in the lower level piece.

Induction, can kill classes on \(\mathbb{P}_x \mathbb{U}_1 \) by increasing \(s \).

(in bounded case, make pieces convex)

Assemble via Rips complexes:

\[\text{colim } K^c(\mathbb{P}_x \mathbb{G})^s \rightarrow \text{colim } K^c(\mathbb{P}_x \mathbb{G})^s \]
\[\operatorname{colim} K^0(P^6) \to \operatorname{colim} K^0(P^6)^\mathbb{A} \]
\[\downarrow \text{co} \mathfrak{P}_{\mathbb{A}} \text{hocompact} \]
\[\operatorname{colim} (K^0(P^6))^\mathbb{A} \to \operatorname{colim} (K^0(P^6))^{\mathbb{A}} \]
\[\downarrow \text{?} \]
\[\operatorname{colim} K^0(P^6)^{\mathbb{A}} \to \operatorname{colim} K^0(P^6)^{\mathbb{A}} \]

? interchanges htpy limit/colimit. When BA is finite, SS converge and have same E^2-terms.

BA levelwise finite: SS converge after restricting to $EG^{(k)}$ in \mathbf{sk}. Thus kernel of assembly are maps that are sort of "phantoms".