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ABSTRACT. We define a model structure on the category GCat of small categories with
an action by a finite group G by lifting the Thomason model structure on Cat. We show
there is a Quillen equivalence between GCat with this model structure and G7op with the
standard model structure.

INTRODUCTION

There are familiar adjunctions

N 20
Cat _— ~ sSet —__ Top
¢ -l
between the categories of categories, simplicial sets, and topological spaces, and for the
standard model structure on sSet and the Quillen model structure on Top the adjunction
on the right is a Quillen equivalence. In [I0] Thomason defined a model structure on Cat
and showed that the adjunction
Ex?N
Cat : sSet
cSd?
is a Quillen equivalence. In Thomason’s model structure a functor F': A — B is a weak
equivalence if Ex2N(F) is a weak equivalence in sSet or, equivalently, BF is a weak equiv-
alence of topological spaces. A functor F is a fibration if Ex?N(F) is a fibration in sSet.
As shown in [2], this model structure is cofibrantly generated.

In this paper we use results by Stephan [9] to extend Thomason’s model structure to
the category of categories with an action by a finite group G. We let BG be the category
with one object and endomorphisms given by the group G and define the category of G
objects in a category C, denoted by GC, to be the category of functors

BG — C

and natural transformations. If C is a model category we can define a model structure
on GC where the fibrations and weak equivalences are maps that are fibrations or weak
equivalences in C. Unfortunately, this perspective does not capture the desired homotopy
theory. This is perhaps most familiar in the case of G7op, where the desired notion of G-
weak equivalence is a map that induces a non-equivariant weak equivalence on fixed point
spaces for all subgroups of G.

Given a subgroup H of G, we have a functor (—)7: GC — C defined by X = limpy X.
This notion coincides with the usual definition of the fixed point functor in the case that C
is any of Set, Top, sSet or Cat. Let Og be the orbit category of GG; it has objects the orbits
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G/H for all subgroups H and morphisms all equivariant maps. Then an object X € GC
defines a functor
®(X): 08 —C
by ®(X)(G/H) = XH. If we let Og-C be the category of functors
oy —C
we can define a functor ®: GC — 0g-C as above. The functor ® has a left adjoint
A: Og-C — GC,

defined by A(Y) = Y(G/e), where the G-action is inherited from the automorphisms of the
object G/e in Og.

If C is a cofibrantly generated model category, such as Top, sSet or Thomason’s model
structure on Cat, there is a model structure on Og-C where the fibrations and weak equiv-
alences are defined levelwise. This is the projective model structure on the category
Oag-C. For the category of topological spaces, or simplicial sets, this model structure cap-
tures the desired equivariant homotopy type.

For some categories C we can use the functor ® to lift the projective model structure from
OG-C to GC. Then a map in GC is a fibration or weak equivalence if it is one after applying
®. In the case of topological spaces this is the usual model structure on GTop [7, I11.1.8].
In [1], Elmendorf constructed a functor &g-Top — GTop that was an inverse of ® up to
homotopy, thus showing that the homotopy categories of GTop and Og-Top were equivalent.
Later Piacenza [8] showed that the adjunction given by ® and A is a Quillen equivalence if
G7Top has this model structure and &g-Top has the projective model structure. Note that
Elmendorf’s functor can be thought of as the composition of the cofibrant replacement in
Oa-Top followed by A.

In this paper we prove a similar result for Cat.

Theorem A. If G is a finite group there is a model structure on GCat where a functor is
a fibration or weak equivalence if it is so after applying ®. Using this model structure the
A-® adjunction is a Quillen equivalence between GCat and Og-Cat.

More can be said about this model structure. Since Og-C and GC are both diagram
categories, an adjunction L: C &2 D: R defines adjunctions

Ly: Og-C 2 0g-D: R, and L,: GC = GD: R,

and so the classical adjunctions relating Cat, sSet, and Top define adjunctions

Ex2N Se(—)
GCat GsSet GTop
cSd? |-
Al | @ Al |@ Al |@
Ea?N Se(—)
Oa-Cat Oc-sSet Oa-Top.
cSd? |-

The usual Quillen equivalences between Cat, sSet and Top are known to induce Quillen
equivalences between Og-Cat, Og-sSet and Og-Top.

Theorem B. The adjunctions in the top row of the diagram above are Quillen equivalences.
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1. MODEL STRUCTURES ON (G-CATEGORIES

Let C be a cofibrantly generated model category. To lift the model structure from C to the
category GC we need some compatibility between the model structure on C and the group
action. The relevant notion of compatibility is captured using the fixed point functors.

Definition 1.1. A fixed point functor (—): GC — C is cellular if

(1) it preserves directed colimits of diagrams where each arrow is a non-equivariant
cofibration after applying the forgetful functor GC — C,
(2) it preserves pushouts of diagrams where one leg is given by

G/K®f: G/K@A— G/K® B

for some closed subgroup K of G and a cofibration f: A — B in C, and
(3) for any closed subgroup K of G and any object A of C the induced map

(G/K)T @ A— (G/K @ A

is an isomorphism in C.

Note that since C is cocomplete, for a G-set X and an object A of C we have the categorical
tensor X ® A which is the G-object [ A with G-action induced by the G-action on X.

In [9], Stephan gives conditions to lift a model structure from 0g-C to GC.

Theorem 1.2. [0, Theorem 1.2] Let G be a discrete group, C be a model category which is
cofibrantly generated and assume

e for any subgroup H < G the H-fized point functor (—)": GC — C is cellular and
e forall H K < G the functor (G/K)? @ —: C — C preserves cofibrations and acyclic
cofibrations.

Then there is a fized point model structure on GC where a map f in GC is a fibration
or weak equivalence if and only if ®(f) is a fibration or weak equivalence in the projective
model structure on Og-C. Additionally, there is a Quillen equivalence

AN OgC=2GC:P

between Og-C with the projective model structure and GC with this model structure.

This theorem can be made functorial with respect to Quillen adjunctions.

Theorem 1.3. Let C and D be cofibrantly generated model categories satisfying the hy-
potheses of [Theorem 1.2 If
L:C=2D:R
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is a Quillen adjunction (resp. Quillen equivalence) then there is an induced Quillen adjunc-
tion (resp. Quillen equivalence)

L.: GC=GD :R,
where GC and GD have fixed point model structures.

Proof. To show we have a Quillen adjunction it is enough to show that R.: GD — GC is
a right Quillen functor, that is, to show that R, preserves fibrations and acyclic fibrations.
We will show R, preserves fibrations; the case for acyclic fibrations is similar.

Let f: X — Y be a fibration in GD. Since GD has the fixed point model structure,
fibrations are created in Og-D. Thus ®f: X — ®Y is also a fibration in &g-D. By
assumption, R: Og-D — Og-C is right Quillen and thus R®f: R®X — R®Y is a fibration
in Og-C.

As a right adjoint, R commutes with limits. Thus for any H < G and X: BG — D,

®(R.X)(G/H) = (R.X)" = %III}RX = R%rlr{lX = R(®(X)(G/H)).

By definition we then have R(®X(G/H)) = (R,®X)(G/H). This means that ®RX %,

®RY is a fibration, and thus, since fibrations in GC are created under ®, RX R—f> RY is a
fibration.

Suppose L: C 2 D : R is a Quillen equivalence. To show the adjunction GC =2 GD is a
Quillen equivalence, we apply the 2-out-of-3 property for Quillen equivalences [5, Corollary
1.3.15]. We then have a diagram of Quillen adjunctions, in which both the diagrams of the
left adjoints and the right adjoints commute,

*

GC GD

R,
|
L*

Oq-C —= Og-D

R+

such that bottom and two side adjunctions are Quillen equivalences. Thus the top adjunc-
tion must be a Quillen equivalence as well. O

After we verify that Cat satisfies the conditions of in the next section,
completes the proof of Theorem B.

We now record that Stephan’s construction preserves right properness.

Proposition 1.4. Let C be a cofibrantly generated model category that is right proper and
satisfies the conditions of[Theorem 1.9, Then the fized point model structure on GC is right
proper.

Proof. Suppose C is right proper and consider a pullback diagram in GC

x-L.y

P
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where h is a fibration and f is a weak equivalence. We must show that f’ is also a weak
equivalence. Since weak equivalences and fibrations in GC are created by the functor
®: GC — Og-C and Og-C is right proper [4, Thm. 13.1.14] this follows from the fact
that @ is a right adjoint and thus commutes with pullbacks. O

To apply to the category Cat and a finite group G, we will show this category
and its fixed point functors satisfy conditions that imply the fixed point functors are cellular.

Proposition 1.5. Let G be a discrete group, H be a subgroup, and C be a cofibrantly
generated model category. Assume the H-fized point functor (—)": GC — C

(1) preserves all filtered colimits,
(2) preserves pushouts of diagrams where one leg is given by

G/IK®f:G/K®A— G/K®B

for a subgroup K of G and a generating cofibration f: A — B in C, and
(3) for any subgroup K of G and any object A of C the induced map

(G/K)T® A— (G/K @ AT
18 an isomorphism in C.

Then the H-fixed point functor is cellular.

We postpone the proof to but first observe that it allows us to prove a dual result to
[Proposition 1.4, This proof is also postponed to

Proposition 1.6. Let C be a cofibrantly generated model category that is left proper and
satisfies the second condition of [Theorem 1.3 and the conditions of [Proposition 1.5, Then
the fixed point model structure on GC is left proper.

2. THE MODEL CATEGORY GCat

In this section we will show that Cat satisfies the hypotheses of [Proposition 1.5 and [The-
forem 1.2] proving Theorem A. We start by giving an explicit description of the cofibrations
in Thomason’s model structure on Cat.

Theorem 2.1. [2, Thm. 6.3] The Thomason model structure on Cat is cofibrantly generated
with generating cofibrations

{eSA%?0A[m] — ¢Sd2A[m] | m > 0}
and generating acyclic cofibrations
{eSA%A*[m] — ¢SA?0A[m] | m > 1 and 0 < k < m}.

Here c is the left adjoint of the nerve functor and Sd is barycentric subdivision.

To verify the conditions of [Theorem 1.2/ and [Proposition 1.5|we will consider a more gen-
eral collection of maps, the Dwyer maps, rather than working directly with these generating
cofibrations and acyclic cofibrations.

Recall that subcategory A of a category B is a sieve if for every morphism §8: b — a in
B with target a in A, both the object b and the morphism £ lie in A. A cosieve is defined
dually.
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Definition 2.2. [I0] A sieve inclusion A — B is a Dwyer map if there is a cosieve W in
B containing A so that the inclusion functor i: A — W admits a right adjoint »: W — A
satisfying 7 = id 4 and the unit of this adjunction is the identity.

Note that the generating cofibrations and acyclic cofibrations are Dwyer maps of posets.

We consider the conditions of for the case C = Cat and G a finite group. For
C = Cat, the first condition will follow from [Proposition 1.5 The second condition holds
automatically: note first that G/K ® A is simply the product of the discrete category G/K
and A, with G-action concentrated in the G/K factor. Direct product with any discrete
category preserves weak equivalences and Dwyer maps, and thus tensoring with (G/K)?
preserves cofibrations and acyclic cofibrations.

We next show Cat satisfies the conditions of [Proposition 1.5l Condition 3 of
is satisfied because the action of G on G/K ® A is entirely through the action of G
on G/K. Conditions 1 and 2 are proved in the next two propositions.

Proposition 2.3. Let H be a subgroup of G. The fized point functor (—) preserves all
filtered colimits.

Proof. Let I be a filtered category and F' be a functor from I to GCat. First note that
N colim; (F(i)") = colim; (N (F(i))) since the nerve commutes with filtered colimits [6].
The nerve is a right adjoint and taking fixed points is a limit, so we have an isomorphism
N (F(i)7) = (NF(i)). Together these give an isomorphism

N colimy (F(i)H) 2 colim; ((NF(i))H> .

Finite limits and filtered colimits commute in Set and this extends to sSet since limits and
colimits in sSet are computed levelwise. We thus have

colimy ((NF(z’))H> > (colimy NF (i) = (N colim; F(i))™ .
Finally, we have an isomorphism (N colim; F(i))” =~ N (colim; F (z))H since the nerve is a
right adjoint. Together this gives an isomorphism
N colim;(F(i)H) = N (colimy F(z))H

The nerve is fully faithful, so the result above implies colim;(F(i)) = (colim; F(z))H,
completing the proof. O

We will verify the second condition in [Proposition 1.5 for Dwyer maps of posets since
they allow simple descriptions of pushouts of categories.

Proposition 2.4. Let A — B be a Dwyer map of posets and suppose the diagram
G/KxA——G/K xB
7| |
C D

is a pushout diagram in GCat. Then this diagram remains a pushout after taking H -fized
points.

The proof of this proposition is based on a very explicit description of the morphisms in
D. We give that description first and then continue to the proof of the proposition.
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Lemma 2.5. Leti: A — B be a Dwyer map between posets with cosieve W and retraction
r, and let F': A — C be any functor. If D is the pushout of i and F', the set of objects of D
can be identified with

ob(C) I (0b(B) \ 0b(A)) .
If ¢ is an object of C and b is an object of B that is not an object of A, then
D(c,b) =C(c, F(r(b))),

if b is in W, and is otherwise empty.

Proof. The proof of [3, Proposition 5.2] gives a simple description for the pushout D of a full
inclusion i: A — B and a functor F': A — C. In the case when i is a sieve, the description
is as follows. The objects of D are ob(C) II (ob(B) \ ob(.A)) and some of the morphisms are
given by
B(d,d") ifd,d € ob(B)\ ob(A),
D(d,d) =< C(d,d") ifd,d € ob(C),
0 if d € ob(B) \ ob(A) and d’ € ob(C).

For an object ¢ of C and an object b of B not in A, the morphisms from ¢ to b in D are
equivalence classes of pairs (3,7) where § is a morphism a — b in B for some a € A
and v is a morphism ¢ — F(a). The equivalence relation on these pairs is generated by
(Ba,vy) ~ (B, F(a)y) for a in A, whenever the compositions in question are defined. The
equivalence relation is compatible with composition.

Now assume that A — B is a Dwyer map between posets. We denote the counit of the
adjunction between the inclusion A — W and the retraction r by €. If (5,) is a pair of
morphisms as above, then § is in W by the definition of cosieve, and

B =evr(B)

since the source of 5 is in A. Since r(5) € A, (8,7) is equivalent to (e, F'(r(8))v) and,
as the reader can check, every equivalence class has a unique representative of the form

(€v,7)- O

Proof of [Proposition 2.4 We must show that if the diagram on the left is a pushout and
A — B is a Dwyer map of posets then the diagram on the right is also a pushout.

G/KxA——=G/K x B (G/K) x A—— (G/K)" x B

| | g !

C D cH pH

First observe that since GCat is a diagram category, the pushout is computed in the
underlying category Cat. The objects of D are

ob(C) I (G/K x ob(B) \ ob(A))

so the objects of D are given by ob(C)# I ((G/K)# x (ob(B) \ ob(A))). The objects of
the pushout P of (G/K)" x A — (G/K)" x B and F are identical to those in D¥ and

the induced map from this pushout to P is an isomorphism on objects.
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For morphisms, observe that G/K x A — G/K x B and (G/K)? x A — (G/K)! x B
are Dwyer maps between posets, so we can apply The morphisms of D are

if d=(gK,b),d = (¢gK,V) for
b,/ € ob(B) \ ob(A),
c(d,d) it d,d’ € ob(C),

fidgic} x C(d, F(oK,r(p) % f)sgoé)ci 21};? ,f)/,: (9£5,b) for

if d = (¢gK,b) and d' € ob(C) for
b € ob(B) \ ob(A).

{idyx } x B(b, )

D(d, d)

0

and so for objects d and d’ in DH we have

(. , if d=(gK,b),d = (gK,V) for
{idgrc} < B(b, V') gK € (G/K)H and b, b € ob(B) \ ob(A),
cH(d, d') if d,d' € ob(CH),

D (d,d)

if d € ob(CH) and d' = (gK,b) for

gK € (G/K)M and b € ob(B) \ ob(A).

if d = (gK,b) and d’ € ob(CH) for

gK € (G/K)? and b € ob(B) \ ob(A).

For the pushout P, the analogous statement holds, and thus we have the same description

for the morphism sets of P and D and the induced map P — D is an isomorphism on
morphism sets. 0

{idgi} x CH(d, F(gK,7(b)))

0

3. CELLULAR FUNCTORS AND LEFT PROPER MODEL STRUCTURES

We now return to the proof of [Proposition 1.5, We only need to show that condition (2)
in [Proposition 1.5[can be extended from generating cofibrations to all cofibrations. This is
a direct consequence of the following lemma.

Lemma 3.1. Let F': C — D be a functor between cocomplete categories and I a set of
morphisms of C. If F' preserves filtered colimits and pushouts along morphisms in I then F
preserves pushouts along all retracts of transfinite compositions of pushouts of morphisms
in 1.

Proof. Suppose we have a diagram

A—sC—C'

C
B——D——=1D

where both small squares are pushouts and ¢ is in I. Then the exterior is a pushout.
Applying F' we see that both the left square and the outside rectangle remain pushouts.
This implies the right square is a pushout, so F' preserves pushouts along pushouts of
morphisms in [.

Now suppose we have a A-sequence X : A — C for some ordinal A so that F' preserves
pushouts along all of X; — X;11. We will show that F' preserves pushouts along the
transfinite composition X — colimy Xg.
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We proceed by transfinite induction. Assume the claim is already proven for all ordinals
smaller than A. Recall that for any limit ordinal 8 < A, the induced map colim;. g X; — X3z
is an isomorphism by the definition of a A-sequence. Note furthermore that for a non-
limit ordinal, say, 8 + 1, the indexing category ¢ < [ 4 1 has the terminal object 3, so
colim;.g41 X; — Xg is an isomorphism.

Assume first that A = 8+ 1 is not a limit ordinal. Then we have a diagram of pushouts

XU —— COliHlZ‘<5 Xz —— COlimi<5+1 XZ

| l |

C D D'

Since the map colim;.g X; — colim;<g41 X; is either an isomorphism or the given map
Xp-1 — X3 (where 3 —1 denotes the predecessor of § in this case), the functor F' preserves
the smaller pushouts squares (for the left one, we use the induction hypothesis), and thus
also the outer pushout rectangle.

Now assume that A is a limit ordinal. Since colimits commute with each other we have
colim(C «+ Xy — colimy X') = colim) colim(C <+ Xg — Xp).
Using this observation and the assumption that F' commutes with filtered colimits we obtain
F(colim(C «+ Xy — colimy X)) = colimy F'(colim(C < Xo — X3)).
The induction hypothesis allows us to replace the right hand side by
colimy colim(FC + FXy — FXpg)
and we can exchange the colimits to replace the colimit above by
colim colimy (F'C' < FXy — FXg) = colim(FC «+ FXy — colimy F Xg).
Finally we observe that I’ preserves filtered colimits to see
colim(FC + FXy — colimy F'Xg) = colim(F'C < FXy — F colimy Xpg).
For the last condition, suppose that i': B — B’ is a retract of a map i: A — A’, and F
preserves pushouts along ¢. Then we have a diagram
B——sA——RB
ol
B ——=A—-DB

where both horizontal composites are the identity. If we take the pushout of this diagram
along a map f: B — C we obtain pushout squares

B——C A——C
B ——=Q Al ——=P

and the left hand square is a retract of the right hand square. Applying F' to both squares
preserves the retraction and the right pushout square. Since a retract of a pushout square
is a pushout, F' applied to the left pushout square is a pushout. O

We also use this lemma in the proof of [Proposition 1.6
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Proof of |Proposition 1.6 First observe that since C is left proper 0g-C is also left proper
[4, Theorem 13.1.14].

Since C is cofibrantly generated both &-C and GC are cofibrantly generated and generat-
ing cofibrations for both GC and €0g-C can be defined in terms of the generating cofibrations
of C. In fact, we can choose generating cofibrations I for GC so that ®1 is a collection of gen-
erating cofibrations for 0g-C [9]. Since ® preserves retracts, filtered colimits, and pushouts
along generating cofibrations, we see that ® preserves cofibrations.

By assumption, the fixed point functor (—) preserves pushouts along generating cofi-
brations in GC, so by it also preserves pushouts along all cofibrations. It follows

that the functor ® also preserves pushouts along cofibrations.

Consider a pushout diagram

X-loy

1
Z

— W

in GC where f is a weak equivalence and h is a cofibration. Applying ® we have a pushout
diagram in 0g-C and by construction of the model structure on GC, ®(f) is a weak equiv-
alence. By the observations above ®(h) is a cofibration. It follows that ®(f’) is a weak
equivalence in Og-C, so by definition f’ is a weak equivalence in GC. O
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