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Abstract. These notes provide an introduction to some of the basic construc-

tions in equivariant stable homotopy theory. We begin with a construction of
equivariant spectra and then discuss equivariant spheres, fixed point spectra

and splitting isotropy groups. The notes conclude with a simple definition of

Ro(G)-graded homology and cohomology.

1. Introduction

We start with the fundamental question: what is equivariant stable homotopy
theory? Equivariant stable homotopy theory is the branch of algebraic topology
that is both “equivariant” and “stable.” By “equivariant,” we mean that all spaces
in sight have an action of a particular compact Lie group G, and we wish to do
algebraic topology taking into account this action. By “stable,” we mean that (mo-
tivated perhaps by the Freudenthal suspension isomorphism) we want suspension
to be an “invertible” operation—we should be able to desuspend any object. More
formally, loops and suspension should give a self-equivalence of the (equivariant)
stable homotopy category.

To get this stability property, we have to pass from working with topological
spaces to working with spectra. The first section of these notes discuss spectra and
their properties. After that, we discuss other important constructions in equivari-
ant stable homotopy theory, such as equivariant spheres, fixed point functors and
splittings.

From now on all G-spaces will be based, with a G-fixed point basepoint. For
further references on this subject, consult the “Alaska Notes”, [1].

2. Spectra

Nonequivariantly, we think of a prespectrum X as a sequence of spaces {Xn} for
n ≥ 0 with structure maps

σn : ΣXn → Xn+1.

If the adjoint structure maps σ̃n : Xn → ΩXn+1 are homeomorphisms, then X is a
spectrum.

Equivariantly, we could just try the same things, but this doesn’t really capture
all of the equivariant structure we want. Rather than thinking about spectra as
being indexed on the natural numbers, {0, 1, 2, . . . }, we can think of them as being
indexed on the spheres S0, S1, S2, . . . . But equivariantly, these spheres have a fixed
G-action, so they can’t account for all the structure. We need to introduce spheres
with G-actions and to have some way of keeping track of how these spheres are
related to each other.
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Consider an n-dimensional real representation λ of G. If we forget about the
G-action, λ is just Rn, so its one-point compactification is nonequivariant just Sn.
As a G-space, the one-point compactification of λ is a new sphere Sλ. We want a
G-spectrum to be a collection of G-spaces, one for each λ, that fit together in the
right way. To understand what we mean by “fit together,” we introduce the idea
of a G-universe.

Definition 2.1. A G-universe U is a countably infinite dimensional representation
of G with an inner product such that

(1) U contains the trivial representation
(2) U contains countably many copies of each finite dimensional subrepresen-

tation.

We can think of U as the direct sum of (Vi)∞ where {Vi} is a set of distinct
irreducible representations of G. We call a G-universe complete if it contains every
irreducible representation of G, up to isomorphism. A G-universe is called trivial
if it contains only the trivial representation.

Fix a G-universe U. Let V be a finite dimensional subrepresentation of U and
let SV be its one-point compactification. Denote ΣV (−) = SV ∧ − and ΩV (−) =
F (SV ,−), the function space.

Definition 2.2. A G-prespectrum indexed on U is a collection of G-spaces {EV }
for each finite dimensional subrepresentation of U together with G-maps

σV,W : ΣW−V EV → EW

whenever V ⊂W . Here W − V is the orthogonal complement of V in W . We also
require the appropriate transitivity diagram to commute when V ⊂W ⊂ X.

A G-spectrum indexed on U is a G-prespectrum where we require the adjoint
structure maps

σ̃V,W : EV → ΩW−V EW

to be homeomorphisms.

Example 1. If U = R∞ and G is the trivial group, we basically get the normal
definition of spectrum.

Example 2. For any G-space X, we can take EV = SV ∧X to get the suspension
prespectrum of X. This can be “spectrified” to get the suspension spectrum of X.

A G-spectrum indexed on a complete universe is called genuine; a G-spectrum
indexed on a trivial universe is called naive.

We get a category GSU of G-spectra indexed on the universe U by defining
morphisms D → E to be maps DV → EV that commute with the structure maps.
This is a nice category to work in and G-spectra are nice objects. In particular, we
have the following useful facts:

Useful Facts. (1) There is a “spectrification” functor that turns prespectra
indexed on U into spectra indexed on U. This functor is analogous to the
“sheafification” of a presheaf and comes from the adjoint functor theorem.

(2) Naive G-prespectra are equivalent to sequences En of G-spaces with struc-
ture maps ΣEn → En+1 that are G-maps.
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(3) A map of spectra D → E can be defined to be a weak equivalence if every
DV → EV is an equivariant weak equivalence. This doesn’t work for
prespectra. Note that a map X → Y is an equivariant weak equivalence
if it induces an isomorphism π∗(XH) → π∗(Y H) for each closed subgroup
H ≤ G.

(4) There is a nice (symmetrical monoidial) smash product on the category
of G-spectra over a universe U. The homotopy category of G-spectra (by
which we mean “formally invert weak equivalences”) is triangulated. When
U is complete, this is what is meant by the “stable equivariant homotopy
category.”

(5) We can suspend or desuspend by any representation sphere SV and these
functors are inverse equivalences of categories. Furthermore, the suspension
spectrum functor Σ∞ fromG-spaces toG-spectra has an adjoint Ω∞ functor
that takes a spectrum to its zeroth space E{0} = E0.

(6) Given a (complete) G-universe U, we can take its G fixed points to get a
trivial universe UG with an inclusion UG → U. This inclusion gives a pair
of adjoint functors

GSU(i∗E,E′) ∼= GSUG(E, i∗(E′))

for E a naive UG spectrum and E′ a (genuine) U spectrum. If V ⊂ UG and
, then i∗(E′) has V th space (i∗E′)V = E′(iV ′) and if V ′ ⊂ U, then i∗E

has V ′th space (i∗E)V ′ = EV ∧ SV ′−iV where V = i−1(V ′ ∩ i(UG)).

3. Equivariant Homotopy Groups

Consider a G-space X. How do we define πn(X) equivariantly? Homotopy
classes of G-maps [Sn, X]G won’t do, because since Sn has a fixed G-action, any
map f : Sn → X has to land in the fixed set XG. Again, we need to consider
spheres with G actions, but this time we get G-actions by smashing a sphere with
a G-orbit. Since G-orbits give all possible transative G-actions, this is enough to
see all kinds of G-actions. Thus, nonstably, we define equivariant homotopy groups

πHn (X) = [Sn ∧ (G/H)+, X]G.

Since each Sn is fixed, we see that a map Sn ∧ G/H+ → X must land in the H
fixed points of X.

Passing into the stable world, we make an analogous definition. Let Sn = Σ∞Sn,
and consider SnH = G/H+ ∧ Sn for all closed H ≤ G.

Definition 3.1. The homotopy groups of a G-spectrum E are

πHn (E) = [SnH , E]G

where here we mean maps in the homtopy category of G-spectra.

These homotopy groups fit together to form what’s called a Mackey functor ;
that is, a contravariant functor from BGU to abelian groups, where BGU is the full
subcategory of the homotopy category on the SnHs.

The following theorem tells us that our definition of weak equivalence of spectra
in Section 2 makes sense.

Theorem 3.2. If f : E → E′ is a map of G-spectra, then each component map
fV : EV → E′V is a weak equivalence of G-spaces if and only if f∗ : πHn (E) →
πHn (Y ) is an isomorphism for all closed H ≤ G and all n.
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In other words, these G-spheres from orbits are enough to detect weak equiva-
lences; in this sense, we now have “enough” homotopy groups.

4. Fixed Points

Given a G-spectrum E, we want to find a nonequivariant spectrum that behaves
as the fixed points of E. But what do we mean by “fixed points?” Consider the
case of G-spaces.

If X is a nonequivariant space and Y is a G-space with fixed point space Y G,
we have an adjunction

G-maps(X,Y ) ∼= maps(X,Y G)

where on the left side we give X the trivial G-action. We want fixed point spectra
to fit into a similiar adjunction: Consider a G-universe U with fixed points UG.
For a naive G-spectrum D indexed on UG, define a nonequivariant spectrum DG

indexed on UG by (DG)V = (DV )G for V ⊂ UG. If C is a nonequivariant spectrum
indexed on UG, we then have an adjunction

GSUG(C,D) ∼= SUG(C,DG).

To make sense of the left-hand side, we regard C as a naive G-spectrum with the
trivial action. Thus DG gives us the fixed point spectrum of the naive G-spectrum
D.

For a general G-spectrum E indexed on U, we just take the fixed points of its
underlying naive spectrum. Explicitly, EG = (i∗E)G where i∗ : GSU → GSUG

comes from the inclusion i : UG → U. We can compose the (i∗, i∗) adjunction with
the fixed points adjunction to get

GSU(i∗(C), E) ∼= SUG(C, (i∗E)G) = SUG(C,EG).

This construction gives us a good notion of fixed points for an arbitary G-spectrum,
in the sense that we have the right kind of adjunctions.

However, this notion of fixed points is not particularly intuitive. For genuine
G-spectra, there is a map

EG ∧ (E′)G → (E ∧ E′)G,

but this map is not usually an equivalence. Moreover, taking fixed points does not
commute with taking suspension spectra: for a G-space X, (Σ∞X)G 6= Σ∞(XG).

We have a different notion of fixed points, called geometric fixed points, that
behaves better in this light. This is a functor ΦG : GSU→ SUG with the properties

• Σ∞(XG) ' ΦG(Σ6∞X) and
• ΦG(E) ∧ ΦG(E′) ' ΦG(E ∧ E′).

There is also a comparision map ΦG → (−)G. To construct the geometric fixed
points functor, we need the concepts introduced in the next section.

5. Universal spaces and splitting isotropy types

We begin with a definition.

Definition 5.1. A family F of subgroups of G is a set subgroups that is closed
under subconjugacy: if H ∈ F and g−1Kg ⊂ H for some g ∈ G, then K ∈ F.
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Some basic examples are the set {1} consisting of just the trivial group, the set
of all subgroups of G, the set of all finite subgroups of G, and the set of all proper
subgroups of G.

For a given family F, define an F-space to be a G-space all of whose isotropy
groups are in F. Each family F has a universal F-space EF which is defined (as a
homotopy type) by

(EF)H =

{
∗ if H ∈ F

∅ if H 6∈ F

The space EF is universal in the sense that if X is an F-space with the homotopy
type of a CW-complex, there is a unique homotopy class of G-maps X → EF.

Example 3. If F = {1}, then

E{1}H =

{
∗ if H = 1
∅ else.

Hence E{1} is a free G-space that is nonequivariantly contractible; that is E{1} =
EG and E{1}/G = BG is the classifying space for G.

Example 4. If F = All, then EAllH = ∗ for all H, so EAll = ∗.

Given a family F, we use the universal space EF to construct an “isotropy
splitting cofibration”

EF+ → S0 → ẼF

where the first map is just the map EF → ∗ with a disjoint basepoint added. Note
that this cofibration implies

(ẼF)H =

{
∗ if H ∈ F

S0 if H 6∈ F
.

We can smash any G-space X (or any G-spectrum E) with this cofibration to split
X into an F-space EF+∧X and an F-contractible space ẼF∧X. This allows us to
understand general G-spaces by understanding F-spaces and F-contractible spaces
separately.

One application of this cofiber sequence is in defining the geometric fixed points
functor ΦG.

Definition 5.2. Let P be the family of all proper subgroups of G; then

ΦG(E) = (E ∧ ẼP)G.

Notice that E ∧ ẼP is H-trivial (i.e. its H-fixed points are contractible) for all
proper subgroups H, so that, in some sense, only the G-fixed points of E are left in
(E∧ ẼP). We could also define geometric fixed points essentially by just taking the
fixed points of each indexing space of a spectrum, but one must be careful about
the indexing and spectrify, so it’s not as nice of a definition.

Another place the isotropy splitting comes up is in thinking about free spectra:
A G-spectrum E is free if and only if the canonical map EG+ ∧ E → E coming
from the isotropy splitting cofibration is a G-equivalence. This definition works no
matter what universe we work over, and even works for G-spaces.
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6. The tom Dieck splitting theorem

In Section 4, we noted that for a G-space X, (Σ∞X)G 6= Σ∞(XG). The following
theorem tells us how to find the fixed points of a suspension G-spectrum in term
of the underlying space.

Theorem 6.1 (tom Dieck). For a based G-CW complex X, there is a natural
equivalence

(Σ∞X)G '
∨

conj. classesH≤G

Σ∞(EWH+ ∧WH ΣAd(WH)XH)

where WH = NH/H is the Weyl group of H in G and Ad(WH) is the adjoint
representation.

For example, let X be a two sphere with an action of C2 by rotation by π around
a central axis. Then

(Σ∞X)C2 ' Σ∞(E1+ ∧XC2) ∨ Σ∞(EC2+ ∧C2 X)

= Σ∞(XC2) ∨ Σ∞(EC2+ ∧C2 X)

= S1 ∨ (the Borel construction on X).

Thus the fixed point spectrum of X is the suspension spectrum of the fixed points
of X together with an extra Borel construction term.

7. RO(G)-graded homology and cohomology

Our construction of spectra to include representation allows us to define ho-
mology and cohomology theories that are not just integer graded, but are in fact
graded on the real representation ring RO(G) of G. For any virtual representaion
ν = W −V , we form a geniune G-spectrum Sν = ΣWS−V . Of course, one must be
careful about what universe one works over and expressing ν in terms of subrep-
resentations. But once we have constructed Sν , we can then define the homology
and cohomology groups represented by a geniune G-spectrum E by

EGν (X) = [Sν , E ∧X]G

EνG(X) = [S−ν ∧X,E]G = [S−ν , F (X,E)]G.

These homology and cohomology theories satisfy sensible RO(G)-graded versions
of the usual axioms for homology or cohomology.
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