A planar algebraic description of defect lines in conformal field theory

Marcel Bischoff
http://www.math.vanderbilt.edu/~bischom

Department of Mathematics
Vanderbilt University
Nashville, TN

Great Plains Operator Theory Symposium 2015
Purdue University, West Lafayette, IN
May 26, 2015

*based on work with R. Longo, Y. Kawahigashi and K.-H. Rehren
In binding together elements long-known but heretofore scattered and appearing unrelated to one another, it suddenly brings order where there reigned apparent chaos — Henri Poincaré
Question

Do all (finite index finite depth) subfactors arise from conformal field theory?
Question

Do all (finite index finite depth) subfactors arise from conformal field theory?

Desired construction

| Subfactor \(N \subset M \) | \mapsto | Conformal net \(\mathcal{A}_{N \subset M} \) |

such that \(\text{Rep}(\mathcal{A}_{N \subset M}) \cong D(N \subset M) \) (\(= \) quantum double*)

“Royal road”: [\ldots] extract from the subfactor the Boltzmann weights of a critical two-dimensional lattice model then construct a quantum field theory from the scaling limit of the \(n \)-point functions. (Jones 2015)

* \(D(N \subset M) \) = unitary modular tensor category obtained from Ocneanu’s asymptotic inclusion, Popa’s SE algebra, Longo–Rehren subfactor, Drinfeld center
Definition (Conformal Net)

\[S_1 \supset I \mapsto \mathcal{A}(I) = \mathcal{A}(I)^{''} \subset \mathcal{B} (\mathcal{H}) , \text{ such that} \]

1. Isotony: \(I \subset J \Rightarrow \mathcal{A}(I) \subset \mathcal{A}(J) \)

2. Locality: \([\mathcal{A}(I), \mathcal{A}(J)] = \{0\} \) if \(I \cap J = \emptyset \).

3. Covariance: \(\mathcal{U} \) is a unitary \textbf{positive-energy} representation of the Möbius group, s.t. \(\mathcal{U}(g)\mathcal{A}(I)\mathcal{U}(g)^* = \mathcal{A}(gI) \).

4. Vacuum: \(\exists \Omega \) is a (up to a phase) unique vector invariant under the Möbius group, s.t. \(\vee_I \mathcal{A}(I)\Omega = \mathcal{H} \).
Definition (Conformal Net)

\[S_1 \supset I \mapsto A(I) = A(I)^{''} \subset B(H), \text{ such that} \]

1. **Isotony:** \(I \subset J \Rightarrow A(I) \subset A(J) \)

2. **Locality:** \([A(I), A(J)] = \{0\}\) if \(I \cap J = \emptyset \).

3. **Covariance:** \(U \) is a unitary **positive-energy** representation of the Möbius group, s.t. \(U(g)A(I)U(g)^* = A(gI) \).

4. **Vacuum:** \(\exists \Omega \) is a (up to a phase) unique vector invariant under the Möbius group, s.t. \(\vee_I A(I)\Omega = \mathcal{H} \).

It follows that \(A(I) \) are type III\(_1\) factors and \(\Omega \) is cyclic and separating for \(A(I) \). Let

\[N := A \begin{array}{c} \circ \end{array} \subset M := A \begin{array}{c} \circ \end{array} \supset \tilde{N} := A \begin{array}{c} \circ \end{array} \]

Then \((N \subset M, \tilde{N} \subset N' \cap M, \Omega) \) is a complete invariant and every such triple gives a conformal net (possibly reducible) provided \(\Omega \) is cyclic for \(N, \tilde{N} \) and separating for \(M \) and \(\sigma^{t}_{(M,\Omega)}(N) \subset N \) for \(t \leq 0 \).
A conformal net \mathcal{A} is **completely rational** if:

- **Strong additivity.** $N \vee \tilde{N} = M$:

 $$\mathcal{A}(\bigcirc) \vee \mathcal{A}(\bigcirc) = \mathcal{A}(\bigcirc)$$

 (Then $\tilde{N} = N' \cap M$ holds. $(N \subset M, \Omega)$ is a complete invariant.)

- **Finite μ-index**: finite Jones index of subfactor

 $$\mu_\mathcal{A} = \left[\mathcal{A}(\bigcirc)' : \mathcal{A}(\bigcirc) \right] < \infty \quad \mathcal{A}(\bigcirc) := \mathcal{A}(\bigcirc) \vee \mathcal{A}(\bigcirc)$$

- **Split property.** For every inclusion $\bar{I} \subset J$ of intervals \exists intermediate type I factor S, e.g.:

 $$\mathcal{A}(\bigcirc) \subset S \subset \mathcal{A}(\bigcirc)$$

 This holds if $\text{Tr}(e^{-\beta L_0}) < \infty$ for all $\beta > 0$, where L_0 is the generator of rotations: $U(z \mapsto e^{it}z) = e^{itL_0}$.
Representation of $\mathcal{A} = \{\mathcal{A}(I)\}_{I \subset S^1}$ is a family:

$$\pi = \{\pi_I : \mathcal{A}(I) \to B(\mathcal{H}_\pi)\},$$

which is compatible, i.e. $\pi_J \upharpoonright \mathcal{A}_0(I) = \pi_I$ for $I \subset J$.

Representation of $\mathcal{A} = \{\mathcal{A}(I)\}_{I \subset S^1}$ is a family:

$$\pi = \{\pi_I : \mathcal{A}(I) \rightarrow B(H_\pi)\},$$

which is compatible, i.e. $\pi_J | A_0(I) = \pi_I$ for $I \subset J$.

- Every π unitarily equivalent to a localized endomorphism $\rho \in \text{End}(\mathcal{A}(I))$.
- Statistical dimension $d = [\mathcal{A}(I) : \rho(\mathcal{A}(I))]^{\frac{1}{2}}$.
- Tensor product: composition of localized endomorphisms.
- \exists natural braiding $\{\varepsilon_{\rho,\sigma} : \rho \circ \sigma \rightarrow \sigma \circ \rho\}$ (Fredenhagen, Rehren, Schroer (1989)).
Theorem (Kawahigashi, Longo, Müger (2001))

Let A_0 be a completely rational conformal net. Then $\text{Rep}(A_0)$ is a modular C^*-tensor category = unitary modular tensor category (UMTC).

Example: Loop group net of $SU(N)$ at level k:
(see Wassermann '98)

$A_{SU(N),k}(I) = \pi(L_{SU(N)})''$ (completely rational (Xu '00))

with π level k vacuum PER of loop group $LSU(N) = C^\infty(S^1, SU(N))$.

Marcel Bischoff (Vanderbilt)
Theorem ((Kawahigashi, Longo, Müger (2001)))

Let A_0 be a completely rational conformal net. Then $\text{Rep}(A_0)$ is a modular C^*-tensor category = unitary modular tensor category (UMTC).

Example

Loop group net of $SU(N)$ at level k: (see (Wassermann '98))

$$A_{SU(N),k}(I) = \pi(L_{I SU(N)})''$$

(completely rational (Xu '00))

with π level k vacuum PER of loop group $LSU(N) = C^\infty(S^1, SU(N))$.
Extensions of nets are characterized by one local extension

We write if $\mathcal{B} \supset \mathcal{A}$ if

- $\mathcal{A}(J) \subset \mathcal{B}(J)$ for all $J \in S^1 \setminus \{-1\}$ finite index, irreducible.
- Relatively local extension:

$$[\mathcal{A}(I_1), \mathcal{B}(I_2)] = \{0\} \text{ if } I_1 \cap I_2 = \emptyset$$

Completely characterized by $M := \mathcal{B}(I) \supset N := \mathcal{A}(I)$ for a fixed I.
Extensions of nets are characterized by one local extension

We write if $\mathcal{B} \supset \mathcal{A}$ if

- $\mathcal{A}(J) \subset \mathcal{B}(J)$ for all $J \in S^1 \setminus \{-1\}$ finite index, irreducible.
- Relatively local extension:

$$[[\mathcal{A}(I_1), \mathcal{B}(I_2)]] = \{0\} \text{ if } I_1 \cap I_2 = \emptyset$$

Completely characterized by $M := \mathcal{B}(I) \supset N := \mathcal{A}(I)$ for a fixed I.

Theorem ((Longo–Rehren ’95))

Conversely, every $M \supset N := \mathcal{A}(I)$, finite index, irreducible overfactor M, such that $N M N$ (actually the dual canonical endomorphism $\theta : N \to N$) is a representation of \mathcal{A} localized in I.

\mathcal{B} is a local net iff multiplication $N M N \otimes N M M \to N M N$ is commutative (with respect to the braiding of $\text{Rep}(\mathcal{A})$).
One can define a **conformal net** on **Minkowski space** by

\[\mathcal{A}_2(O) = \mathcal{A}(I_1) \otimes \mathcal{A}(I_2) \]

where \(\mathcal{A}_\pm \) are conformal nets on \(\mathbb{R} \).
One can define a **conformal net** on **Minkowski space** by

\[\mathcal{A}_2(O) = \mathcal{A}(I_1) \otimes \mathcal{A}(I_2) \]

where \(\mathcal{A}_\pm \) are conformal nets on \(\mathbb{R} \).

Full CFTs based on \(\mathcal{A} \) are given by maximal local extensions

\[\mathcal{B}(O) \supset \mathcal{A}_2(O) \equiv \mathcal{A}(I_1) \otimes \mathcal{A}(I_2) . \]

Locality. \([\mathcal{B}(O_1), \mathcal{B}(O_2)] = \{0\} \) if \(O_1 \) and \(O_2 \) are space like separated.
One can define a **conformal net** on **Minkowski space** by

\[\mathcal{A}_2(O) = \mathcal{A}(I_1) \otimes \mathcal{A}(I_2) \]

where \(\mathcal{A}_\pm \) are conformal nets on \(\mathbb{R} \).

Full CFTs based on \(\mathcal{A} \) are given by maximal local extensions

\[\mathcal{B}(O) \supset \mathcal{A}_2(O) \equiv \mathcal{A}(I_1) \otimes \mathcal{A}(I_2) . \]

Locality. \([\mathcal{B}(O_1), \mathcal{B}(O_2)] = \{0\}\) if \(O_1 \) and \(O_2 \) are space like separated.

Theorem (B–Kawahigashi–Longo ’14)

There is a one-to-one correspondence between

- **Full CFTs** \(\mathcal{B}_2 \supset \mathcal{A}_2 \)
- \(M \supset N = \mathcal{A}(I) \) with \(NM_N \in \text{Rep}(\mathcal{A}) \) up to Morita equivalence.
Two different full CFTs $\mathcal{B}_a, \mathcal{B}_b \supset \mathcal{A}_2$ divided by a defect line

\[
\begin{align*}
\{ O_a \} & \quad \xrightarrow{\mathcal{B}_a(O_a), \mathcal{D}(O_x), \mathcal{B}_b(O_b)} \quad \supset \mathcal{A}_2(O.) \\
\{ O_\times \} & \quad \supset \mathcal{D}_\pm \subset \mathcal{D} \supset \mathcal{D}_{-} \\
\{ O_b \} & \quad \supset \mathcal{B}_a \quad \cup \quad \mathcal{B}_b \\
\end{align*}
\]

where \mathcal{D}_\pm left/right center:

$\mathcal{A}_2 \subset \mathcal{D}_\pm \subset \mathcal{D}$

maximal intermediate local nets.
Two different full CFTs $\mathcal{B}_a, \mathcal{B}_b \supset \mathcal{A}_2$ divided by a defect line

\[
\begin{align*}
\{O_a, O_x, O_b\} & \hookrightarrow \{\mathcal{B}_a(O_a), \mathcal{D}(O_x), \mathcal{B}_b(O_b)\} \supset \mathcal{A}_2(O).
\end{align*}
\]

\[
\mathcal{D}_+ \subset \mathcal{D} \supset \mathcal{D}_-
\]

where \mathcal{D}_\pm left/right center:

\[
\mathcal{A}_2 \subset \mathcal{D}_\pm \subset \mathcal{D}
\]

maximal intermediate local nets.

- Defect line invisible for the subnet \mathcal{A}_2 (conserves symmetries prescribed by \mathcal{A})
- Different realization \leftrightarrow different boundary conditions
- \mathcal{A}-topological \mathcal{B}_a-\mathcal{B}_b defect line.
Fusion of defect lines

\[\mathcal{F} = \mathcal{D} \otimes_{\mathcal{B}_a} \mathcal{E} \] can be defined Connes' fusion over wedge algebra or using the braiding.
Classification of irreducible defect lines

Fuse trivial defects over \mathcal{A}_2 (not a full CFT!!) \sim non-factorial “defect line”

\[
\mathcal{B}_a \quad \mathcal{B}_b \\
\mathcal{B}_a \quad \mathcal{A}_2 \quad \mathcal{A}_2 \quad \mathcal{B}_b \\
\mathcal{A}_2 \quad \mathcal{A}_2 \quad \mathcal{A}_2
\]

\[
\mathcal{D}_+ \subset \mathcal{D}_u \supset \mathcal{D}_-
\]

\[
\mathcal{B}_a \quad \mathcal{A}_2 \quad \mathcal{B}_b
\]

Theorem ((B–Kawahigashi–Longo–Rehren ’14))

1. $\mathcal{D}^u(O)' \cap \mathcal{D}^u(O) = \mathcal{A}_2(O)' \cap \mathcal{D}^u(O)$, i.e. $\mathcal{D}^u(O)$ has finite center.
2. Every minimal central projection $p \in \mathcal{D}(O)$ yields an irreducible \mathcal{A}-topological \mathcal{B}_a–\mathcal{B}_b-defect $\mathcal{D}_p \cong \mathcal{D}_p$.
3. Every irreducible \mathcal{A}-topological \mathcal{B}_a–\mathcal{B}_b-defect arises this way.
4. Minimal projections $\xrightarrow{1:1}$ irreducible M_a–M_b sectors related to $\text{Rep}(\mathcal{A})$.
Intertwiner between configurations of defect lines

Bounded maps $t : \mathcal{H}_F \to \mathcal{H}_G$, which are B_a, B_b equivariant, i.e. $ta = at$ for $a \in B_a, B_b$.

Marcel Bischoff (Vanderbilt)
A planar algebraic description of defect lines in CFT
West Lafayette, 5/26/15
Fix \mathcal{D} and \mathcal{A}-topological $\mathcal{B}_a - \mathcal{B}_b$-defect and $\overline{\mathcal{D}}$ the dual $\mathcal{B}_b - \mathcal{B}_a$-defect.

Theorem (B. unpublished)

On obtains a subfactor planar algebra. This is the planar algebra of the subfactor related to $\text{Rep}(\mathcal{A})$ which characterizes \mathcal{D}.
Sketch of proof:

\[N := \mathcal{A}(I), \quad N\mathcal{C}_N := \text{Rep}^I(\mathcal{A}), \text{then } B_\bullet \supset A_2 \text{ are characterized by subfactors } M_\bullet \supset N \text{ with } N\mathcal{M}_\bullet N \in N\mathcal{C}_N. \mathcal{D} \text{ is characterized by a sector } \beta : M_a \to M_b \in M_b\mathcal{C}_{M_a}. \]

\[A_2(O) \subset B_\bullet(O) \text{ is conjugated to a Longo–Rehren subfactor and yields a Morita equivalence: } \]

\[N\mathcal{C}_N \boxtimes N\mathcal{C}_N^{\text{op}} \sim M_\bullet \mathcal{C}_M \boxtimes M_\bullet \mathcal{C}_M^{\text{op}}. \]

\[B_a(O) \subset \mathcal{D}(O) \text{ yields a Morita equivalence: } \]

\[M_a \mathcal{C}_{M_a} \boxtimes M_a \mathcal{C}_{M_a}^{\text{op}} \sim M_b \mathcal{C}_{M_b} \boxtimes M_a \mathcal{C}_{M_a}^{\text{op}}. \]

\[B_a(O) \subset \mathcal{D}(O) \text{ is actually conjugated to } \beta(M_a) \subset M_b. \]

\[\text{The inclusion } \]

\[B_a(O) \subset \mathcal{D}(O) \subset (\mathcal{D} \boxtimes \mathcal{D})(O) \subset (\mathcal{D} \boxtimes \mathcal{D} \boxtimes \mathcal{D} \subset)(O) \subset \cdots \]

is essentially the Jones tower and every element in the relative commutant is already a defect intertwiner (full inclusion) and vice versa.
Which subfactor (planar algebras) are known so far to arise this way?

\[[M : N] < 4 \] (Classified by Jones, Ocneanu, ...)
- \(A_k, D_{2n}, E_6, E_8\) (in pairs): All arise in the corresponding ADE classification of SU(2) CFTs of Cappelli, Itzykson and Zuber (1987), observed by Ocneanu.

\[[M : N] = 4 \] (Classified by Popa)
- Affine Dynkin diagrams: ?

\(4 < [M : N] < 5\)
- GHJ: related to \(E_6\) above
- 2221: \(G_{2,3} \subset E_{6,1}\)
- Haagerup: Conjectured by Evans-Gannon.
- Aseda–Haagerup: ?
- Extended Haagerup: ?

\[[M : N] > 5 \] ...
Let $N := \mathcal{A}(I)$, $\mathcal{N} := \text{Rep}^I(\mathcal{A})$. There is a functor from the

- 2-category of
 Morita classes of subfactors $[N \subset M_a]$ based on \mathcal{N}, Morphisms $\beta: M_a \to M_b$ based on \mathcal{N} and intertwiner $t \in \text{Hom}(\beta_1, \beta_2)$

- 2-category of
 full CFTs based on \mathcal{A}, \mathcal{A}-topological defects and interwiners.

which is an equivalence.
Higher structure of quantum double/center which maps $\mathcal{N} \mapsto Z(\mathcal{N})$.

First quantization is a mystery, but second quantization is a functor! – Edward Nelson
Theorem

Let \mathcal{A} be a conformal net with $\text{Rep}(\mathcal{A}) = D(N \subset M)$, then the planar algebra of $N \subset M$ prescribes a certain topological defect line of full CFTs based on $\mathcal{A}_{N \subset M}$.

Desired construction

\[
\begin{array}{c}
\text{Subfactor} \quad N \subset M \\
\text{Conformal net} \quad \mathcal{A}_{N \subset M}
\end{array}
\]

such that $\text{Rep}(\mathcal{A}_{N \subset M}) \cong D(N \subset M)$ (= quantum double)
Thank you!
Example $G = \text{SU}(2)$: Irreducible representations $\{0, \frac{1}{2}, 1, \ldots, \frac{k}{2}\}$. \[\text{Rep}(\mathcal{A}_{\text{SU}(2), k})\] is generated by $\frac{1}{2}$-representation ρ and $\cup \in \text{Hom}(\text{id}, \rho \rho)$:

\[
\begin{align*}
\text{circle} &= -d \\
\text{cross} &= \quad = \\
\text{box} &= \quad =
\end{align*}
\]

with $\cap \in \text{Hom}(\rho \rho, \text{id})$ and braiding defined by Kaufmann bracket

\[
\begin{align*}
\text{cross} &:= - \quad \text{circle}^* \\
\text{box} &= q^{\frac{1}{2}} \quad \text{box} + q^{-\frac{1}{2}} \\
\end{align*}
\]

where $q = e^{\frac{i\pi}{k+2}}$, $d = q + q^{-1} = 2 \cos \left(\frac{\pi}{k+2}\right)$.