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Abstract. In this paper, we establish a multiplicative equivalence be-
tween two multiplicative algebraic K-theory constructions, Elmendorf
and Mandell’s version of Segal’s K-theory and Blumberg and Mandell’s
version of Waldhausen’s S• construction. This equivalence implies that
the ring spectra, algebra spectra, and module spectra constructed via
these two classical algebraic K-theory functors are equivalent as ring,
algebra or module spectra, respectively. It also allows for comparisions
of spectrally enriched categories constructed via these definitions of K-
theory. As both the Elmendorf–Mandell and Blumberg–Mandell multi-
plicative versions of K-theory encode their multiplicativity in the lan-
guage of multicategories, our main theorem is that there is multinatural
transformation relating these two multifunctors that lifts the classical
functor from Segal’s to Waldhausen’s construction. Along the way, we
provide a slight generalization of the Elmendorf–Mandell construction
to symmetric monoidal categories.

1. Introduction

Algebraic K-theory is a powerful invariant that connects number theory,
algebraic geometry, geometric topology and homotopy theory. It has many
incarnations, reflecting these varied mathematical uses, but all share the
basic underlying idea of “splitting” some kind of “sum” operation, whether
that be direct sum of vector bundles or of modules, disjoint union of spaces,
or a more exotic structure. The first definitions of algebraic K-theory were
the constructions of the zeroth and first algebraic K-groups by Grothendieck
and Bass–Schanuel in the late 50s and early 60s.

In the late 60s, Quillen gave the first formulation of higher K-groups. The
fundamental philosophy behind his formulation is that higher algebraic K-
theory should arise as the higher homotopy groups of a space, or more
precisely, of an infinite loop space: a space with extra structure making it
equivalent to a spectrum. Thus algebraic K-theory creates interesting in-
variants by creating spectra. Hence, from a homotopy theory perspective,
algebraic K-theory provides a tool for constructing spectra. From a more
geometric or number theoretic point of view, spectra are a tool for construct-
ing rich groups of invariants. These ideas put K-theory at the center of a
fruitful mathematical symbiosis.
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After Quillen’s initial work, the 70s saw a flourishing of “machines” for build-
ing K-theory spectra out of algebraic or categorical data. Segal made good
on this idea in “Categories and cohomology theories,” [Seg74] which builds a
K-theory spectrum from any category with a symmetric monoidal product.
Contemporaneously, May’s operadic technology provided another method
for building K-theory spectra from suitable categorical input. Slightly later,
in the early 80s, Waldhausen produced another method for constructing K-
theory spectra from a very flexible form of categorical input data, now known
as Waldhausen categories. Additionally, Waldhausen provided a direct com-
parison of his construction with that of Segal.

The May–Thomason theorem [MT78] tells us that all of the May and Se-
gal constructions of spectra from categorical data are equivalent: May and
Thomason provide a way to compare the input data for these constructions
and prove that any possible way of building spectra from reasonable cate-
gorical data will produce equivalent output. This is a fundamental result.
It gives homotopy theorists the flexibility to work with a wide variety of
constructions depending on the situation at hand.

It has been clear from the origins of the subject that understanding algebraic
structures on spectra is crucial to performing research in homotopy theory.
The most basic such structure is some sort of multiplication “up to homo-
topy,” or better yet, “up to coherent homotopy.” There are now a number
of ways to make sense of this idea. For example, modern good categories of
spectra have a well-defined and homotopically well-behaved smash product
that allows one to perform algebraic operations on spectra as if they were
classical rings in what is known as “Brave New Algebra.”

At the time of the original algebraic K-theory constructions, researchers
did not have access to these “good” categories of spectra, but in light of
modern constructions of these categories, we can require more of algebraic
K-theory. An obvious desideratum is to construct spectra from categorical
data in such a way as to produce these kind of multiplicative structures
from “multiplicative” types of categorical input. Indeed, there is a large
body of work on “multiplicative infinite loop space machines” of this sort
[May80, May82, May09].

In this paper, we focus on the Segal and Waldhausen constructions. Segal’s
algebraic K-theory construction is lifted to a multiplicative construction in
[EM06]. Waldhausen’s construction is lifted to a multiplicative construction
in [BM11]. Both lifts use the language of multicategories to encode their
multiplicativity.

While the May–Thomason theorem allows one to compare the underlying
“additive” spectra of any such constructions, the techniques there do not
extend to considering this new multiplicative structure. Such a comparision
is much to be desired: spectra may enjoy several multiplicative structures
and it is important to be able to identify when we have the same one. In this
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paper, we show that two multiplicative K-theory constructions produce the
same multiplicative spectra when given comparable input. Our technique is
to produce a multinatural transformation between the multifunctorial ver-
sions of the Segal and Waldhausen algebraic K-theory constructions which
lifts Waldhausen’s initial comparison of these constructions.

The result here is not only important in developing brave new algebra struc-
tures on spectra. Essentially the same structures arise in studying stable
categories: categories in which the morphisms form spectra. In such a cate-
gory, the composition pairing behaves like a multiplication. Because we work
with multicategories, our comparison applies directly to spectrally-enriched
categories constructed from these different versions of K-theory.

This result is new but perhaps not unanticipated: it is expected that alge-
braic K-theory in all its different guises should be the same construction in
the strongest possible sense, including the sum total of its structure. There
are several recent results along this general line in an infinity-categorical
context.

• Work of Blumberg–Gepner–Tabuada [BGT16] provides a uniqueness
result for algebraic K-theory as a functor from the infinity cate-
gory of idempotent-complete stable infinity categories that includes
uniqueness of the multiplicative structure.
• Gepner–Groth–Nikolaus [GGN15] show that “group completion” in

the sense of constructing a connective spectrum from an E∞-space
is universal as a functor between symmetric monoidal infinity cate-
gories. This gives them universal multiplicative versions of K-theory
as a functor from the infinity category of symmetric monoidal cate-
gories or the infinity category of symmetric monoidal infinity cate-
gories to the infinity category of spectra.
• Barwick [Bar15] also provides a universal multiplicative structure

on algebraic K-theory, in this context thought of as a functor from
the infinity category of Waldhausen infinity categories to the infinity
category of spectra.

Our result differs in two key ways from this work, and is not directly com-
parable. First, by working with multicategories, we provide an on-the-nose
comparison of multiplicative K-theory constructions. This means our com-
parison has the ability to identify strictly commutative ring spectra as well
as make other strict comparisions; this includes composition in spectral cat-
egories as mentioned above. This ability to make strict comparisons is nec-
essary for “change of enrichment” type results.

Second, we focus on K-theory as a construction on Waldhausen categories,
rather than any of the classes of infinity categories. Since the classical Wald-
hausen and Segal constructions apply only to more specific types of input,
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their uniqueness is not addressed by any of the uniqueness or universal-
ity results above. The present paper provides this kind of multiplicative
comparison between the classical versions of algebraic K-theory.

1.1. Statement of results and structure of this paper. The main re-
sult of this work the construction of a multinatural transformation between
the multifunctorial versions of Segal’s and Waldhausen’s algebraic K-theory
functors. Since these two constructions traditionally start with different
types of input categories—symmetric monoidal categories in the first in-
stance and Waldhausen categories in the second—we must first establish
a multifunctor comparing these inputs. Essentially, our main result is to
establish the following diagram:

Theorem 1.1 (See Theorem 9.1). There is a natural transformation of
multifunctors making the following diagram commute:

Wald∨

K $$

//

��

SMC

Kzz
Spec

Elmendorf–Mandell [EM06] shows that ring structures on spectra, modules
over ring spectra and algebras over ring spectra can be encoded as multi-
functors from certain small multicategories to the multicategory of spectra.
Hence this theorem provides a comparision between spectral algebraic ob-
jects arising from these two constructions. This is detailed in Corollaries
10.2 and 10.3.

In Theorem 10.1, we show that this natural transformation is an equiva-
lence on Waldhausen categories with split cofibrations. This is the classical
condition under which Waldhausen [Wal85] provides an equivalence between
Segal and Waldhausen K-theory spectra.

The structure of the paper is as follows. In Section 2 we give a quick overview
of symmetric spectra. In Section 3, we provide the basic definitions of
Waldhausen and Segal-style K-theory. This is an ahistorical treatment: we
use the Blumberg–Mandell definition of iterated Waldhausen K-theory from
[BM11] and a generalization of the Elmendorf–Mandell version of K-theory
[EM06] that allows for the symmetric monoidal category inputs. Although
the point of these models is that they are multifunctorial, at this point,
we develop only the basic definitions and defer the multifunctor structure
until Sections 6 and 7. In Section 4, we provide a brief introduction to
multicategories and multifunctors, including enriched versions. Section 5
introduces E∗-Cat , an auxilliary category used in proving the main result,
and establishes its relationship to symmetric spectra. In Section 8 we build
the multifunctor that takes Waldhausen categories to symmetric monoidal
categories. Section 9 is devoted to the proof of the main theorem and Sec-
tion 10 discusses the question of when the transformation is an equivalence
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and gives corollaries summarizing some of the key consequences of the main
results.

Poetic summary of results.

Segal and Waldhausen
Both have built K-theories
These are the same viewed with
Additive eyes.

Now we have proved that their
Multiplications are
Not multifarious:
What a surprise.
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Tony Elmendorf, Lars Hesselholt, Mona Merling and Inna Zakharevich for
interesting and helpful conversations.
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DMS-1710534. The second author was partially supported by the Simons
Foundation Grant No. 359449, the Woodrow Wilson Career Enhancement
Fellowship, and NSF grant DMS-1709302. The first author also thanks the
Isaac Newton Institute for Mathematical Sciences for support and hospi-
tality during the program “Homotopy Harnessing Higher Structures” when
some of the work on this paper was undertaken. This work was supported
by EPSRC grant numbers EP/K032208/1 and EP/R014604/1.

2. Preliminaries on symmetric spectra

In this paper, we use symmetric spectra in simplicial sets [HSS00] as our
model of spectra because they are the most natural target category for the
two K-theory constructions. We briefly review some of the key elements of
the theory of symmetric spectra and establish some notation we use in the
sequel. For further details, we refer the reader to [HSS00, MMSS01, Sch07].

Definition 2.1. The standard model for the circle as a based simplicial
set is S1 = ∆[1]/∂∆[1]. Thus, S1

n = n∗ = {0, 1, . . . , n}, where 0 is the
basepoint, and for a map β : [n] → [m] in ∆, the corresponding simplicial
map β∗ : m∗ → n∗ in S1 sends i to j if β(j − 1) < i ≤ β(j), and it sends i
to 0 if there is no such j.

This description of the maps β∗ can be deduced from the following observa-
tion.
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Remark 2.2. Let F be the category with objects the finite pointed sets n∗
as above, and pointed maps. The simplicial circle can be identified with the
composite

∆op −→ F −→ Set∗,

where the first functor is as described above, and the second functor is the
inclusion into based sets. Under the identification F ∼= Γop, this first functor
is the canonical functor ∆op → Γop (see [MMO, Remark 9.1]).

Definition 2.3. A symmetric spectrum X consists of

(1) a based simplicial set Xn with a left Σn-action for each n ≥ 0,
(2) maps of based simplicial sets σn : Xn ∧ S1 −→ Xn+1 for all n ≥ 0,

satisfying certain Σn-equivariance axioms as spelled out in [HSS00, Defini-
tion 1.2.2].

Definition 2.4. A morphism f : X −→ Y of symmetric spectra consists of
maps fn : Xn −→ Yn of based simplicial sets that are Σn-equivariant, and
compatible with the structure maps in the sense that the diagram

Xn ∧ S1 σn //

fn∧id
��

Xn+1

fn+1

��
Yn ∧ S1

σn
// Yn+1

commutes for all n ≥ 0.

We denote the category of symmetric spectra by Spec.

The category of symmetric spectra is tensored and enriched over the category
of pointed simplicial sets. For a symmetric spectrum X and a pointed
simplicial set K, the symmetric spectrum K ∧X is defined by

(K ∧X)n = K ∧Xn,

with structure maps inherited from X. For symmetric spectra X and Y ,
the mapping simplicial set map(X,Y ) is defined as

map(X,Y )n = Spec(∆[n]+ ∧X,Y ),

with face and degeneracy maps induced by precomposition of the corre-
sponding maps in ∆[−]. Note that the 0-simplices can be naturally identified
with the set of spectrum maps X −→ Y .

The category Spec has a symmetric monoidal structure given by the smash
product. As we will not need the details of the construction here, we will
instead concentrate on its universal property.

Definition 2.5. A bilinear map f : (X,Y ) −→ Z of symmetric spectra
consists of Σp × Σq-equivariant maps of based simplicial sets

fp,q : Xp ∧ Yq −→ Zp+q,
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for all p, q,≥ 0. These maps must be compatible with the structure maps,
i.e., the diagrams

Xp ∧ Yq ∧ S1
id∧σq //

fp,q∧id

��

Xp ∧ Yq+1

fp,q+1

��
Zp+q ∧ S1

σp+q
// Zp+q+1

Xp ∧ S1 ∧ Yq
σp∧id //

��

Xp+1 ∧ Yq
fp+1,q

��
Xp ∧ Yq ∧ S1

fp,q∧id

��

Zp+1+q

��
Zp+q ∧ S1

σp+q
// Zp+q+1

must commute for all p, q ≥ 0. The unlabeled maps in the right diagram are
given by the twist and by the action of the block permutation in Σp+q+1 that
leaves the first p elements fixed and swaps the block of the last q elements
with the p+ 1st element. One can similarly define k-linear maps, where the
input is given by k-tuples of symmetric spectra.

The smash product X ∧ Y comes with a bilinear map (X,Y ) −→ X ∧ Y ,
satisfying that for all Z, composition with this map induces a bijection

Spec(X ∧ Y, Z)
∼=−→ Bilin((X,Y ), Z).

There is a similar bijection for iterated smash products and k-linear maps.

We also require symmetric spectra in simplicial categories, or more precisely,
in based simplicial categories. As explained in [EM06, Definition 7.1], one
can define symmetric spectra in simplicial objects in V∗, where V is any
bicomplete cartesian closed category. In what follows we specialize to the
case V = Cat , the category of small categories. Let ∗ denote the trivial
category with one object and one morphism, which is final in Cat .

Definition 2.6. A based category consists of a category C together with a
functor ∗ → C. Note that this amounts to choosing a base object ∗ ∈ C. A
based functor F : C → D is a functor that preserves base objects. A based
natural transformation φ between based functors F,G : C → D must satisfy
the condition that the component φ∗ at the base object ∗ ∈ C is the identity
map id∗ on the base object ∗ ∈ D.

Let Cat∗ denote the category of based small categories and based functors.
We will also denote by Cat∗ the 2-category that includes based natural trans-
formations.

The category Cat∗ has a coproduct ∨ and smash product ∧ defined analo-
gously to the wedge product and smash product of based spaces. See [EM09,
Construction 4.19] for the construction of smash products in the general set-
ting of based objects in a symmetric monoidal category V.

Let sCat∗ denote the category of simplicial objects in based categories; that
is, of functors ∆op → Cat∗. This category is tensored over based simplicial
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sets, with the tensor C ∧K of C ∈ Cat∆op

∗ and a based simplicial set K given
by

(C ∧K)n =
∨
Kn\∗

Cn.

We can then adapt verbatim Definitions 2.3 to 2.5 to define symmetric spec-
tra in sCat∗ and their maps.

Since Cat∗ is a 2-category, and hence so is sCat∗, we can further define 2-
cells between morphisms of symmetric spectra, and more generally, between
multilinear maps.

Definition 2.7. Let f, g : C → D be morphisms of symmetric spectra in
(Cat∗)

∆op
. A 2-cell α between them consists of based natural transformations

αn : Cn → Dn in sCat∗ such that

Cn ∧ S1 σn //

fn∧id

��
gn∧id

��

ks
αn∧id

Cn+1

fn+1

��
Dn ∧ S1

σn
// Dn+1

=

Cn ∧ S1 σn //

fn∧id
��

Cn+1

fn+1

��
gn+1

��
ks
αn+1

Dn ∧ S1
σn
// Dn+1

We thus see that Spec(sCat) is enriched over Cat .

As a right adjoint, the nerve functor N : Cat → sSet preserves products, and
it extends to a lax symmetric monoidal functor N : (Cat∗,∧) → (sSet∗,∧).
We can further consider the composite

sCat∗
N−→ ssSet∗

diag−−→ sSet∗

obtained by applying the nerve levelwise to a based simplicial category to
obtain a bisimplicial set, and then taking the diagonal (or geometric real-
ization) to obtain a simplicial set. By abuse of notation, we also denote this
functor by N .

Proposition 2.8. The nerve functor N : sCat∗ → sSet∗ is lax symmet-
ric monoidal when considering the monoidal structure given by applying ∧
levelwise. We thus obtain a lax symmetric monoidal functor (of categories
enriched in Set)

N : Spec(sCat)→ Spec.

Lax monoidality of N further allows us to use the nerve to change enrich-
ments. By applying N at the level morphisms, we obtain a simplicially
enriched category from any category enriched in categories. Specifically,
we can view Spec(sCat) as enriched in simplicial sets by applying N to
its categorical enrichment. One then checks that the following proposition
holds.

Proposition 2.9. The functor N : Spec(sCat)→ Spec is a lax symmetric
monoidal functor of categories enriched in simplicial sets when Spec(sCat)
is given a simplicial enrichment via the nerve as above.
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This proposition allows us to work with categorical enrichment throughout
this paper. Indeed, while the K-theory constructions of Section 3 typically
land in Spec, we define them as categorically-enriched constructions landing
in Spec(sCat). By first changing to simplicial enrichment by applying N at
the level of morphisms and then applying Proposition 2.9, one can obtain
the more familiar simplicially-enriched constructions landing in Spec.

3. The K-theory constructions

In this section, we give the basic definitions of the two K-theory construc-
tions this paper compares. The details of the “multiplicative” or “multifunc-
torial” aspects of the constructions are deferred to Sections 6 and 7; at this
point, we simply define the spaces of the K-theory spectra produced by the
two constructions. This presentation of the material is certainly ahistorical:
the reason for both of these particular versions of K-theory constructions is
that they extend beautifully to multifunctorial constructions. However, the
separation of the basic construction from the multifunctoriality allows us to
highlight the multiplicative framework used to compare these constructions
and (hopefully) clarifies some of the inevitable technical points.

3.1. Iterated Waldhausen K-theory. The version of Waldhausen’s S•
construction that we use is an “iterated S• construction” introduced in
[GH06], with more details found in [BM11] and [Zak18]. It is equivalent to
iterating Waldhausen’s original construction [Wal85], but produces a multi-
simplicial structure rather than a simplicial structure and thus can be viewed
as a multifunctor, as detailed in the references above and in Section 6.

We first recall the definition of a Waldhausen category [Wal85].

Recall that a category is pointed if it has a distinguished object ∗ which is
both initial and final.

Definition 3.1. A Waldhausen category C is a pointed category together
with subcategories wC (with morphisms called weak equivalences and de-

noted by
∼−→) and cC (with morphisms called cofibrations, denoted by ↪→),

satisfying the following axioms.

(1) All isomorphisms are contained in wC and cC.
(2) For any object X in C, the unique map ∗ → X is a cofibration.
(3) If Y ←↩ X → Z is a diagram in C, the pushout Y qX Z exists, and

the map Z → Y qX Z is a cofibration.
(4) Given a diagram

Y

∼
��

X //

∼
��

? _oo Z

∼
��

Y ′ X ′ //? _oo Z

in C, the induced map Y qX Z
∼−→ Y ′ qX′ Z ′ is a weak equivalence.
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We now establish some notation and terminology.

Notation 3.2. Let [m] be the poset 0 ≤ 1 ≤ · · · ≤ m thought of as a
category. Let Ar[m] denote the category of arrows in [m]. The objects of
Ar[m] are given by pairs of numbers ij where 0 ≤ i ≤ j ≤ m. Given a
natural number n and an n-tuple of natural numbers (m1, . . . ,mn), we let

Ar[m1, . . . ,mn] = Ar[m1]× · · · ×Ar[mn].

Definition 3.3 ([BM11, Definition 2.1]). Let C be a Waldhausen category.
A functor F : [m1]× · · · × [mn]→ C is cubically cofibrant if

(1) Each map F (i1, . . . , in)→ F (j1, . . . , jn) is a cofibration;
(2) in every square given by 1 ≤ r ≤ s ≤ n,

F (i1, . . . , in) //

��

F (i1, . . . , ir + 1, . . . , in)

��
F (i1, . . . , is + 1, . . . , in) // F (i1, . . . , ir + 1, . . . , is + 1, . . . , in),

the induced map from the pushout to the lower right entry is a
cofibration;

(3) the higher dimensional analog of (2) holds: for a k-dimensional sub-
cube given by increasing k of the indices by 1, the map from the
pushout of the subcube without the terminal vertex to that termi-
nal vertex is a cofibration.

We can now define the nth level of the K-theory spectrum of the Waldhausen

category C. For each n, we define a n-fold simplicial category S
(n)
•,...,•C.

Definition 3.4. Let m1, . . . ,mn be natural numbers. Let S
(n)
m1,...,mnC be the

category whose objects are functors A : Ar[m1, . . . ,mn] → C satisfying the
following conditions:

(1) Ai1j1,...,injn = ∗ whenever ik = jk for some 1 ≤ k ≤ n;
(2) the functor C : [m1] × · · · × [mn] → C given by C(j1, . . . , jm) =

A0,j1;...;0,jn is cubically cofibrant as in Definition 3.3;
(3) for every object (i1j1, . . . , injn) in Ar[m1, . . . ,mn], every 1 ≤ k ≤ n

and every jk ≤ r ≤ mk the diagram

Ai1j1,...,ikjk,...injn
//

��

Ai1j1,...,ikr,...,injn

��
Ai1j1,...,jkjk,...injn

// Ai1j1,...,jkr,...,injn

is a pushout square.

Morphisms in S
(n)
m1,...,mnC are natural transformations.
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Waldhausen’s S• construction is the special case of this construction where
n = 1. The cubical cofibracy condition implies the required cofibrancy
conditions in this case. Note that the definition makes sense even when
n = 0. In this case we are working with empty tuples; thus Ar[ ] is the
terminal category, all of the conditions on the functors are vacuous, and we

get that S(0)C ∼= C. The n-fold simplicial structure on S
(n)
•,...,• is induced by

the comultisimplicial structure on Ar[−, . . . ,−].

Proposition 3.5. The n-fold simplicial category S
(n)
•,...,•C is isomorphic to

the n-fold iteration of Waldhausen’s S• construction on C.

To see this, note that the objects in S
(n)
m1,...,mnC are functors Ar[m1] ×

· · · × Ar[mn] → C, while the objects in Sm1(· · · (Smn(C))· · ·) are functors
Ar[m1]→ Sm2(· · · (Smn(C))· · ·). Iterated use of the product-hom adjunction
in Cat allows one to view the latter as the former. Via this identification,
one translates the conditions on S• to those of Definition 3.4 to get the
isomorphism.

Consider the n-fold simplicial category wS
(n)
•,...,•C given by restricting the

morphisms to those natural transformations whose components are weak
equivalences. We can obtain a simplicial category by taking the diagonal.

Definition 3.6 ([BM11]). The K-theory spectrum of a Waldhausen cate-
gory C is defined to be the symmetric spectrum KWaldC in Spec(sCat) with
n-th level given by the simplicial category

KWaldC(n) = diag(wS
(n)
•,...,•C).

The Σn action on KWaldC(n) is given by permuting the sequencesm1, . . . ,mn.

Of course, to give a complete definition of the K-theory spectrum KWaldC,
we should discuss the structure maps. These can be found in [Zak18, §6],
but they will also follow from our discussion of the multicategorical version
in Section 6. See, in particular, Theorems 5.6 and 6.8.

3.2. The K-theory of a symmetric monoidal category. We next turn
to the K-theory of a symmetric monoidal category. Our definition is a mi-
nor refinement of the K-theory functor defined by Elmendorf and Mandell
[EM06], which is itself an adaptation of Segal’s classical construction of the
K-theory of symmetric monoidal category [Seg74]. Elmendorf and Mandell
produce a multifunctorial construction of the K-theory of a permutative cat-
egory, that is, of a symmetric monoidal category that is strictly associative
and has a strict unit. In what follows, we consider strictly unital symmetric
monoidal categories: ones with strict unit but whose associativity natural
transformation need not be strict. Since any symmetric monoidal category
can be rigidified to either a strictly unital symmetric monoidal category or
to a permutative category, we do not change the effective generality of the
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construction, but it is more convenient for our comparison. Our adapta-
tion of the Elmendorf–Mandell construction simply requires keeping track
of associativity isomorphisms.

The context of strictly unital symmetric monoidal categories may seem
somewhat ad hoc at first, but these categories are a natural source for K-
theory constructions. The unit functions as a basepoint and asking for
structure that preserves the unit strictly is akin to requiring based maps.

Definition 3.7. Let (C,⊕) be a small symmetric monoidal category, with
unit e, symmetry γ and associator α. We say that C has a strict unit if the
functors e⊕− : C → C and −⊕ e : C → C are equal to the identity functor,
and the left and right unitors are the identity natural transformations—i.e.,
the natural maps e ⊕ c → c and c ⊕ e → c are the identity maps. Note
that this implies that instances of the symmetry and associativity natural
transformations involving the unit must be the identity.

Definition 3.8. Let C be a small strictly unital symmetric monoidal cate-
gory. Let M1, . . . ,Mn be finite based sets. In what follows, we will denote
by 〈S〉 the n-tuple (S1, . . . , Sn), where Si is a subset of Mi not containing
the basepoint. For 1 ≤ i ≤ n and T a basepoint-free subset of Mi, we let
〈SdiT 〉 denote the n-tuple (S1, . . . , Si−1, T, Si+1, . . . , Sn).

Define C̄(M1, . . . ,Mn) to be the category whose objects are systems

{C, ρ} = {C〈S〉, ρ〈S〉,i,T,U}
where

• 〈S〉 = (S1, . . . , Sn) runs through all n-tuples of subsets Si ⊂Mi such
that Si does not contain the basepoint,
• in ρ〈S〉,i,T,U , i runs through 1, . . . , n and T and U run through subsets

of Si with T ∩ U = ∅ and T ∪ U = Si,
• C〈S〉 is an object of C,
• ρ〈S〉,i,T,U is an isomorphism1

C〈SdiT 〉 ⊕ C〈SdiU〉 −→ C〈S〉

in C,

such that certain axioms hold. These axioms are those of [EM06, Construc-
tion 4.4], except that we adapt them to include the associativity isomor-
phisms, any of which is denoted by α below. That is, we require:

(1) (Pointedness 1) C〈S〉 = e if any of the sets Sk is empty,
(2) (Pointedness 2) ρ〈S〉,i,T,U is the identity if any of the sets Sk, T or U

is empty,

1This definition varies slightly from that of Elmendorf and Mandell in that they do not
require ρ to be invertible here. However, there is a natural adjunction between the category
where the ρ’s are isomorphisms and the category where the ρ’s are merely morphisms, and
so upon geometric realization we obtain weakly equivalent K-theory spaces.

12



(3) (Commutativity) for all ρ〈S〉,i,T,U , the following diagram commutes:

C〈SdiT 〉 ⊕ C〈SdiU〉
ρ〈S〉,i,T,U //

γ

��

C〈S〉

C〈SdiU〉 ⊕ C〈SdiT 〉 ρ〈S〉,i,U,T
// C〈S〉

(4) (Associativity) for all 〈S〉, i, and T,U, V ⊂Mi with T ∪U ∪ V = Si
and T , U , V pairwise disjoint, the following diagram commutes:

(
C〈SdiT 〉 ⊕ C〈SdiU〉

)
⊕ C〈SdiV 〉

ρ〈SdiT∪U〉,i,T,U⊕id
//

α

��

C〈SdiT∪U〉 ⊕ C〈SdiV 〉

ρ〈S〉,i,T∪U,V

��

C〈SdiT 〉 ⊕
(
C〈SdiU〉 ⊕ C〈SdiV 〉

)
id⊕ρ〈SdiU∪V 〉,i,U,V

��
C〈SdiT 〉 ⊕ C〈SdiU∪V 〉 ρ〈S〉,i,T,U∪V

// C〈S〉

(5) (Coherence of the ρs) for all 〈S〉, all i 6= j, and all T , U , V , W with
T ∪ U = Si and V ∪W = Sj , the following diagram commutes:

(
C〈SdiTdjV 〉⊕(C〈SdiUdjV 〉⊕C〈SdiTdjW 〉)

)
⊕C〈SdiUdjW 〉

(C〈SdiTdjV 〉⊕C〈SdiUdjV 〉)⊕(C〈SdiTdjW 〉⊕C〈SdiUdjW 〉)

(
C〈SdiTdjV 〉⊕(C〈SdiTdjW 〉⊕C〈SdiUdjV 〉)

)
⊕C〈SdiUdjW 〉

(C〈SdiTdjV 〉⊕C〈SdiTdjW 〉)⊕(C〈SdiUdjV 〉⊕C〈SdiUdjW 〉)

C〈SdjV 〉⊕C〈SdjW 〉

C〈SdiT 〉⊕C〈SdiU〉

C〈S〉

α ∼=

OO

ρdjV,i,T,U⊕ρdjW,i,T,U //

ρ〈S〉,j,V,W

��
(id⊕γ)⊕id ∼=

��

α ∼=

��

ρdiT,j,V,W⊕ρdiU,j,V,W
//

ρ〈S〉,i,T,U

OO

In the horizontal maps, ρdjV,i,T,U is shorthand for ρ〈SdjV 〉,i,T,U and
so forth.

A morphism f : {C, ρ} → {C ′, ρ′} is a system of morphisms f〈S〉 : C〈S〉 →
C ′〈S〉 for all 〈S〉 such that f〈S〉 is the identity when any Sk is empty and the

morphisms f〈S〉 commute with the morphisms ρ〈S〉,i,T,U in the natural sense.
13



The categories C(M1, . . . ,Mn) fit together to form a functor from n-tuples
of finite based sets to categories. Permuting the sets M1, . . . ,Mn yields an
isomorphic category, and this, together with the other functorial structures
enjoyed by C, allows Elmendorf and Mandell to make the following definition
of a K-theory spectrum of C. Recall the simplicial model of the circle from
Definition 2.1. Since S1 is a functor from ∆op fo F (see Remark 2.2), we can
precompose C with (S1)×n to produce an n-fold based simplicial category
C(S1, . . . , S1︸ ︷︷ ︸

n

).

Definition 3.9 (Elmendorf–Mandell). For a small symmetric monoidal cat-
egory C, the symmetric spectrum KSMC(C) is defined at level 0 by K(C)(0) =
C(S0) and at level n > 0 by the simplicial category

KSMC(C)(n) = diag(C(S1, . . . , S1︸ ︷︷ ︸
n

))

Again, this definition of the K theory spectrum is not complete without the
structure maps, but we defer the definition of these to Section 7.

Remark 3.10. This definition of the K-theory spectrum KSMC(C) requires
only that C be a symmetric monoidal category. However, the construction
is typically applied in the case where C is a groupoid. The value of passing
to groupoids is illustrated on π0: In the general case, π0KSMC(C) is the
group completion of the monoid π0B(C), which is the set of objects in C
modulo the relation that identifies two objects that are connected by a
string of morphisms. In the case where C is a groupoid, we obtain the group
completion of the monoid of isomorphism classes of its objects.

4. Multicategories

As mentioned in the introduction, the multiplicative structure on the K-
theory constructions of Section 3 is encoded by describing them as multi-
functors, that is, as functors between multicategories. In this section, we
recall the definitions necessary to make these concepts precise.

The multicategories of interest in this paper are symmetric multicategories
enriched in Cat and sSet . We thus give the general definition of a symmet-
ric multicategory enriched over an arbitrary symmetric monoidal category
(V,⊗, I). For a full account, see [Yau16, Chapter 11].

Definition 4.1. A symmetric multicategory enriched in V, denoted M, con-
sists of a collection of objects, denoted Ob M, and for each k ≥ 0 and objects

14



a1, · · · ak, b, an object M(a1, . . . , ak; b) of V. The morphism objects are re-
lated by composition maps (in V)

M(b1, . . . bn; c)⊗M(a1
1, . . . , a

k1
1 ; b1)⊗ · · · ⊗M(a1

n, . . . , a
kn
n ; bn)

Γ
��

M(a1
1, . . . , a

k1
1 , . . . , a

1
n, . . . , a

kn
n ; c).

For each object a, there is an identity map I → M(a; a). Given σ ∈ Σk,
there is a map in V

σ∗ : M(a1, . . . , ak; b)→M(aσ(1), . . . , aσ(k); b).

All of this data is subject to associativity, identity and equivariance condi-
tions, which can be found in [EM06, Def 2.1] or [Yau16, Def 11.2.1]

Remark 4.2. As is the case with enriched categories, a symmetric multicate-
gory M enriched in V has an underlying symmetric multicategory (enriched
in sets). We call the morphisms in the underlying multicategory the k-ary
morphisms of M. The identity map I →M(a; a) corresponds to the identity
1-ary morphism. In the cases where V is Cat and sSet , the k-ary morphisms
in the multicategory are given by the objects in the morphism category and
the 0-simplices in the morphism simplicial set, respectively.

Composing with k-ary morphisms induces maps in V between the different
morphism objects. For example, a 1-ary morphism h from b to c induces a
map

h ◦ − : M(a1, . . . , ak; b)→M(a1, . . . , ak; c).

Notation 4.3. When V = Cat , the morphisms of M(a1, . . . , ak; b) are called
k-ary cells. Following the usual 2-categorical convention, k-ary morphisms
f, g : (a1, . . . , ak)→ b and k-ary cells β : f ⇒ g are depicted as

(a1, . . . , ak)

f
''

g

77�� β b.

Composition of morphisms will be denoted by (g; f1, . . . fn) 7→ g◦(f1, . . . , fn);
similarly for compositions of cells. Note that the composition map in Re-
mark 4.2 corresponds to the 2-categorical notion of whiskering. For example,
for the k-ary cell β as above and a 1-ary morphism h : b→ c, we denote by
h ◦ β the composite idh ◦ β : h ◦ f ⇒ h ◦ g.

Definition 4.4. Given multicategories M and N, a symmetric multifunctor
F : M → N consists of an assignment on objects F : Ob M → Ob N, and
for each tuple of objects a1, . . . , ak, b of M, a map in V between morphism
objects

F : M(a1, . . . , ak; b)→ N(F (a1), . . . , F (ak);F (b)),

compatible with identity, composition and the Σk-action.
15



Definition 4.5. Given symmetric multifunctors F,G : M → N, a multi-
natural transformation ε : F ⇒ G consists of, for each a ∈ Ob M, a 1-ary
morphism εa : F (a) → G(a) in N, such that for all tuples a1, . . . , ak, b of
objects in M, the diagram in V

M(a1, . . . , ak; b)
G //

F
��

N(G(a1), . . . , G(ak);G(b))

−◦(εa1 ,...,εak )

��
N(F (a1), . . . , F (ak);F (b))

εb◦−
// N(F (a1), . . . , F (ak);G(b))

commutes.

Example 4.6. A symmetric monoidal category (C,⊕) gives rise to a symmet-
ric multicategory (enriched in sets). The objects of the multicategory are
the objects of C, and the k-morphisms are given by morphisms

(· · · (a1 ⊕ a2)· · ·)⊕ ak → b

in C. If moreover C is a symmetric monoidal category enriched in V, we can
similarly construct an associated symmetric multicategory enriched in V.
Several of the enriched symmetric multicategories used in this paper arise in
this way. In this case, we use the same notation for the symmetric monoidal
category and the multicategory.

Note that if C and D are symmetric monoidal categories, a lax symmetric
monoidal functor F : C → D canonically gives rise to a symmetric multi-
functor of the corresponding symmetric multicategories.

The most important examples of this type are given by the categories Spec
of symmetric spectra in simplicial sets and Spec(sCat) of symmetric spectra
in simplicial categories (see Section 2). The former is a symmetric monoidal
category enriched in simplicial sets, and as such, it gives rise to a symmetric
multicategory enriched in simplicial sets as well. The latter is a symmetric
monoidal category enriched in Cat .2 In both cases, the k-ary morphisms are
precisely the k-linear maps of Definition 2.5.

Remark 4.7. In the case of a categorically enriched multicategory, there is
an unfortunate clash of nomenclature: a “2-morphism” might refer either
to a 2-ary 1-morphism, that is, an object of a hom category of the form
M(a1, a2; b), or to a 2-cell, that is, a morphism in a hom category. To
mitigate this possibility of confusion, we will consistently refer to the former
as “2-ary morphisms” and the later as “cells” or more generally “k-ary cells.”

Remark 4.8. In what follows, we use the term “multicategory” to refer to
symmetric multicategories with whatever enrichment is specified. Similarly,
the terms “multifunctor” and “multinatural transformation” are used for
symmetric enriched versions.

2Using the same idea as in the case of simplicial sets, one can also enrich Spec(sCat)
in sCat . We will not need this second enrichment.
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5. E∗ categories and their relation to spectra

We now construct a multicategory E∗-Cat that serves as an intermediate
multicategory for the K-theory constructions of Definition 3.4 and Defini-
tion 3.8. This category is similar to the category G∗-Cat constructed in §5
of [EM06], which the reader should consult to find details we omit. In brief,
the objects of E∗-Cat and G∗-Cat consist of “based” functors from categories
E and G into the category of small categories, and the multicategorical struc-
ture on both categories is defined in the same way. The difference is that G
is obtained via the Grothendieck construction on a functor given by taking
powers of F , whereas E is obtained via the Grothendieck construction on a
related functor given by taking powers of ∆op.

Notation 5.1. If β : [m]→ [n] is a map in ∆, let β̂ denote the corresponding

map β̂ : [n]→ [m] in ∆op.

Let Inj denote the skeletal version of the category of finite sets and injec-
tions. The objects are given by the sets r = {1, . . . , r}, where r is a non-
negative integer. The category Inj is permutative, with monoidal product
given by disjoint union. Consider the functor (∆op)∗ : Inj→ Cat that sends
r to the category (∆op)r, and sends the injection q : r → s to the functor
q∗ : (∆op)r → (∆op)s given by

q∗([m1], . . . , [mr]) = ([mq−1(1)], . . . , [mq−1(s)])

on objects. Here, by convention, if q−1(j) = ∅ for some j, we set [mq−1(j)] =

[1]. On morphisms, q∗ takes an r-tuple of morphisms (β̂1, . . . , β̂r) to the

tuple (β̂q−1(1), . . . , β̂q−1(s)) where by convention we insert the identity on [1]

whenever q−1(j) = ∅.
Let E = Inj

∫
(∆op)∗ be the category obtained by applying the Grothendieck

construction to the functor (∆op)∗. Concretely, this means that objects
of E are given by (possibly empty) tuples of objects of ∆op, say 〈m〉 =
([m1], . . . , [mr]). A morphism from an r-tuple 〈m〉 = ([m1], . . . , [mr]) to an

s-tuple 〈m′〉 = ([m′1], . . . , [m′s]) consists of a pair (q, 〈β̂〉) where q : r → s is

a morphism in Inj and 〈β̂〉 is a morphism

〈β̂〉 : q∗〈m〉 → 〈m′〉

in (∆op)s. The composition of morphisms (q′, 〈β̂′〉)◦(q, 〈β̂〉) is the morphism

(q′ ◦ q, 〈β̂′〉 ◦ 〈q′∗β̂〉).

Remark 5.2. Let ιr : r ↪→ r + 1 be the standard inclusion that misses r + 1.
A morphism in Inj can be factored as a composite of repeated inclusions
of this type and permutations σ : s → s. A morphism (q, 〈β̂〉) in E can

be factored as (id, 〈β̂〉) ◦ (q, id). Thus, morphisms in E are generated by

morphisms of the form (ιr, id), (σ, id) and (id, 〈β̂〉).
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The category E has a permutative structure given by concatenation of tuples.
Following [EM06], we denote this monoidal structure by �.

Remark 5.3. The existence of the permutative structure follows from the fol-
lowing general categorical fact. If D is a symmetric monoidal category, and
F : D → Cat is a lax symmetric monoidal functor (with respect to cartesian
product), then the category D

∫
F obtained by applying the Grothendieck

construction to F has a symmetric monoidal structure compatible with that
of D, and moreover, if the monoidal structure on D is strict (i.e., D is a
permutative category), then so is the one for D

∫
F .

Definition 5.4 (cf. [EM06, Definition 5.2, Proposition 5.3]). An E∗-category
consists of a functor X : E → Cat∗ such that X([m1], . . . , [mr]) = ∗ if mi = 0
for some i = 1, . . . , r.

A map F : X → Y of E∗-categories is a natural transformation of functors
E → Cat∗.

We now describe the categorically-enriched multicategory E∗-Cat of E∗-cat-
egories. A k-ary morphism F : (X1, . . . , Xk) → Y between E∗-categories
X1, . . . , Xk and Y is given by a natural transformation

Ek X1×···×Xk //

�
��

�
 F

Catk∗

×
��

E
Y

// Cat∗

compatible with basepoints, in the sense that for any object (〈m1〉, . . . , 〈mk〉)
in Ek, the functor

F : X1(〈m1〉)× · · · ×Xk(〈mk〉)→ Y (〈m1〉 � · · · � 〈mk〉)
satisfies

• F (x1, . . . , xk) = ∗ if xi = ∗ is the basepoint in the category X(〈mi〉)
for some i = 1, . . . , k, and
• F (f1, . . . , fk) = id∗ if fi = id∗ for some i = 1, . . . , k.

This is equivalent to requiring that the map factor through the smash prod-
uct

X1(〈m1〉) ∧ . . . ∧Xk(〈mk〉)
of based categories.

A k-ary cell between k-ary morphisms F and G is given by a modifica-
tion φ (remembering that Cat∗ is really a 2-category) that is compatible
with the basepoints. In practice, what this means is that for every object
(〈m1〉, . . . 〈mk〉) in Ek, there is a natural transformation of functors

X1(〈m1〉)× · · · ×Xk(〈mk〉)
F

))

G

55�� φ Y (〈m1〉 � · · · � 〈mk〉),
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satisfying compatibility conditions with respect to maps in Ek and base-
points. The condition on basepoints states that φx1,...,xk = id∗ if xi = ∗
for some i. Note that this is equivalent to saying that φ is a based natural
transformation of based functors

X1(〈m1〉) ∧ . . . ∧Xk(〈mk〉)
F

))

G

55�� φ Y (〈m1〉 � · · · � 〈mk〉).

Proposition 5.5 (cf. [EM06, Proposition 5.4]). E∗-categories, together with
the k-ary morphisms and k-ary cells described above, form a categorically
enriched multicategory E∗-Cat.

Following [EM06, Construction 7.3], we construct a multifunctor from E∗-Cat
to the multicategory of symmetric spectra in sCat . Given an E∗-category X
and a natural number p ≥ 0, consider the simplicial pointed category IX(p)
given by the composite

∆op diag // (∆op)p // E X // Cat∗,

where the unlabelled map is the inclusion of (∆op)p into E as the fiber over
p ∈ Inj. Note that IX(p) has a Σp-action induced by the action on (∆op)p.
There are structure functors

IX(p) ∧ S1 → IX(p+ 1),

which at simplicial level q are given by the map∨
j∈S1

q\∗

X([q], . . . , [q]︸ ︷︷ ︸
p

)→ X([q], . . . , [q]︸ ︷︷ ︸
p+1

)

that on the wedge summand labelled by j ∈ S1
q \ ∗ = {1, 2, . . . q} is induced

by the map (ιp, (id, . . . , id, β̂
j)) in E , where βj : [q] → [1] is the map in ∆

that sends 0, . . . , j − 1 to 0 and j, . . . , q to 1.

Theorem 5.6 (cf. [EM06, Theorem 7.4]). The assignment I extends to a
categorically-enriched multifunctor

I : E∗-Cat → Spec(sCat).

6. Waldhausen K-theory as a multifunctor

In this section, we provide the fully multifunctorial definition of the Wald-
hausen K-theory construction of Definition 3.4. As mentioned there, this
definition is essentially due to Geisser and Hesselholt [GH06] and Blumberg
and Mandell [BM11]. However, rather than directly defining a multifunc-
tor from a multicategory of Waldhausen categories to the multicategory of
spectra as in [BM11], we factor their construction as a multifunctor from
Waldhausen categories to E∗-Cat followed by the multifunctor from E∗-Cat
to Spec(sCat) of Theorem 5.6.
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We begin by describing the multicategory of Waldhausen categories, which
was first described in [BM11]. For more details, see [Zak18]. Since we have
already defined Waldhausen categories in Section 3, we need only to define
the multimorphisms.

Definition 6.1. Let C and D be Waldhausen categories. A functor F : C →
D is exact if it sends ∗ to ∗, and preserves weak equivalences, cofibrations
and pushouts along cofibrations.

Definition 6.2. Let A1, . . . ,Ak and B be Waldhausen categories. A functor

F : A1 × · · · × Ak → B

is said to be k-exact (or multiexact if we wish to omit reference to k) if the
following conditions hold:

(1) the functor F is exact in each variable;
(2) given cofibrations fi : Xi,0 ↪→ Xi,1 in Ai for all i = 1, . . . k, the cube

F (f1, . . . , fk) is cubically cofibrant. That is, the functor

F (f1, . . . , fk) : [1]×k → B

is cubically cofibrant in the sense of Definition 3.3.

Note that a 1-exact morphism is just an exact functor. A 0-exact morphism
from the empty sequence into B is the choice of an object in B. We can think
of this as a functor from the empty product satisfying no extra conditions,
since both conditions for k-exactness are vacuous when k = 0.

Given multiexact functors Fi : A1
i × · · · × A

ki
i → Bi for i = 1, . . . , n, and

G : B1 × · · · Bn → C, we define their multicomposition as

G ◦ (F1 × · · · × Fn) : A1
1 × · · ·A

k1
1 × · · · × A

1
n × · · · × Aknn → C.

By [Zak18, Proposition 4.7], this composition is again multiexact.

Notation 6.3. Given Waldhausen categories A1, . . . ,Ak,B, we denote by
Wald(A1, . . . ,Ak;B) the category of k-exact functors and all natural trans-
formations. These assemble together to form the categorically-enirched mul-
ticategory Wald whose objects are small Waldhausen categories (see [Zak18,
Proposition 4.7]).

Remark 6.4. Observe that the multimorphisms in Wald are simply functors
satisfying some extra conditions, as opposed to having extra structure. This
makes constructing such multimorphisms straightforward, although one then
needs to check the conditions are satisfied.

Remark 6.5. As proved in [Zak18], the category Wald(A1, . . . ,Ak;B) is
itself a Waldhausen category and composition is a 2-exact functor, giving
Wald the structure of a closed multicategory. We will not use this extra
structure in the present paper.
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We now show that Waldhausen K-theory provides a multifunctor from the
multicategory Wald to the multicategory E∗-Cat .

Proposition 6.6. The iterated Waldhausen construction can be assem-

bled to give a E∗-category S
()
•,...,•C, sending an object ([m1], . . . , [mr]) to

S
(r)
m1,...,mrC.

Proof. The basepoint of S
(r)
m1,...,mrC is given by the constant functor at the

zero object ∗. Recall from Remark 5.2 that any morphism in E can be
factored as a composite of morphisms of the form (ιr, id), (σ, id), and (id, β̂),

where ιr : r → r + 1 is the ordered inclusion, σ is a permutation, and β̂ is a
morphism in (∆op)r. The image of

(ιr, id) : ([m1], . . . , [mr])→ ([m1], . . . , [mr], [1])

is given by the extension isomorphism e defined below in Lemma 6.7. The
image of

(σ, id) : ([m1], . . . , [mn])→ ([mσ−1(1)], . . . , [mσ−1(r)])

is the map S
(r)
m1,...,mrC → S

(r)
mσ−1(1),...,mσ−1(r)

induced by permuting the inputs

according to σ. For maps of the form (id, β̂) we use the multisimplicial
structure. It is routine to check that these assignments preserve basepoints
and are compatible with composition in E , thus we get a functor E → Cat∗.

Note that if mi = 0 for some i, then then only functor A : Ar[m1, . . . ,mr]→
C satisfying the conditions of Definition 3.4 is the constant functor at the

zero object; thus in this case, S
(r)
m1,...,mrC = ∗ as required. �

Lemma 6.7. Given an n-tuple (m1, . . . ,mn), there is an extension isomor-
phism

e : S(n)
m1,...,mnC −→ S

(n+1)
m1,...,mn,1

C
compatible with the multisimplicial structure.

Proof. The map e sends a functor A : Ar[m1, . . . ,mn] → C to the functor
e(A) given by

e(A)i1j1,...,injn,00 = ∗
e(A)i1j1,...,injn,01 = Ai1j1,...,injn

e(A)i1j1,...,injn,11 = ∗,

with maps given by those of A and by the unique maps from and to the
zero object. It is routine to check that if A satisfies the conditions of Defi-
nition 3.4, so does e(A).

The inverse is given by restricting a functor B : Ar[m1, . . . ,mn, 1] → C to
the subfunctor given by fixing 01 in the last coordinates. �
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Theorem 6.8. The assignment above gives a categorically-enriched multi-
functor

S
()
•,...,• : Wald −→ E∗-Cat .

Restriction to subcategories of weak equivalences then yields a categorically-
enriched multifunctor

wS
()
•,...,• : Wald −→ E∗-Cat .

Proof. Let F : A1 × · · · × Ak → B be a k-exact functor of Waldhausen
categories. For an object (〈m1〉, . . . , 〈mk〉) in Ek, with tuples of length
(r1, . . . , rk), let 〈m〉 = 〈m1〉 � · · · � 〈mk〉 and r = r1 + · · · + rk. We must
construct a functor

S
()
•,...,•(F ) : S

(r1)
〈m1〉A1 × · · · × S(rk)

〈mk〉Ak → S
(r)
〈m〉B.

An object of the source is given by a k-tuple (A1, . . . , Ak), where Ai is a
functor

Ar[mi
1, . . . ,m

i
ri ]→ Ai

satisfying the conditions in Definition 3.4. The map S
()
•,...,•(F ) sends the

tuple (A1, . . . , Ak) to the composite of the isomorphism

Ar[m1
1, . . . ,m

1
r1 , . . . ,m

k
1, . . . ,m

k
rk

] ∼= Ar[m1
1, . . . ,m

1
r1 ]×· · ·×Ar[mk

1, . . . ,m
k
rk

]

with F ◦(A1×· · ·×Ak). We leave to the reader to check that this composite
satisfies the conditions of Definition 3.4, giving an object of the category

S
(r)
〈m〉B. The assignment of S

()
•,...,•(F ) on morphisms is defined similarly. It

is standard to check that this assignment is natural with respect to maps in
Ek and that it satisfies the basepoint conditions for k-ary cells described in

Section 5. By construction, S
()
•,...,• respects composition of multimorphisms

and the symmetric group action, thus giving a symmetric multifunctor as
wanted.

The definition of S
()
•,...,• also extends to 2-cells between k-ary morphisms.

Given a natural transformation φ : F ⇒ G between k-exact functors, the

S
()
•,...,•(φ) is essentially defined by whiskering. It is straightforward to check

that S
()
•,...,• is thus a categorically-enriched multifunctor. �

Inspection of the definitions then shows that we indeed have our desired
factorization of the Waldhausen K-theory multifunctor.

Proposition 6.9 (cf. [BM11, Section 2]). The K-theory of Definition 3.6
factors as

KWald : Wald
wS

()
•,...,• // E∗-Cat

I // Spec(sCat).

This is a multifunctor of categorically enriched multicategories.
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7. K-theory of symmetric monoidal categories as a
multifunctor

In this section, we explain how the K-theory of symmetric monoidal cate-
gories in Definition 3.9 forms a multifunctor. Again, we emphasize that the
material in this section is not really new: this definition is a minor variation
on the K-theory multifunctor from [EM06], and our exposition below draws
heavily from this work. Although the reader familiar with [EM06] will find
much of this material familiar, we nevertheless give details in order to make
the comparison in Section 9 explicit.

The two main differences between what follows and the construction in
[EM06] are these: First, we are working with strictly unital symmetric
monoidal categories, rather than permutative categories. This is purely
a matter of convenience to allow comparison with Waldhausen’s K-theory
without the need to strictify. Second, the K-theory multifunctor in [EM06]
from the multicategory of permutative categories to the multicategory of
spectra is defined by passing through an intermediate multicategory G∗-Cat .
In order to make the comparison between Waldhausen K-theory and sym-
metric monoidal K-theory in Section 9, we choose instead to use the inter-
mediate multicategory E∗-Cat of Section 5. In fact, while this category is
not named and described in [EM06], this factorization is simply a change of
perspective on theirs.

As in the previous section, we begin by defining the multicategory of strictly
unital symmetric monoidal categories that is the source of the K-theory
functor. This definition is a minor extension of the definition of the multi-
category of permutative categories from [EM06]—by passing from permu-
tative categories to strictly unital symmetric monoidal categories, we are
simply relaxing the associativity requirements. The material in this section
boils down to keeping track of the associativity isomorphisms and checking
that the constructions of [EM06] go through in this more general case.

Definition 7.1. Let C1, . . . , Ck and D be small strictly unital symmetric
monoidal categories. A k-linear functor (C1, . . . , Ck)→ D is a functor

F : C1 × · · · × Ck → D
together with distributivity natural transformations

δi : F (c1, . . . , ci, . . . , ck)⊕ F (c1, . . . , c
′
i, . . . , ck)→ F (c1, . . . , ci ⊕ c′i, . . . , ck)

for 1 ≤ i ≤ k. For convenience, we will suppress the variables that are fixed,
hence writing

δi : F (ci)⊕ F (c′i)→ F (ci ⊕ c′i).
The functor F and the transformations δi must satisfy unitality conditions:

• F (c1, . . . , ck) = e if ci = e for some i,
• F (f1, . . . , fk) = ide if fi = ide for some i, and
• δi = id if either ci, c

′
i or any of the other cj ’s is e.
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The transformations δi must make the following diagrams commute.

(1) (Compatibility of δi and α.)

(F (ci)⊕ F (c′i))⊕ F (c′′i )

δi⊕id
��

α // F (ci)⊕ (F (c′i)⊕ F (c′′i ))

id⊕δi
��

F (ci ⊕ c′i)⊕ F (c′′i )

δi
��

F (ci)⊕ F (c′i ⊕ c′′i )

δi
��

F ((ci ⊕ c′i)⊕ c′′i ) F (α)
// F (ci ⊕ (c′i ⊕ c′′i ))

(2) (Compatibility of δi and γ.)

F (ci)⊕ F (c′i)

δi
��

γ // F (c′i)⊕ F (ci)

δi
��

F (ci ⊕ c′i) F (γ)
// F (c′i ⊕ ci)

(3) (Compatibility of δi and δj .) For all i < j

(F (ci,cj)⊕(F (c′i,cj)⊕F (ci,c
′
j)))⊕F (c′i,c

′
j)

(F (ci,cj)⊕F (c′i,cj))⊕(F (ci,c
′
j)⊕F (c′i,c

′
j))

(F (ci,cj)⊕(F (ci,c
′
j)⊕F (c′i,cj)))⊕F (c′i,c

′
j)

(F (ci,cj)⊕F (ci,c
′
j))⊕(F (c′i,cj)⊕F (c′i,c

′
j))

F (ci⊕c′i,cj)⊕F (ci⊕c′i,c′j)

F (ci,cj⊕c′j)⊕F (c′i,cj⊕c′j)

F (ci⊕c′i,cj⊕c′j)

α

GG
δi⊕δi //

δj

��
(id⊕γ)⊕id

��

α

��

δj⊕δj
//

δi

JJ

Here α denotes a composite of instances of the associator, which by the
coherence of symmetric monoidal categories is uniquely determined by the
two parenthesizations.

A k-linear natural transformation between k-linear functors F and G is a
natural transformation φ : F → G commuting with all the δi’s in the sense
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that

(7.2) F (ci)⊕ F (c′i)
δFi //

φ⊕φ
��

F (ci ⊕ c′i)

φ

��
G(ci)⊕G(c′i)

δGi

// G(ci ⊕ c′i)

commutes for every i. Additionally we require that φ(c1, . . . , ck) = ide
whenever any of the ci’s is e.

We describe a multicategory whose objects are symmetric monoidal cate-
gories with strict unit.

Definition 7.3. Let SMC be the categorically-enriched multicategory whose
objects are strictly unital symmetric monoidal categories and whose cate-
gories of k-morphisms (C1, . . . , Ck) → D are given by the categories of k-
linear functors and k-linear natural transformations. The Σk-action on k-
linear functors is given by acting on the indices 1, . . . , k. If we have multilin-
ear functors Fi : (Bi1, . . . ,Biki)→ Ci for 1 ≤ i ≤ n and G : (C1, . . . , Cn)→ D,
their composite is the k1 + · · ·+ kn-linear functor

Γ(G;F1, . . . , Fn) = G ◦ (F1 × · · · × Fn)

with distributivity transformations δs given as follows. The tuple (k1, . . . , kn)
is a partition of the k1 + · · · + kn “inputs” of G ◦ (F1 × · · · × Fn) into
n sets, and we fix i so that s is in the ith set of this partition; that is,
k1 + · · · + ki−1 < s ≤ k1 + · · · + ki. Then let j = s − (k1 + · · · + ki−1), so
that s is the jth element in this set of the partition. Then δs is

G(Fi(bij))⊕G(Fi(b
′
ij))

δGi−→ G(Fi(bij)⊕ Fi(b′ij))
G(δ

Fi
j )

−−−−→ G(Fi(bij ⊕ b′ij)).
It is relatively straightforward to check that these distributivity transforma-
tions satisfy the required diagrams. Notice that the unit conditions for both
Γ(G;F1, . . . , Fn) and the δi’s automatically hold.

The raison d’être for Elmendorf and Mandell’s version of K-theory is to
handle multiplicative structures by showing that their construction of K-
theory is a multifunctor from the multicategory of permutative categories
to the multicategory of symmetric spectra. We need the analogous result
about our slightly adapted construction.

Theorem 7.4 (cf. [EM06, Theorem 6.1]). The construction of Defini-
tion 3.8 extends to an enriched multifunctor

SMC→ E∗-Cat

and thus we obtain an enriched multifunctor

KSMC : SMC→ E∗-Cat → Spec(sCat),

which at the level of objects is given by the construction in Definition 3.9.
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Proof. This essentially follows from Theorem 6.1 of [EM06]. There the
authors prove that the construction in Definition 3.8 gives an enriched
multifunctor from permutative categories to G∗-Cat , where G is the cate-
gory obtained by applying the Grothendieck construction to the functor
F∗ : Inj → Cat that sends r ∈ Inj to Fr. Recall from Remark 2.2 that the
standard simplicial circle can be considered as a functor S1 : ∆op → F , and
thus induces a natural transformation S1∗ : ∆op∗ ⇒ F∗ between the functors
defining E and G. This induces a basepoint-preserving functor E∗ → G∗ and
precomposition with this functor yields multifunctor G∗-Cat → E∗-Cat . The
proof of [EM06, Theorem 6.1] involves constructing an enriched multifunc-
tor from G∗-Cat into Spec(sCat); this multifunctor factors through E∗-Cat ,
although the authors don’t make that explicit.

Key to the work in this paper is that making Definition 3.8 into a functor
from permutative categories to G∗-Cat requires only that the unit in the
permutative category was strict and not that the associator was also strict.
Hence the proof of [EM06, Theorem 6.1] extends to strictly unital symmetric
monoidal categories. �

In order to make the proof of Section 9 explicit, we unpack the construction
of the functor in Theorem 7.4. Let C be a strictly unital symmetric monoidal
category. Then the functor C : E → Cat∗ is defined as follows. As we note in
Definition 2.1, the simplicial circle S1 sends [m] ∈ ∆op to the finite pointed
set m∗ = {0, . . . ,m} with 0 as the basepoint. Thus the functor C sends an
object 〈m〉 = ([m1], . . . , [mn]) in E to the category C(m1∗, . . . ,mn∗). Hence

if any mi = 0, C(〈m〉) is the terminal category ∗.
The image of a map of the form (ιr, id) in E is given by an extension functor
as in [EM06, page 184].

Lemma 7.5. For finite sets M1, . . . ,Mn, there is an isomorphism of cate-
gories e : C(M1, . . . ,Mn) → C(M1, . . . ,Mn, 1∗) defined by sending a system
{C, ρ} ∈ C(M1, . . . ,Mn) to the system {Ce, ρe} where

Ce〈S1,...,Sn,{1}〉 = C〈S1,...,Sn〉, ρe〈S1,...,Sn,{1}〉,i,T,U =

{
ρ〈S1,...,Sn〉,i,T,U i < n+ 1

id i = n+ 1

Ce〈S1,...,Sn,∅〉 = e, ρ〈S1,...,Sn,∅〉,i,T,U = id.

The inverse isomorphism sends {C, ρ} ∈ C(M1, . . . ,Mn, 1∗) to the system
given by dropping the {1} from list 〈S1, . . . , Sn, {1}〉.

The image of a map in E of the form (σ, id) for σ ∈ Σr is simply given by
permuting the sets in the tuple (m1∗, . . . ,mr∗). The image of a map in E
of the form (id, 〈β̂〉) is given by the multisimplicial structure referenced just

before Definition 3.9. That is, if 〈β̂〉 = (β̂1, . . . , β̂n) : 〈m〉 → 〈m′〉 is a map in

(∆op)n and β∗i are the images of the βi underS1, then C(id, 〈β̂〉) : C(〈m〉)→
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C(〈m′〉) is the map induced by the tuple (β∗1 , . . . , β
∗
n) of maps of finite pointed

sets.

Remark 7.6. An alternate way of proving that Definition 3.9 actually gives a
multifunctor is to observe that the construction in Definition 3.9 is a special
case of the the K-theory of a small pointed multicategories as defined by
[EM09]. Specifically, [EM09] shows that one can embed symmetric monoidal
categories with strict unit in the category of pointed multicategories, and
then apply the K-theory functor of a pointed multicategory as defined in
[EM09]. This coincides with the definition we give above.

8. From Waldhausen to symmetric monoidal categories

In order to compare K-theory constructions, we first have to arrange for
the two constructions to have comparable input. A Waldhausen structure
induces a symmetric monoidal structure, but to make this precise, one needs
a predetermined choice of wedges. Let Sq C denote the set of commutative
squares in C.

Definition 8.1. A Waldhausen category with choice of wedges (C, ω) con-
sists of a Waldhausen category C together with a function

ω : Ob C ×Ob C → Sq C

such that

(1) for all X,Y ∈ Ob C, ω(X,Y ) is a pushout diagram

∗ //

��

X

��
Y // Z;

(2) for all X,

ω(X, ∗) =

∗ //

��

X

id
��

∗ // X

and ω(∗, X) =

∗ //

��

∗

��
X

id
// X.

Given such an ω, we will use the following notation for the data of ω(X,Y ):

∗ //

��

X

ι1
��

Y ι2
// X ∨ Y.

Note that the maps ι1 and ι2 are cofibrations by axioms (2) and (3) of
Definition 3.1.
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Given a function ω we have unique maps π1 : X∨Y → X and π2 : X∨Y → Y
given by the universal property of the pushout, as follows.

∗ //

��

X

ι1
�� id

��

Y ι2
//

22

X ∨ Y
π1

##
X

∗ //

��

X

ι1
��

��

Y ι2
//

id
22

X ∨ Y
π2

##
Y

The unlabeled maps are the unique maps that factor through ∗.
A k-exact functor between Waldhausen categories with choices of wedges is
a k-exact functor of the underlying Waldhausen categories.

Notation 8.2. The categorically-enriched multicategory Wald∨ has as ob-
jects pairs (C, ω), of a small Waldhausen category and a choice of wedges on
it, and categories of multimorphisms given by k-exact functors and natural
transformations of such. No extra compatibility is imposed on the choices
of wedges.

The following observation follows directly from the definition.

Lemma 8.3. The underlying Waldhausen category of a Waldhausen cate-
gory with choice of wedges gives the function on objects of a full and faithful
multifunctor

U : Wald∨ →Wald.

Remark 8.4. Note that given a Waldhausen category C, axioms (3) and (4)
of Definition 3.1 imply that there exists at least one function ω making (C, ω)
into a Waldhausen category with choice of wedges. In particular, this shows
that U is surjective on objects, and hence gives an equivalence of multi-
categories. Moreover, if (C, ω), (C, ω′) ∈ Wald∨ have the same underlying
Waldhausen category C, then the identity functor C → C gives an isomor-
phism (C, ω) → (C, ω′) in Wald∨. Because all choices of ω are equivalent,
we often omit ω from the notation.

We now construct a multifunctor Λ: Wald∨ → SMC which at the level of
objects will send a pair (C, ω) to a strict symmetric monoidal structure on
C.

Construction 8.5. Let (C, ω) be a Waldhausen category with a choice of
wedges, as defined in Definition 8.1. Recall that for objects X,Y in C, we
denote by X ∨ Y the bottom right corner of the pushout diagram ω(X,Y ).

The universal property of the pushout implies this assignment extends to a
functor ∨ : C ×C → C. Indeed, if f : X → X ′ and g : Y → Y ′ are morphisms
in C, f ∨ g is defined to be the unique map X ∨ Y → X ′ ∨ Y ′ that makes
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the diagrams

(8.6)

X
f //

ι1
��

X ′

ι1
��

X ∨ Y
f∨g
// X ′ ∨ Y ′

and

Y
g //

ι2
��

Y ′

ι2
��

X ∨ Y
f∨g
// X ′ ∨ Y ′.

commute. The uniqueness implies that this assignment respects composition
and identities. Note that Diagram (8.6) means that ι1 and ι2 are natural
transformations. The universal property of the pushout can be used to
prove that the projections π1 and π2 are natural as well, in the sense that
the diagrams

(8.7)

X ∨ Y
f∨g //

π1
��

X ′ ∨ Y ′

π1
��

X
f

// X ′

and

X ∨ Y
f∨g //

π2
��

X ′ ∨ Y ′

π2
��

Y g
// Y ′

commute.

Given objects X,Y in C, the universal property of pushouts implies the
existence of an isomorphism γX,Y : X ∨ Y → Y ∨ X, determined by the
property of being the unique map such that γX,Y ◦ ii = i2 and γX,Y ◦ i2 = i1.
Universality implies that γ is a natural transformation and that γY,X◦γX,Y =
idX∨Y .

Finally, for objects X,Y, Z in C, universality implies the existence of an iso-
morphism αX,Y,Z : (X ∨ Y ) ∨ Z → X ∨ (Y ∨ Z), which can be determined
uniquely in terms of its interaction with the maps from X, Y and Z to the
two pushouts. Uniqueness is used to prove that α is a natural transforma-
tion.

Proposition 8.8. Given a Waldhausen category with choice of wedges (C, ω),
the functor ∨ and the natural transformations γ and α of Construction 8.5
make Λ(C, ω) = (C,∨, γ, α, ∗) into a strictly unital symmetric monoidal cat-
egory. This assignment on objects extends to give a categorically-enriched
multifunctor

Λ: Wald∨ → SMC.

Proof. By definition, X ∨ ∗ = X and i1 = idX , and similarly, ∗ ∨ X = X
with i2 = idX . It follows that γX,∗ = γ∗,X = idX , and that αX,∗,Y = idX∨Y ,
showing that the associator and the symmetry interact appropriately with
the strict unit. The pentagon axiom and the hexagon axiom follow from the
uniqueness of the universal property of the pushout.

Let F : ((A1, ω1), . . . , (Ak, ωk))→ (B, ω) be a k-exact functor between Wald-
hausen categories with choices of wedges. This means in particular that F is
a functor A1×· · ·×Ak → B that is exact in each variable. We will construct
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Λ(F ) = (F, δi). Exactness in each variable implies that F satisfies the first
two unitality conditions of Definition 7.1, the second one following from the
fact that ∗ is a zero object.

For i = 1, . . . , k, since F preserves pushouts along cofibrations on each vari-
able, we have that F (X1, . . . , Xi ∨X ′i, . . . , Xk) is a pushout for the diagram

∗

��

// F (X1, . . . , Xi, . . . , Xk)

F (X1, . . . , X
′
i, . . . , Xk)

Hence, there exists an isomorphism

F (X1, . . . , Xi, . . . , Xk)∨F (X1, . . . , X
′
i, . . . , Xk)→ F (X1, . . . , Xi∨X ′i, . . . , Xk)

with source our chosen pushout given by ω: this is the map δi. This map
is the unique such map that is compatible with the chosen inclusions into
the wedge. Careful inspection of the universal properties of the pushout will
show that δi is natural, that the collection {δi}i=1,...,k satisfies the axioms
of Definition 7.1, and moreover, that this assignment is compatible with
composition in the multicategories.

Finally, given k-exact functors F,G : ((A1, ω1), . . . , (Ak, ωk)) → (B, ω) and
a natural transformation φ : F ⇒ G, one can easily check that Λ(φ) = φ
satisfies (Diagram (7.2)), thus giving a map between Λ(F ) and Λ(G). �

Remark 8.9. Note that the construction of Λ(F ) only made use of exactness
in each variable. The conditions of cubical cofibrancy, which are necessary

for the construction of S
()
•,...,•, are not needed here. Compare Barwick’s

infinity-categorical construction of the K-theory of a Waldhausen category
in [Bar16].

Observation 8.1. Let (C, ω) be a Waldhausen category with choice of wedges.
Then wΛ(C, ω), the category given by restricting morphisms in Λ(C, ω) to
only the weak equivalences in C, is again a symmetric monoidal category.
This follows from the gluing lemma for weak equivalences in a Waldhausen
category.

9. A multiplicative comparison of Waldhausen and Segal
K-theory

We are now finally prepared to compare the multiplicative K-theory functors
for Waldhausen and symmetric monoidal categories.

Specifically, we prove
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Theorem 9.1. There is a multinatural transformation of categorically en-

riched multifunctors φ : (−) ◦ Λ⇒ S
()
•,...,• fitting into the following diagram:

Wald∨
Λ //

S
()
•,...,• %%

�� φ

SMC

(−)zz
E∗-Cat

Corollary 9.2. Composition with the functor from E∗-Cat to Spec(sCat) of
Theorem 5.6 yields a multinatural transformation of categorically enriched
multifunctors comparing Waldhausen K-theory and Segal K-theory:

Wald∨
Λ //

S
()
•,...,• ''

�� φ

SMC

(−)xx
E∗-Cat

I
��

Spec(sCat)

Changing enrichments along the nerve and applying Proposition 2.9 then
yields a multinatural transformation of simplicially enriched multifunctors
that land in Spec.

A multinatural transformation between functors relating multicategories
whose objects are structured categories is inherently a rather complicated
gadget, so before proving such a thing exists, we begin by unpacking the
structure involved. This is an exegesis of Definition 4.5 for the particular
multicategories and multifunctors of Theorem 9.1.

For each Waldhausen category with choice of wedges (C, ω), the component
φC of the multinatural tranformation φ is a 1-ary morphism in E∗-Cat

φC : ΛC → S
()
•,...,•C.

Since the objects in E∗-Cat are functors from E to Cat∗, such a map is itself
a natural transformation of functors

E
ΛC

''

S
()
•,...,•

99�� φC Cat

that satisfies appropriate basepoint conditions.

At an object 〈m〉 = ([m1], . . . , [mn]) in E , the component of this natural
transformation is a functor

ΛC(m1∗, . . . ,mn∗)→ S(n)
m1,...,mnC.

This means that to prove Theorem 9.1, we must do the following:
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Proof Outline 9.3. (1) For every n ≥ 0 and every n-tuple of objects
of ∆op, we must construct a functor

(φC)〈m〉 : ΛC(m1∗, . . . ,mn∗)→ S(n)
m1,...,mnC.

(2) We must verify that these functors are natural with respect to maps
in E , showing that φC is a map of functors from E to Cat .

(3) We must verify that the basepoint condition in Definition 5.4 holds,
so that each φC is a 1-ary morphism in the multicategory E∗-Cat .

(4) We must verify that the maps φC fit together to form a natural
transformation of multifunctors from Wald∨ to E∗-Cat . That is,
the components of φ satisfy the condition on k-ary morphisms of
Definition 4.5.

(5) We must verify that this natural transformation of multifunctors re-
spects the Cat-enrichment enjoyed by these multicategories. That is,
the components of φ satisfy the condition on k-ary cells of Defini-
tion 4.5.

We prove each of these statements in turn. First, the heart of the matter:
the actual construction of the functor in Proof Outline 9.3 (1).

Construction 9.4. Let (C, ω) be a Waldhausen category with wedges.
Fix n and fix an n-tuple 〈m〉 = ([m1], . . . , [mn]) of objects in ∆op. Let
{C〈S〉, ρ〈S〉,i,T,U} be an object in ΛC(m1∗, . . . ,mn∗). From this object, we
build a functor

A : Ar[m1, . . . ,mn]→ C.

For numbers 0 ≤ i ≤ j ≤ m, let (i+1, j) be the set {i+1, i+2, . . . , j}. This
is a subset of m∗ that does not contain the basepoint. Note that if i = j,
this is the empty set; if i+ 1 = j, this is the one element set {j}.
Given an object i1j1, . . . , injn in Ar[m1, . . . ,mn], set the value of A at this
object to be

Ai1j1,...,injn = C〈(i1+1,j1),...,(in+1,jn)〉.

Morphisms in Ar[m1]× · · · ×Ar[mn] can be factored as composites of mor-
phisms in each component. We explicitly define the value of the functor
A : Ar[m1, . . . ,mn] → C on a morphism (ik, jk) → (i′k, j

′
k) in component k

to be the following composite. For clarity, we only indicate the set in the
kth component in the definition below, so that C(ik+1,jk) is shorthand for
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C〈(i1+1,j1),...,(in+1,jm)〉.

C(ik+1,jk)
ι1 // C(ik+1,jk) ∨ C(jk+1,j′k)

ρ // C(ik+1,j′k)

ρ−1

��
C(ik+1,i′k) ∨ C(i′k+1,jk)

π2

��
C(i′k+1,j′k)

As in Construction 8.5, the horizontal map ι1 is the inclusion of a wedge
summand and the vertical map π2 is the projection, which exist by the
universal property of pushout over the zero object. The maps ρ and ρ−1 are
particular cases of the maps ρ〈S〉,i,T,U that are part of the structure of an

object of ΛC(m1∗, . . . ,mn∗); we have omitted the indices because they are
deducible from context, but it is worth noting that the map labelled ρ and
the map labelled ρ−1 have different indices and are in general not inverses
of each other.

This defines A on all morphisms as long as we can show that different factor-
izations of a morphism in Ar[m1, . . . ,mn] into component morphisms yield
the same definition of A on the composite. In other words, we must check
that A applied to a map in component k and then a map in component l
is the same as A applied to the map in component l and then the map in
component k. The commutativity of the necessary diagram

C〈(i1+1,j1),...,(in+1,jn)〉 //

��

C〈(i1+1,j1)...,(i′k+1,j′k),...,(in+1,jn)〉

��
C〈(i1+1,j1),...,(i′l+1,j′l),...,(in+1,jn)〉 // C〈(i1+1,j1),...,(i′k+1,j′k),...,(i′l+1,j′l),...,(in+1,jn)〉

follows from the coherence condition (5) of Definition 3.8, which relates the
maps ρ for varying indices k.

Proposition 9.5. The functor A : Ar[m1, . . . ,mn] → C defined in Con-

struction 9.4 is an object of the category S
(n)
m1,...,mnC.

Proof. We must check that A satisfies the three conditions of Definition 3.4.
First, if there is some index k so that ik = jk, the set (ik + 1, jk) is empty.
Hence C〈(i1+1,j1),...,(ik+1,jk),...,(in+1,jn)〉 is the zero object by axiom (1) of Def-
inition 3.8.

We next show the cubical cofibrancy condition of Definition 3.3 holds for
the subfunctor A0j1,...,0jn . For all i1 ≤ jn, . . . , in ≤ jn, the map

A0i1,...,0in → A0j1,...,0jn
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is a composite of maps of the form

C(1,ik)
ι1−→ C(1,ik) ∨ C(ik+1,jk)

ρ−→ C(1,jk).

The first map here is the pushout along the cofibration ∗ → C(ik+1,jk) and
the second map is by definition an isomorphism; hence their composite is a
cofibration. This proves condition (1) of cubical cofibrancy.

Condition (2) of cubical cofibrancy requires that for all 1 ≤ k < l ≤ n, the
induced map from the pushout of the diagram

(9.6) A0i1,...,0in

��

// A0i1,...,0(ik+1),...,0in

A0i1,...,0(il+1),...,0in

to A0i1,...,0(ik+1),...,0(il+1),...,0in be a cofibration. The structure isomorphisms

ρ of an object of ΛC(m1∗, . . . ,mn∗) allow us to “split off” the last element
of the sets (1, ik + 1) and (1, il + 1) and thus give an isomorphism between
the diagram of Diagram (9.6) and the diagram

C〈S〉
ι1 //

ι1

��

C〈S〉 ∨ C〈Sdk{ik+1}〉

C〈S〉 ∨ C〈Sdl{il+1}〉

where 〈S〉 denotes the tuple 〈(1, i1), . . . , (1, in)〉. This is a diagram of the
form A ∨B1 ← A→ A ∨B2, so by inspection, a pushout of this diagram is(

C〈S〉 ∨ C〈Sdk{ik+1}〉
)
∨ C〈Sdl{il+1}〉.

The structure isomorphisms ρ combine to give an isomorphism between
C〈Sdk(1,ik+1)dl(1,il+1)〉 and

C〈S〉 ∨ C〈Sdk{ik+1}〉 ∨ C〈Sdl{il+1}〉 ∨ C〈Sdk{ik+1}dl{il+1}〉.

The compatibility of the various ρ’s and the definition of the inducing map
mean that induced map from the pushout of Diagram (9.6) to this object
is, up to isomorphism, the inclusion of a wedge summand, and therefore a
cofibration. A similar argument for higher dimensional cubes shows that
the last condition of Definition 3.3 also holds.

To complete the proof that Construction 9.4 produces an object of S
(n)
m1,...,mnC,

we observe that condition (3) of Definition 3.4 holds. For 0 ≤ ik ≤ jk ≤ r ≤
mk, unpacking the definitions in the diagram of the form

Ai1j1,...,ikjk,...injn
//

��

Ai1j1,...,ikr,...,injn

��
Ai1j1,...,jkjk,...injn

// Ai1j1,...,jkr,...,injn
34



shows that it is isomorphic to the diagram

C(ik+1,jk)
ι1 //

��

C(ik+1,jk) ∨ C(jk+1,r)

π2

��
∗ // C(jk+1,r)

where as before we have only indicated the sets in the kth coordinate. The
universal property defining the wedge product ∨ shows that this is a pushout
diagram. �

We have thus proved that Construction 9.4 produces an object of S
(n)
m1...,mnC

from an object of ΛC(m1∗, . . . ,mn∗). To complete Proof Outline 9.3 (1), we
must observe that this assignment is actually a functor. A morphism

f : {C, ρ} → {C ′, ρ′}

in ΛC(m1∗, . . . ,mn∗) consists of a system of maps {f〈S〉 : C〈S〉 → C ′〈S〉} that

commute appropriately with the ρ’s and ρ′’s. Given such maps, we must
produce a natural transformation of functors

Ar[m1, . . . ,mn]

A
&&

A′
88�� C.

At each object i1j1, . . . , injn, this transformation has component

f〈(i1+1,j1),...,(in+1,jn)〉 : C〈(i1+1,j1),...,(in+1,jn)〉 → C ′〈(i1+1,j1),...,(in+1,jn)〉.

The fact that these are compatible with maps in Ar[m1, . . . ,mn] follows from
the fact that the f ’s are compatible with the ρ’s as well as the naturality
of the inclusion maps ι1 and the projection π2 as in Diagram (8.6) and
Diagram (8.7). Hence 9.4 produces a functor

(φC)〈m〉 : ΛC(m1∗, . . . ,mn∗)→ S(n)
m1,...,mnC.

The next step in Proof Outline 9.3 is to show (2): that the functors (φC)〈m〉
are natural with respect to maps in E .

Proposition 9.7. For each (C, ω) in Wald∨, the functors (φC)〈m〉 are the
components of a natural transformation

E
ΛC

''

S
()
•,...,•C

99�� φC Cat .

Proof. A morphism ([m1], . . . , [mr])→ ([n1], . . . , [ns]) in E is given by a pair

(q, 〈β̂〉) where q : r → s is a morphism in Inj and 〈β̂〉 : q∗([m1], . . . , [mr]) →
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([n1], . . . , [ns]) is a morphism in (∆op)s. We must show that the diagram of
categories

(9.8) ΛC(m1∗, . . . ,mr∗)
ΛC(q,〈β̂〉)//

φC
��

ΛC(n1∗, . . . , ns∗)

φC
��

S
(r)
m1,...,mrC

S
()
•,...,•(q,〈β̂〉)

// S
(s)
n1,...,nsC

commutes.

As mentioned in Remark 5.2, any map (q, 〈β̂〉) in E factors as a composite
of maps of three types: (ιr, id), where ιr is the inclusion of r into r + 1 as

the first r elements; (σ, id) where σ : r → r is a permutation, and (id, 〈β̂〉)
where 〈β̂〉 : [m1] × · · · × [mr] → [n1] × · · · × [nr] is a morphism in (∆op)r.
To show that the φ’s are natural with respect to maps in E , it suffices to
consider each of these types of maps in E separately.

The simplest case to understand is that of a permutation (σ, id). Since σ

acts by permuting the r-tuple both in the ΛC part and in the S
()
•,...,• part,

diagram (9.8) commutes when (q, 〈β̂〉) = (σ, id). More explicitly, we can
view the K-theory constructions of Proposition 3.5 and Definition 3.8 as
producing functions

Ob(∆op)r
ΛC−−→ Cat and Ob(∆op)r

S
(r)
•,...,•C−−−−−→ Cat .

For either construction, the action of Σr is given by first permuting the r
factors in Ob(∆op)r, from which one can readily verify the necessary com-
mutativity.

We next consider a morphism of the form (ιr, id). By construction, the
map across the top of Diagram (9.8) is the extension functor of Lemma 7.5
and the map across the bottom of Diagram (9.8) is the extension functor of
Lemma 6.7. A straightforward check shows that Diagram (9.8) commutes
for (ιr, id).

Finally, consider a morphism of the form (id, 〈β̂〉) where 〈β̂〉 is a morphism

in (∆op)r. Since (∆op)r is a product, 〈β̂〉 = (β̂1, . . . , β̂r), and it suffices to

consider the case where there is only one value of i such that β̂i is not the
identity.

Let β̂ : [m] → [n] in ∆op be the opposite of β : [n] → [m] in ∆. Recall that
the map ΛC(m∗) → ΛC(n∗) across the top of Diagram (9.8) is induced by
the map of finite pointed sets m∗ → n∗ given by β∗ in S1, whereas the map
along the bottom of the diagram is given by precomposing with the induced
map Ar[β] : Ar[n]→ Ar[m] of β on arrow categories.

Suppose {C, ρ} is an object of ΛC(m∗). Going around the top and right
maps of Diagram (9.8) sends {C, ρ} to the functor A1 : Ar[n] → C with
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A1(i, j) = C(β∗)−1(i+1,j), where again β∗ is the map in S1. As observed in
Definition 2.1, β∗ takes s ∈ m∗ to the unique t ∈ n∗ such that β(t − 1) <
s ≤ β(t). Hence (β∗)−1(i+ 1, j) is the set

{t ∈ [n] | β(i) < t ≤ β(j)} = (β(i) + 1, β(j)).

Unpacking the composite around the left and bottom maps of Diagram (9.8),
we see that this composite also sends {C, ρ} to the functor A2 : Ar[n] → C
whose value A2(i, j) = C(β(i)+1,β(j)).

Therefore A1, A2 : Ar[n]→ C are the same on objects, and tracing through
the images of the morphisms shows that they are the same functor. This
shows that when (q, 〈β̂〉) is of the form (id, 〈β̂〉), Diagram (9.8) commutes at
the level of objects; since the morphisms in ΛC(m1∗, . . . ,mr∗) are systems
of compatible morphisms, the diagram commutes on that level as well.

This completes the proof that the functors φC form a natural transformation
of functors E → Cat∗ as desired. �

We next show step (3) of Proof Outline 9.3: that the natural transformations
φC are actually 1-ary morphisms in the multicategory E∗-Cat .

Proposition 9.9. The natural transformations φC of Proposition 9.7 satisfy
the basepoint preservation conditions necessary to be 1-ary morphisms in
E∗-Cat.

Proof. As discussed in Section 5, in order to be a 1-ary morphism, for each

〈m〉 = ([m1], . . . , [mr]) ∈ E , the functor φC : ΛC(〈m〉) → S
(r)
m1,...,mrC must

satisfy an object- and a morphism-level basepoint condition. On objects,
we require that the functor φC take the basepoint of the category ΛC(〈m〉)
to the basepoint of the category S

(r)
m1,...,mrC. The basepoint in ΛC(〈m〉) is

the constant system at the unit object ∗ ∈ ΛC, which is the zero object
in C. The map φC sends this object to the constant functor at the zero

object ∗ ∈ C, which is the basepoint in S
(r)
m1,...,mrC. Thus the object-level

basepoint condition holds. On morphisms, an easy check shows that φC
takes the identity morphism on the basepoint to the identity morphism on
the basepoint. �

Step (4) in Proof Outline 9.3 is to show that the maps φC form a multinatural
transformation of multifunctors Wald∨ → E∗-Cat .

Proposition 9.10. The maps φC are multinatural on k-ary morphisms.
That is, given a k-exact functor F : C1 × · · · × Ck → D of Waldhausen cate-
gories, we have an equality of k-ary morphisms

φD ◦ ΛF = S
()
•,...,•F ◦ (φC1 , . . . , φCk)

in E∗-Cat(ΛC1, . . . ,ΛCk;S
()
•,...,•D).
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Proof. A k-ary morphism in E∗-Cat is a natural transformation satisfying
extra conditions. To prove two k-ary morphism are equal, it thus suffices
to check that the two composite natural transformations in the following
diagram are equal:

(9.11) ΛC1 × · · · × ΛCk
ΛF //

φC1×···×φCk ��

ΛD

φD
��

S
()
•,...,•C1 × · · · × S()

•,...,•Ck
S
()
•,...,•F

// S
()
•,...,•D

To verify this, we simply check that the components of both composite
natural transformations at an object of Ek are the same.

For 1 ≤ i ≤ k, let 〈mi〉 = ([mi1], . . . , [miri ]) be an object in E . Let 〈m1 �
· · ·�mk〉 ∈ E be the concatenation of the 〈mi〉’s and let r =

∑
i ri. We must

show that two composite functors are the same in the following diagram of
categories:

ΛC1(〈m1∗〉)× · · · × ΛCk(〈mk〉) //

��

ΛD(〈m1 � · · · �mk〉)

��

S
(r1)
m11,...,m1r1

C1 × · · · × S(rk)
mk1,...,mkrk

Ck // S
(r)
m11,...,mkrk

D

Here and in what follows we write ΛC1(〈m1〉) for ΛC1(m11∗, . . . ,m1r1∗) and

so on for space considerations.

Let ({C1, ρ1}, . . . , {Ck, ρk}) be an object in ΛC1(〈m1〉) × · · · × ΛCk(〈mk〉).
The image of this object under the top right functors in the diagram above

is the object A : Ar[m1, . . . ,mk] → D in S
(r)
m11,...,mkrk

D whose value at an

r-tuple of pairs ((i11, j11), . . . , (ikrk , jkrk)) is D〈(i11+1,j11),...,(ikrk+1,jkrk )〉 where

{D, ρ} is the system in ΛD defined as follows: Given 〈T 〉, which is a con-
catenation of lists 〈Si〉 of subsets of {1, . . . ,miri} for i = 1, . . . k, define

D〈T 〉 = F (C〈S1〉, . . . , C〈Sk〉).

The image of ({C1, ρ1}, . . . , {Ck, ρk}) around the left and lower maps in
the above diagram is the functor A′ : Ar[m1, . . . ,mk] → D given by the
composite

Ar[m1]× · · · ×Ar[mk]
A1×···×Ak−−−−−−−→ C1 × · · · × Ck

F−→ D

where A` : Ar[m`] → Ci evaluated at ((i`1, j`1), . . . , (i`r` , j`r`)) is the object

C`〈(i`1+1,j`1),...,(i`r`+1,j`r` )〉
. Hence the functors A and A′ coincide on objects

and it is similarly straightforward to see they are also equal on morphisms.

A similar check also shows that the necessary diagram commutes on mor-
phisms in the category ΛC1(〈m1〉)× · · · × ΛCk(〈mk〉).
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This shows that φ is respects k-ary morphisms. �

The final step in Proof Outline 9.3 is to show that this multinatural transfor-
mation preserves the categorical enrichments; that is, the k-ary cells. Since
the objects and morphisms in E∗-Cat(X1, . . . , Xk;Y ) are natural transfor-
mations and modifications, respectively, we must prove the following:

Proposition 9.12. Given a natural transformation µ between k-exact func-
tors F,G ∈Wald∨(C1, . . . , Ck;D), the modifications

φD ◦ Λµ and S
()
•,...,•µ ◦ (φC1 × · · · × φCk)

in E∗-Cat(ΛC1, . . . ,ΛCk;S
()
•,...,•D) are equal.

Proof. To show that these modifications agree, we again just have to check
that the components at objects in Ek agree. Each of these components is
a natural transformation whose components come from the components of
the original natural transformation µ. Let (m1, . . . ,mk) be an object in
Ek. Then the component of the modification φD ◦ Λµ at (m1, . . . ,mk) is a
natural transformation between functors

S
(r1)
m1 C1 × · · · × S(rk)

mk Ck

φD◦ΛF
))

φD◦ΛG

55�� S
(r)
m1,...,mkD

and the component of S
()
•,...,• ◦ (φC1 × · · · ×φCk) at (m1, . . . ,mk) is a natural

transformation of functors

S
(r1)
m1 C1 × · · · × S(rk)

mk Ck

S
()
•,...,•F◦(φC1×···×φCk )

))

S
()
•,...,•G◦(φC1×φCk )

55�� S
(r)
m1,...,mkD.

In both cases, the component of the natural transformation in question
at functors Ai : Ar[mi] → Ci is ultimately given by composition with the
components of the original natural transformation µ : F ⇒ G. Hence the
two modifications agree. �

10. Weak equivalences and the multinatural equivalence

In Theorem 9.1, we constructed a multinatural transformation between the
multifunctors KSMC ◦Λ and KWald, as functors from Waldhausen categories
with choices of wedges to E∗-Cat . However, we have not yet taken into
account the weak equivalences nor have we shown that this transformation
is an equivalence in reasonable cases. In this section, we remedy these
ommissions.

Let Catwe be the category of categories-with-weak-equivalences, that is, the
category of pairs (C, wC) where C is a category and wC is a subcategory
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of weak equivalences in C. The subcategory wC must at least contain all
objects of C and might additionally be required to satisfy other properties.
For our purposes, we only require that all isomorphisms are contained in
wC. Morphisms in Catwe are required to be “exact” in the sense of sending
weak equivalences to weak equivalences.

By neglect of structure, every Waldhausen category C is an object in Catwe.

Moreover, as in Definition 3.4, for each ([m1], . . . , [mr]) in E , S
(r)
m1,...,mrC has

subcategory of weak equivalences that consists of natural transformations

each of whose components is a weak equivalence. This makes S
(r)
m1,...,mrC an

object of Catwe. Furthermore, the morphisms in E∗ induce exact functors

between the categories S
(r)
m1,...,mrC, so in fact Theorem 6.8 can be improved

to the statement that S
()
•,...,• is a multifunctor

S
()
•,...,• : Wald→ E∗-Catwe.

Indeed, the second statement of Theorem 6.8, that restriction to subcate-
gories of weak equivlances also yields a multifunctor to E∗-Cat , encodes this
statement: for each C, restriction to the subcategories of weak equivalences
is given by the composite

E∗
S
()
•,...,•C−−−−−→ Catwe

w−→ Cat

where w : Catwe → Cat forgets down to the subcategory of weak equivalences.

Making such a composite requires that S
()
•,...,•C take morphisms in E to exact

functors.

Now we turn to the case of the K-theory of a symmetric monoidal category.
Symmetric monoidal categories don’t naturally come with a subcategory
of weak equivalences (aside from the trivial choice of the core, the wide
subcategory of all isomorphisms.) This means that the natural landing
point for KSMC is E∗-Cat , rather than E∗-Catwe as in the Waldhausen case.
However, it’s worth observing that in practice one actually wants to apply
KSMC to the core of a symmetric monoidal category, as in Remark 3.10,
rather than an arbitrary symmetric monoidal category.

Consider (C, ω) ∈ Wald∨. As in Section 6, ΛC is a symmetric monoidal
category, but it is more than that. ΛC is in fact a symmetric monoidal cate-
gory that comes equipped with a sub-symmetric monoidal category of weak
equivalences wC, given by the restricting to the weak equivalences in C. The
gluing axioms ensure that wC is again symmetric monoidal. One can thus
apply KSMC to obtain the E∗-category KSMC(wC). This is the functor whose
value at an object ([m1], . . . , [mr]) ∈ E∗ is the category wΛC(m1∗, . . . ,mr∗)
of systems of objects in wΛC.
However, one can also obtain this E∗-category as the restriction to weak
equivalences of the E∗-category KSMC(C). More precisely, the composite
functor KSMC(Λ−) takes values not just in E∗-Cat but in E∗-Catwe, and
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KSMC(wC) can alternatively be described as the composite

E∗
ΛC−−→ Catwe

w−→ Cat .

For each ([m1], . . . , [mr]) ∈ E∗, ΛC(m1∗, . . . ,mr∗) has a natural subcategory

of weak equivalences, namely, the maps of systems {f} : {C, ρ} → {C ′, ρ′}
so that all the components f〈S〉 are weak equivalences. It is routine to verify
again that morphisms in E∗ induce exact functors.

The key observation is that since all the maps ρ appearing in these systems
are isomorphisms and hence weak equivalences,

wΛC(m1∗, . . . ,mr∗) = wΛC(m1∗, . . . ,mr∗).

Hence, passing to the subcategory of weak equivalences after taking K-
theory is the same as taking K-theory after passing to the subcategory of
weak equivalences in this context.

In summary, we see that in fact we have the following diagram at the level
of multicategories enriched in sets:

Wald∨
Λ //

S
()
•,...,• &&

�� φ

SMC

(−)yy
E∗-Catwe

w

��
E∗-Cat

|·|◦N◦diag
��

Spec

One observes here that our transformation φ takes weak equivalences in

ΛC(m1∗, . . . ,mr∗) to weak equivalences in S
(r)
m1,...,mrC by construction: if f

is a map between systems in ΛC(m1∗, . . . ,mr∗) all of whose components are
weak equivalences, then the map φC(f) is a natural transformation all of
whose components are weak equivalences.

In this situation, we have an equivalence of K-theory spectra.

Theorem 10.1. Suppose C is a Waldhausen category with split cofibrations.
Then |N ◦ diag ◦ w ◦ φC | is an equivalence of K-theory spectra.

Proof. Since both K-theory constructions produce almost Ω-spectra, the
map in question, |N ◦ diag ◦ w ◦ φC |, is a map of almost Ω-spectra. Hence it
suffices to show that it is an equivalence at level 1, where we have the map∣∣Nw(C(S1

•))
∣∣→ ∣∣∣Nw(S

(1)
• C)

∣∣∣
On the right-hand side, we have precisely Waldhausen’s original S• con-
struction and on the left, the subcategory of weak equivalences in Segal’s
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original construction. Thus, this map is precisely the map shown to be an
equivalence in [Wal85, §1.8] in the case where the cofibrations in C are split
up to weak equivalence. �

Theorems 9.1 and 10.1 yield the following corollaries. (This is the point of
these results!) For further details, see [EM06, §8–9].

Corollary 10.2. Let O be an operad in Cat and let A be a O-algebra in
Waldhausen categories. Then there is a map of O algebras in Spec(sCat∗)

KSMC(ΛA)→ KWald(A).

After changing from the categorical enrichment to the simplicial enrichment,
this produces a map of NO-algebra in spectra

NKSMC(ΛA)→ NKWald(A)

that is an equivalence when A has split cofibrations.

Here we use Proposition 2.9 to identify NKSMC and NKWald as the usual
versions of Elmendorf–Mandell and Waldhausen K-theory producing sym-
metric spectra in simplicial sets.

For example, this corollary implies that when A ∈Wald is an E∞-algebra
in Wald, the two E∞-ring spectra KSMC(ΛA) and KWald(A) are equivalent
as E∞-ring spectra when A has split cofibrations.

In fact, this corollary follows from a more general result. Recall that [EM06]
defines small multicategories M that parametrize ring objects, E∞-objects
and modules over ring objects. They also show that for any such M there is
a simplicial model structure on SpecM such that equivalences are objectwise
stable equivalences of spectra [EM06, Theorem 1.3]. Theorems 9.1 and 10.1
then immediately imply the following corollary.

Corollary 10.3. Let M be a small categorically-enriched multicategory and
let A : M→Wald be a multifunctor. Then there is a commutative diagram

M
A //Wald

KSMC◦Λ ))

KWald

55�� Spec(sCat∗).

After applying the nerve at the level of morphisms to change to simplicial
enrichment, we thus have a commutative diagram

N•M
A // N•Wald

NKSMC◦Λ
((

NKWald

66�� Spec.

that is an equivalence in SpecM when the image of each object in A has
split cofibrations.
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For example, if M the multicategory of [EM06, Def 2.4] that parametrizes
modules over an E∞-object, then this multinatural transformation is an
equivalence of module spectra.

Theorems 9.1 and 10.1 also yield equivalences of spectrally-enriched cate-
gories constructed from Waldhausen categories via these two approaches. If
C is a category enriched in Wald and F : Wald → Spec is any multifunc-
tor, we denote by F•C the spectrally-enriched category whose objects are the
objects of C and whose morphism spectra (F•C)(c, d) are given by applying
F to the morphism Waldhausen categories in C: that is,

(F•C(c, d) = F (C(c, d)).

Multifunctoriality of F is precisely the condition needed to give a well-
defined composition pairing of spectra in F•C.

Corollary 10.4. Let C be a category enriched in Wald. Then there is a
spectrally-enriched functor

(KSMC ◦ Λ)•C → KWald•C

that is an equivalence of spectrally enriched categories if each morphism
Waldhausen category in C has split cofibrations.

In the forthcoming [BO], we use this corollary to show that Mackey functors
of Waldhausen categories produce equivariant spectra, analogously to the
construction of [BO15].
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