Generalized fixed points of conformal nets

Marcel Bischoff

http://math.vanderbilt.edu/bischom

2017 Joint Mathematics Meetings - Atlanta, GA
AMS Special Session on Advances in Operator Algebras – January 7th, 2017

*based on arXiv:1608.00253
In binding together elements long-known but heretofore scattered and appearing unrelated to one another, it suddenly brings order where there reigned apparent chaos — Henri Poincaré
Motivation

Question [Evans–Gannon ’11]

Can we orbifold\(^a\) a VOA [or conformal net] by something more general than a group?

\(^a\)orbifold = fixed point by a finite group of (gauge) automorphisms

- Completely positive maps naturally generalize gauge transformations.
- Hypergroups of completely positive maps are generalized symmetries of quantum field theory in low dimensions.
- Finite index subtheories can be described as fixed points by hypergroup actions.
Let \((M, \Omega)\) \textit{non-commutative probability space}:

- \(M\) von Neumann algebra,
- \(\Omega\) cyclic and separating vector with state \(\omega = (\Omega, \cdot \Omega)\).
Noncommutative probability spaces and Markov maps

Let \((M, \Omega)\) *non-commutative probability space*:

- \(M\) von Neumann algebra,
- \(\Omega\) cyclic and separating vector with state \(\omega = (\Omega, \cdot \Omega)\).

Gauge automorphism: \(\alpha \in \text{Aut}(M)\) state-preserving \(\omega \circ \alpha = \omega\).
Noncommutative probability spaces and Markov maps

Let \((M, \Omega)\) non-commutative probability space:
- \(M\) von Neumann algebra,
- \(\Omega\) cyclic and separating vector with state \(\omega = (\Omega, \cdot \Omega)\).

\textbf{Gauge automorphism:} \(\alpha \in \text{Aut}(M)\) state-preserving \(\omega \circ \alpha = \omega\).

\textbf{(\(\Omega\)-preserving) Markov map:} \(\phi: (M, \Omega) \to (M, \Omega)\)
- stochastic map, i.e.
 - \(\phi: M \to M\) is a normal unital completely positive linear map
 - \(\phi\) is state-preserving \(\omega \circ \phi = \omega\)
Let \((M, \Omega)\) *non-commutative probability space*:
- \(M\) von Neumann algebra,
- \(\Omega\) cyclic and separating vector with state \(\omega = (\Omega, \cdot \Omega)\).

Gauge automorphism: \(\alpha \in \text{Aut}(M)\) state-preserving \(\omega \circ \alpha = \omega\).

(\Omega\text{-preserving)} Markov map: \(\phi: (M, \Omega) \rightarrow (M, \Omega)\)
- stochastic map, i.e.
 - \(\phi: M \rightarrow M\) is a normal unital completely positive linear map
 - \(\phi\) is state-preserving \(\omega \circ \phi = \omega\)
- \(\phi\) admits an adjoint \(\phi^\#\), i.e.
 - stochastic map \(\phi^\#: (M, \Omega) \rightarrow (M, \Omega)\),
 - \(\omega(\phi^\#(x)y) = \omega(x\phi(y))\) for all \(x, y \in M\)
Noncommutative probability spaces and Markov maps

Let \((M, \Omega)\) non-commutative probability space:
- \(M\) von Neumann algebra,
- \(\Omega\) cyclic and separating vector with state \(\omega = (\Omega, \cdot \Omega)\).

Gauge automorphism: \(\alpha \in \text{Aut}(M)\) state-preserving \(\omega \circ \alpha = \omega\).

\((\Omega\text{-preserving})\) Markov map: \(\phi: (M, \Omega) \to (M, \Omega)\)
- stochastic map, i.e.
 - \(\phi: M \to M\) is a normal unital completely positive linear map
 - \(\phi\) is state-preserving \(\omega \circ \phi = \omega\)
- \(\phi\) admits an adjoint \(\phi^\#\), i.e.
 - stochastic map \(\phi^\#: (M, \Omega) \to (M, \Omega)\),
 - \(\omega(\phi^\#(x)y) = \omega(x\phi(y))\) for all \(x, y \in M\)

Choi’s theorem and Kadison–Schwarz inequality imply

Well-known fact

The **fixed point** set \(M^\phi = \{m \in M : \phi(m) = m\}\) is a von Neumann algebra.
Noncommutative probability spaces and Markov maps

Let \((M, \Omega)\) *non-commutative probability space*:
- \(M\) von Neumann algebra,
- \(\Omega\) cyclic and separating vector with state \(\omega = (\Omega, \cdot \Omega)\).

Gauge automorphism: \(\alpha \in \text{Aut}(M)\) state-preserving \(\omega \circ \alpha = \omega\).

*(\Omega\)-preserving) Markov map: \(\phi: (M, \Omega) \rightarrow (M, \Omega)\)
- stochastic map, i.e.
 - \(\phi: M \rightarrow M\) is a normal unital completely positive linear map
 - \(\phi\) is state-preserving \(\omega \circ \phi = \omega\)
- \(\phi\) admits an adjoint \(\phi^\#\), i.e.
 - stochastic map \(\phi^\#: (M, \Omega) \rightarrow (M, \Omega)\),
 - \(\omega(\phi^#(x)y) = \omega(x\phi(y))\) for all \(x, y \in M\)

Choi’s theorem and Kadison–Schwarz inequality imply

Well-known fact

The **fixed point** set \(M^\phi = \{m \in M : \phi(m) = m\}\) is a von Neumann algebra.

\(\phi\) *extremal* if \(\phi = t\phi_1 + (1-t)\phi_2\) for \(t \in (0, 1)\), \(\phi_i\) Markov \(\Rightarrow \phi_i = \phi\).
Finite set $K = \{\phi_0 = \text{id}_M, \ldots, \phi_n\}$ of extremal Markov map, s.t.\n\n$\text{Conv}(K) = \{\sum_i \lambda_i \phi_i : \lambda_i \geq 0, \sum_i \lambda_i = 1\}$ is a n-simplex
Proper actions of finite hypergroups by Markov maps

Finite set $K = \{\phi_0 = \text{id}_M, \ldots, \phi_n\}$ of extremal Markov map, s.t.
$\text{Conv}(K) = \{\sum_i \lambda_i \phi_i : \lambda_i \geq 0, \sum_i \lambda_i = 1\}$ is a n-simplex

1. $\text{Conv}(K)$ is closed under composition, i.e. $\phi_j \circ \phi_k \in \text{Conv}(K)$
Finite set \(K = \{\phi_0 = \text{id}_M, \ldots, \phi_n\} \) of extremal Markov map, s.t.
\[\text{Conv}(K) = \{\sum_i \lambda_i \phi_i : \lambda_i \geq 0, \sum_i \lambda_i = 1\} \] is a \(n \)-simplex

1. \(\text{Conv}(K) \) is closed under composition, i.e. \(\phi_j \circ \phi_k \in \text{Conv}(K) \)

2. \(K \) is closed under adjoints: \(\phi_k^\# = \phi_k \)
Proper actions of finite hypergroups by Markov maps

Finite set $K = \{\phi_0 = \text{id}_M, \ldots, \phi_n\}$ of extremal Markov map, s.t.
$\text{Conv}(K) = \{\sum_i \lambda_i \phi_i : \lambda_i \geq 0, \sum_i \lambda_i = 1\}$ is a n-simplex

1. $\text{Conv}(K)$ is closed under composition, i.e. $\phi_j \circ \phi_k \in \text{Conv}(K)$

2. K is closed under adjoints: $\phi_k^\# = \phi_k$

3. inverse/dual: $\phi_k \circ \phi_j = \frac{1}{w} \phi_0 + \cdots$ for some $w > 0$ if and only if $j = \bar{k}$. In this case, $w_k = w$ is called the weight of ϕ_k
Proper actions of finite hypergroups by Markov maps

Finite set $K = \{\phi_0 = \text{id}_M, \ldots, \phi_n\}$ of extremal Markov map, s.t. $\text{Conv}(K) = \{\sum_i \lambda_i \phi_i : \lambda_i \geq 0, \sum_i \lambda_i = 1\}$ is a n-simplex

1. $\text{Conv}(K)$ is closed under composition, i.e. $\phi_j \circ \phi_k \in \text{Conv}(K)$
2. K is closed under adjoints: $\phi_k^\# = \phi_k$
3. inverse/dual: $\phi_k \circ \phi_j = \frac{1}{w} \phi_0 + \cdots$ for some $w > 0$ if and only if $j = \bar{k}$. In this case, $w_k = w$ is called the weight of ϕ_k

K is the basis of a finite dimensional unital C*-algebra $\mathbb{C}K$

$\sim K$ is a finite hypergroup in the sense of Sunder
Proper actions of finite hypergroups by Markov maps

Finite set $K = \{\phi_0 = \text{id}_M, \ldots, \phi_n\}$ of extremal Markov map, s.t.
$\text{Conv}(K) = \{\sum_i \lambda_i \phi_i : \lambda_i \geq 0, \sum \lambda_i = 1\}$ is a n-simplex

1. $\text{Conv}(K)$ is closed under composition, i.e. $\phi_j \circ \phi_k \in \text{Conv}(K)$

2. K is closed under adjoints: $\phi_k^\# = \phi_k$

3. inverse/dual: $\phi_k \circ \phi_j = \frac{1}{w} \phi_0 + \cdots$ for some $w > 0$ if and only if $j = \bar{k}$. In this case, $w_k = w$ is called the weight of ϕ_k

K is the basis of a finite dimensional unital \mathbb{C}^*-algebra $\mathbb{C}K$
$\sim K$ is a finite hypergroup in the sense of Sunder

Definition (finite hypergroup)

A basis $K = \{c_0 = 1, c_1, \ldots c_m\}$ of a finite-dim unital \mathbb{C}^*-algebra such that the elements in K fulfill 1-3.
Proper actions of finite hypergroups by Markov maps

Finite set $K = \{\phi_0 = \text{id}_M, \ldots, \phi_n\}$ of extremal Markov map, s.t. $\text{Conv}(K) = \left\{ \sum_i \lambda_i \phi_i : \lambda_i \geq 0, \sum \lambda_i = 1 \right\}$ is a n-simplex

1. $\text{Conv}(K)$ is closed under composition, i.e. $\phi_j \circ \phi_k \in \text{Conv}(K)$

2. K is closed under adjoints: $\phi_k^\# = \phi_k$

3. inverse/dual: $\phi_k \circ \phi_j = \frac{1}{w} \phi_0 + \cdots$ for some $w > 0$ if and only if $j = \bar{k}$. In this case, $w_k = w$ is called the weight of ϕ_k

K is the basis of a finite dimensional unital C*-algebra $\mathbb{C}K$

$\sim K$ is a finite hypergroup in the sense of Sunder

Definition (finite hypergroup)

A basis $K = \{c_0 = 1, c_1, \ldots, c_m\}$ of a finite-dim unital C*-algebra such that the elements in K fulfill 1-3.

Well-known examples, besides finite groups.

- The double cosets $G\backslash H := H \backslash G / H$ of finite groups $H \leq G$
Proper actions of finite hypergroups by Markov maps

Finite set $K = \{\phi_0 = \text{id}_M, \ldots, \phi_n\}$ of extremal Markov map, s.t.

$\text{Conv}(K) = \left\{ \sum_i \lambda_i \phi_i : \lambda_i \geq 0, \sum_i \lambda_i = 1 \right\}$ is a n-simplex

1. $\text{Conv}(K)$ is closed under composition, i.e. $\phi_j \circ \phi_k \in \text{Conv}(K)$

2. K is closed under adjoints: $\phi_k^\# = \phi_k$

3. inverse/dual: $\phi_k \circ \phi_j = \frac{1}{w} \phi_0 + \cdots$ for some $w > 0$ if and only if $j = \bar{k}$. In this case, $w_k = w$ is called the weight of ϕ_k

K is the basis of a finite dimensional unital C*-algebra $\mathbb{C}K$

$\sim K$ is a finite hypergroup in the sense of Sunder

Definition (finite hypergroup)

A basis $K = \{c_0 = 1, c_1, \ldots c_m\}$ of a finite-dim unital C*-algebra such that the elements in K fulfill 1-3.

Well-known examples, besides finite groups.

- The double cosets $K//L := L\backslash K/L$ of finite hypergroups $L \leq K$
Proper actions of finite hypergroups by Markov maps

Finite set $K = \{\phi_0 = \text{id}_M, \ldots, \phi_n\}$ of extremal Markov map, s.t.
$\text{Conv}(K) = \left\{ \sum_i \lambda_i \phi_i : \lambda_i \geq 0, \sum_i \lambda_i = 1 \right\}$ is a n-simplex

1. $\text{Conv}(K)$ is closed under composition, i.e. $\phi_j \circ \phi_k \in \text{Conv}(K)$

2. K is closed under adjoints: $\phi_k^\# = \phi_{\bar{k}}$

3. inverse/dual: $\phi_k \circ \phi_j = \frac{1}{w} \phi_0 + \cdots$ for some $w > 0$ if and only if $j = \bar{k}$. In this case, $w_k = w$ is called the weight of ϕ_k

K is the basis of a finite dimensional unital C^*-algebra $\mathbb{C}K$

$K \rightsquigarrow K$ is a finite hypergroup in the sense of Sunder

Definition (finite hypergroup)

A basis $K = \{c_0 = 1, c_1, \ldots c_m\}$ of a finite-dim unital C^*-algebra such that the elements in K fulfill 1-3.

Well-known examples, besides finite groups.

- The double cosets $K//L := L\backslash K/L$ of finite hypergroups $L \leq K$
- The conjugacy classes of G
Proper actions of finite hypergroups by Markov maps

Finite set $K = \{\phi_0 = \text{id}, \ldots, \phi_n\}$ of extremal Markov map, s.t.
$\text{Conv}(K) = \{\sum_i \lambda_i \phi_i : \lambda_i \geq 0, \sum_i \lambda_i = 1\}$ is a n-simplex

1. $\text{Conv}(K)$ is closed under composition, i.e. $\phi_j \circ \phi_k \in \text{Conv}(K)$

2. K is closed under adjoints: $\phi_k^\# = \phi_k$

3. inverse/dual: $\phi_k \circ \phi_j = \frac{1}{w} \phi_0 + \cdots$ for some $w > 0$ if and only if $j = \bar{k}$. In this case, $w_k = w$ is called the weight of ϕ_k

K is the basis of a finite dimensional unital C^*-algebra $\mathbb{C}K$
$\leadsto K$ is a finite hypergroup in the sense of Sunder

Definition (finite hypergroup)

A basis $K = \{c_0 = 1, c_1, \ldots c_m\}$ of a finite-dim unital C^*-algebra such that the elements in K fulfill 1-3.

Well-known examples, besides finite groups.

- The double cosets $K//L := L\setminus K/L$ of finite hypergroups $L \leq K$
- The conjugacy classes of G
- Fusion algebras with $c_k = \frac{[\rho_k]}{\text{FPdim}(\rho_k)}$, e.g. $K_0(\mathcal{F})$ for \mathcal{F} fusion category.
Proper actions of finite hypergroups by Markov maps II

\[D(K) = \sum_{k=0}^{n} w_k \text{ global weight of } K, \text{ e.g. } D(G) = |G| \]
Proper actions of finite hypergroups by Markov maps II

\[D(K) = \sum_{k=0}^{n} w_k \text{ global weight of } K, \text{ e.g. } D(G) = |G| \]

Haar element: \(E \circ E = E^\# = E = \phi_k \circ E = E \circ \phi_k \) given by

\[
E(\cdot) = \frac{1}{D(K)} \sum_{k} w_k \phi_k(\cdot) \in \text{Conv}(K)
\]
$$D(K) = \sum_{k=0}^{n} w_k \text{ global weight of } K, \text{ e.g. } D(G) = |G|$$

Haar element: \(E \circ E = E^\# = E = \phi_k \circ E = E \circ \phi_k \) given by

$$E(\cdot) = \frac{1}{D(K)} \sum_k w_k \phi_k(\cdot) \in \text{Conv}(K)$$

Fixed point \(M^K := \{m \in M : \phi_k(m) = m \text{ for all } k = 0, \ldots, n\} \equiv M^E \) is a von Neumann algebra with \(\Omega \)-preserving conditional expectation \(E \)
$D(K) = \sum_{k=0}^{n} w_k \text{ global weight of } K$, e.g. $D(G) = |G|$

Haar element: $E \circ E = E^\# = E = \phi_k \circ E = E \circ \phi_k$ given by

$$E(\cdot) = \frac{1}{D(K)} \sum_{k} w_k \phi_k(\cdot) \in \text{Conv}(K)$$

Fixed point $M^K := \{m \in M : \phi_k(m) = m \text{ for all } k = 0, \ldots, n\} \equiv M^E$ is a von Neumann algebra with Ω-preserving conditional expectation E

Example

Finite group G of outer gauge automorphisms $\{\alpha_g : g \in G\}$ with Haar element

$$E(\cdot) = \frac{1}{|G|} \sum_{g \in G} \alpha_g$$
Consider $N \subset M$ finite index (type III) subfactor with

- Jones tower $N \subset M \subset M_1 \subset M_2 \subset \cdots$
Consider $N \subset M$ finite index (type III) subfactor with

- Jones tower $N \subset M \subset M_1 \subset M_2 \subset \cdots$
- 2-box space = the relative commutant $M' \cap M_2$.

Theorem

Consider $(N \subset M, \Omega)$ irreducible with commutative 2-box space and (unique) state-preserving conditional expectation $E: M \to N \subset M$. Then there exists a unique finite hypergroup K of Markov maps, such that $N = M_K$. The global weight of K is $D(K) \equiv \sum_i w_i = [M:N]$.

Example

Easiest hypergroup $K = \{ \phi_0 = \text{id}_M, \phi_1 \}$ with $\phi_1 \phi_1 = 1$ $w_{\phi_0} + 1 - w_{\phi_1}$, for example $[M:N] = 2$; $w = 1$; $K \sim = \mathbb{Z}_2$.

$[M:N] = 3 + \sqrt{3}$ (E6 GHJ subfactor); $w = 2 + \sqrt{3}$ $\phi_0 \phi_1 1 (w - 1)/w - 1$.
Consider $N \subset M$ finite index (type III) subfactor with

- Jones tower $N \subset M \subset M_1 \subset M_2 \subset \cdots$
- 2-box space = the relative commutant $M' \cap M_2$.

Theorem

Consider $(N \subset M, \Omega)$ irreducible with commutative 2-box space and (unique) state-preserving conditional expectation $E : M \to N \subset M$.
Hypergroups from subfactors with commutative 2-box space

Consider $N \subset M$ finite index (type III) subfactor with

- Jones tower $N \subset M \subset M_1 \subset M_2 \subset \cdots$
- 2-box space = the relative commutant $M' \cap M_2$.

Theorem

Consider $(N \subset M, \Omega)$ irreducible with commutative 2-box space and (unique) state-preserving conditional expectation $E : M \to N \subset M$.

Then there exists a unique finite hypergroup K of Markov maps, such that $N = M^K$. The global weight of K is $D(K) \equiv \sum_i w_i = [M : N]$.

Example Easiest hypergroup $K = \{ \phi_0 = \text{id} M, \phi_1 \}$ with $\phi_1 \phi_1 = 1 w + 1 - w^2 w$, for example $[M : N] = 2; w = 1$; $K \cong = \mathbb{Z}_2$.

Marcel Bischoff (Vanderbilt)
Consider $N \subset M$ finite index (type III) subfactor with
- Jones tower $N \subset M \subset M_1 \subset M_2 \subset \cdots$
- 2-box space $= \text{the relative commutant } M' \cap M_2$.

Theorem

Consider $(N \subset M, \Omega)$ irreducible with commutative 2-box space and (unique) state-preserving conditional expectation $E : M \to N \subset M$.

Then there exists a unique finite hypergroup K of Markov maps, such that $N = M^K$. The global weight of K is $D(K) \equiv \sum_i w_i = [M : N]$.

Example

Easiest hypergroup $K = \{\phi_0 = \text{id}_M, \phi_1\}$ with $\phi_1 \phi_1 = \frac{1}{w} \phi_0 + \frac{1-w}{w} \phi_1$, for example.
Consider $N \subset M$ finite index (type III) subfactor with

- Jones tower $N \subset M \subset M_1 \subset M_2 \subset \cdots$
- 2-box space $=$ the relative commutant $M' \cap M_2$.

Theorem

Consider $(N \subset M, \Omega)$ irreducible with commutative 2-box space and (unique) state-preserving conditional expectation $E : M \to N \subset M$.

Then there exists a unique finite hypergroup K of Markov maps, such that $N = M^K$. The global weight of K is $D(K) \equiv \sum_i w_i = [M : N]$.

Example

Easiest hypergroup $K = \{ \phi_0 = \text{id}_M, \phi_1 \}$ with $\phi_1 \phi_1 = \frac{1}{w} \phi_0 + \frac{1-w}{w} \phi_1$, for example

- $[M : N] = 2 \sim w = 1 \sim K \cong \mathbb{Z}_2$
Consider $N \subset M$ finite index (type III) subfactor with

- Jones tower $N \subset M \subset M_1 \subset M_2 \subset \cdots$
- 2-box space = the relative commutant $M' \cap M_2$.

Theorem

Consider $(N \subset M, \Omega)$ irreducible with commutative 2-box space and (unique) state-preserving conditional expectation $E : M \to N \subset M$.

Then there exists a unique finite hypergroup K of Markov maps, such that $N = M^K$. The global weight of K is $D(K) \equiv \sum_i w_i = [M : N]$.

Example

Easiest hypergroup $K = \{\phi_0 = \text{id}_M, \phi_1\}$ with $\phi_1 \phi_1 = \frac{1}{w} \phi_0 + \frac{1-w}{w} \phi_1$, for example

- $[M : N] = 2 \sim w = 1 \sim K \cong \mathbb{Z}_2$
- $[M : N] = 3 + \sqrt{3}$ (E_6 GHJ subfactor) $\sim w = 2 + \sqrt{3}$
Hypergroups from subfactors with commutative 2-box space

Consider \(N \subset M \) finite index (type III) subfactor with

- Jones tower \(N \subset M \subset M_1 \subset M_2 \subset \cdots \)
- 2-box space = the relative commutant \(M' \cap M_2 \).

Theorem

Consider \((N \subset M, \Omega)\) irreducible with commutative 2-box space and (unique) state-preserving conditional expectation \(E : M \to N \subset M \).

Then there exists a unique finite hypergroup \(K \) of Markov maps, such that \(N = M^K \). The global weight of \(K \) is \(D(K) \equiv \sum_i w_i = [M : N] \).

Example

Easiest hypergroup \(K = \{ \phi_0 = \text{id}_M, \phi_1 \} \) with \(\phi_1 \phi_1 = \frac{1}{w} \phi_0 + \frac{1-w}{w} \phi_1 \), for example

- \([M : N] = 2 \sim w = 1 \sim K \cong \mathbb{Z}_2 \)
- \([M : N] = 3 + \sqrt{3} \ (E_6 \ GHJ \ subfactor) \sim w = 2 + \sqrt{3} \)
Galois correspondence

Theorem ([B. '17])

Consider subfactor $N = M^K \subset M$ as before. Then there is a one-to-one correspondence between

- intermediate factors $N \subset P \subset M$ and
- subhypergroups $L \subset K$.
Theorem ([B. '17])

Consider subfactor $N = M^K \subset M$ as before. Then there is a one-to-one correspondence between

- intermediate factors $N \subset P \subset M$ and
- subhypergroups $L \subset K$.

In this case, $P = M^L$ and $N = P^{K \parallel L}$

$$
\begin{align*}
M^K & \subset M^L \subset M \\
N & \subset P \subset M \\
N^{K \parallel L} & \subset P
\end{align*}
$$

where hypergroup $K \parallel L$ acts properly on P
Conformal nets

\(\pi_0\) vacuum PER (positive energy representation) of loop group \(LG = C^\infty(S^1, G)\) (\(G\) compact). Consider “net” \(S^1 \supset I \mapsto \pi_0(L^I G)\)” is a conformal net, e.g.
Conformal nets

\(\pi_0 \) vacuum PER (positive energy representation) of loop group \(LG = C^\infty(S^1, G) \) (\(G \) compact). Consider “net” \(S^1 \ni I \mapsto \pi_0(L^I G) \)” is a conformal net, e.g.

- \(G = SU(N) \) conformal net \(\mathcal{A}_{SU(N)_k} \) of level \(k \in \mathbb{N} \) [Wassermann ’98][Xu ’00]
π₀ vacuum PER (positive energy representation) of loop group \(LG = C^\infty(S^1, G) \) (\(G \) compact). Consider “net” \(S^1 \supset I \mapsto \pi_0(L^IG)'' \) is a conformal net, e.g.

- \(G = SU(N) \) conformal net \(\mathcal{A}_{SU(N)_k} \) of level \(k \in \mathbb{N} \) [Wassermann '98][Xu '00]
- \(G = \mathbb{T}^n \), conformal net \(\mathcal{A}_L \) of “level” \(L \subset \mathbb{R}^n \) with \(L \) an even lattice \((\langle x, x \rangle \in 2\mathbb{N} \text{ for all } x \in L) \) [Dong–Xu '06]
Conformal nets

\[\pi_0 \text{ vacuum PER (positive energy representation) of loop group } LG = C^\infty(S^1, G) \ (G \text{ compact}). \text{ Consider “net” } S^1 \ni I \mapsto \pi_0(L^I G)'' \text{ is a conformal net, e.g.} \]

- \[G = SU(N) \text{ conformal net } A_{SU(N)_k} \text{ of level } k \in \mathbb{N} \text{ [Wassermann '98][Xu '00]} \]
- \[G = \mathbb{T}^n, \text{ conformal net } A_L \text{ of “level” } L \subset \mathbb{R}^n \text{ with } L \text{ an even lattice} \]
 \[(\langle x, x \rangle \in 2\mathbb{N} \text{ for all } x \in L) \text{ [Dong–Xu '06]} \]

Definition

A **conformal net** \(\mathcal{A} \) associates with every interval \(I \subset S^1 \) a von Neumann algebra on a fixed Hilbert space \(\mathcal{H} \), i.e. \(S^1 \ni I \mapsto \mathcal{A}(I) \subset B(\mathcal{H}) \)
Conformal nets

π_0 vacuum PER (positive energy representation) of loop group $LG = C^\infty(S^1, G)$ (G compact). Consider “net” $S^1 \ni I \mapsto \pi_0(L^1 G)$” is a conformal net, e.g.

- $G = SU(N)$ conformal net $\mathcal{A}_{SU(N)_k}$ of level $k \in \mathbb{N}$ [Wassermann '98][Xu '00]
- $G = \mathbb{T}^n$, conformal net \mathcal{A}_L of “level” $L \subset \mathbb{R}^n$ with L an even lattice ($\langle x, x \rangle \in 2\mathbb{N}$ for all $x \in L$) [Dong–Xu '06]

Definition

A **conformal net** \mathcal{A} associates with every interval $I \subset S^1$ a von Neumann algebra on a fixed Hilbert space \mathcal{H}, i.e. $S^1 \ni I \mapsto \mathcal{A}(I) \subset B(\mathcal{H})$

1. **Isotony**: $I \subset J \Rightarrow \mathcal{A}(I) \subset \mathcal{A}(J)$
Conformal nets

π_0 vacuum PER (positive energy representation) of loop group $LG = C^\infty (S^1, G)$ (G compact). Consider “net” $S^1 \ni I \mapsto \pi_0(L^I G)$” is a conformal net, e.g.

- $G = \text{SU}(N)$ conformal net $\mathcal{A}_{\text{SU}(N)_k}$ of level $k \in \mathbb{N}$ [Wassermann '98][Xu '00]
- $G = \mathbb{T}^n$, conformal net \mathcal{A}_L of “level” $L \subset \mathbb{R}^n$ with L an even lattice ($\langle x, x \rangle \in 2\mathbb{N}$ for all $x \in L$) [Dong–Xu '06]

Definition

A **conformal net** \mathcal{A} associates with every interval $I \subset S^1$ a von Neumann algebra on a fixed Hilbert space \mathcal{H}, i.e. $S^1 \ni I \mapsto \mathcal{A}(I) \subset B(\mathcal{H})$

1. Isotony: $I \subset J \Rightarrow \mathcal{A}(I) \subset \mathcal{A}(J)$
2. Locality: $[\mathcal{A}(I), \mathcal{A}(J)] = \{0\}$ if $I \cap J = \emptyset$
Conformal nets

\[\pi_0 \text{ vacuum PER (positive energy representation) of loop group } LG = C^\infty(S^1, G) \text{ (} G \text{ compact). Consider “net” } S^1 \supset I \mapsto \pi_0(L^I G)'' \text{ is a conformal net, e.g.} \]

- \(G = SU(N) \) conformal net \(\mathcal{A}_{SU(N)_k} \) of level \(k \in \mathbb{N} \) \[\text{[Wassermann '98][Xu '00]} \]
- \(G = \mathbb{T}^n \), conformal net \(\mathcal{A}_L \) of “level” \(L \subset \mathbb{R}^n \) with \(L \) an even lattice \((\langle x, x \rangle \in 2\mathbb{N} \text{ for all } x \in L) \) \[\text{[Dong–Xu '06]} \]

Definition

A **conformal net** \(\mathcal{A} \) associates with every interval \(I \subset S^1 \) a von Neumann algebra on a fixed Hilbert space \(\mathcal{H} \), i.e. \(S^1 \supset I \mapsto \mathcal{A}(I) \subset B(\mathcal{H}) \)

1. **Isotony:** \(I \subset J \Rightarrow \mathcal{A}(I) \subset \mathcal{A}(J) \)
2. **Locality:** \([\mathcal{A}(I), \mathcal{A}(J)] = \{0\} \text{ if } I \cap J = \emptyset \)
3. **Covariance:** \(U \text{ PER of } \text{Diff}_+(S^1) \text{ on } \mathcal{H}, \text{ s.t. } U(g)\mathcal{A}(I)U(g)^* = \mathcal{A}(gI) \)
Conformal nets

\(\pi_0 \) vacuum PER (positive energy representation) of loop group \(LG = C^\infty(S^1, G) \) (\(G \) compact). Consider “net” \(S^1 \supset I \mapsto \pi_0(L^IG)'' \) is a conformal net, e.g.

- \(G = SU(N) \) conformal net \(\mathcal{A}_{SU(N)_k} \) of level \(k \in \mathbb{N} \) [Wassermann '98][Xu '00]
- \(G = \mathbb{T}^n \), conformal net \(\mathcal{A}_L \) of “level” \(L \subset \mathbb{R}^n \) with \(L \) an even lattice (\(\langle x, x \rangle \in 2\mathbb{N} \) for all \(x \in L \)) [Dong–Xu '06]

Definition

A **conformal net** \(\mathcal{A} \) associates with every interval \(I \subset S^1 \) a von Neumann algebra on a fixed Hilbert space \(\mathcal{H} \), i.e. \(S^1 \supset I \mapsto \mathcal{A}(I) \subset B(\mathcal{H}) \)

1. **Isotony:** \(I \subset J \Rightarrow \mathcal{A}(I) \subset \mathcal{A}(J) \)
2. **Locality:** \([\mathcal{A}(I), \mathcal{A}(J)] = \{0\} \) if \(I \cap J = \emptyset \)
3. **Covariance:** \(U \) PER of \(Diff_+(S^1) \) on \(\mathcal{H} \), s.t. \(U(g)\mathcal{A}(I)U(g)^* = \mathcal{A}(gI) \)
4. **Vacuum:** \(\exists! \) rotation invariant unit vector \(\Omega \in \mathcal{H} \), s.t. \(\vee_I \mathcal{A}(I)\Omega = \mathcal{H} \).
π₀ vacuum PER (positive energy representation) of loop group \(LG = C^∞(S^1, G) \) \((G\) compact). Consider “net” \(S^1 \supset I \mapsto π₀(L^1 G)'\)’ is a conformal net, e.g.

- \(G = SU(N) \) conformal net \(A_{SU(N)_k} \) of level \(k ∈ \mathbb{N} \) [Wassermann ’98][Xu ’00]
- \(G = \mathbb{T}^n \), conformal net \(A_L \) of “level” \(L \subset \mathbb{R}^n \) with \(L \) an even lattice \((⟨x, x⟩ ∈ 2\mathbb{N} \text{ for all } x ∈ L) \) [Dong–Xu ’06]

Definition

A **conformal net** \(A \) associates with every interval \(I \subset S^1 \) a von Neumann algebra on a fixed Hilbert space \(\mathcal{H} \), i.e. \(S^1 \supset I \mapsto A(I) \subset B(\mathcal{H}) \)

1. **Isotony:** \(I \subset J \Rightarrow A(I) \subset A(J) \)
2. **Locality:** \([A(I), A(J)] = \{0\} \text{ if } I \cap J = \emptyset\)
3. **Covariance:** \(U \) PER of \(Diff_+(S^1) \) on \(\mathcal{H} \), s.t. \(U(g)A(I)U(g)^* = A(gI) \)
4. **Vacuum:** \(∃! \) rotation invariant unit vector \(Ω ∈ \mathcal{H} \), s.t. \(\forall I A(I)Ω = \mathcal{H} \).

\(\sim A(I) \) is factor of type \(\text{III}_1 \) and \(Ω \) is cyclic and separating for \(A(I) \)
Remember: A finite hypergroup $K = \{c_0 = 1, c_1, \ldots, c_n\}$ acts properly on (M, Ω) if there is an injective affine map $\phi: \text{Conv}(K) \rightarrow \text{Markov}(M, \Omega)$ such that $\phi(\text{Conv}(K))$ a simplex with extreme points $\phi(K)$.

A finite hypergroup $K = \{c_0 = 1, c_1, \ldots, c_n\}$ acts properly on (M, Ω) if there is an injective affine map $\phi: \text{Conv}(K) \rightarrow \text{Markov}(M, \Omega)$ such that $\phi(\text{Conv}(K))$ a simplex with extreme points $\phi(K)$.
Action on nets and fixed points

Remember: A finite hypergroup \(K = \{c_0 = 1, c_1, \ldots, c_n\} \) acts properly on \((M, \Omega)\) if there is an injective affine map \(\phi: \text{Conv}(K) \to \text{Markov}(M, \Omega) \) such that \(\phi(\text{Conv}(K)) \) a simplex with extreme points \(\phi(K) \).

Definition (proper hypergroup action (generalized orbifold))

A finite hypergroup \(K \) acts properly on a conformal net \(\mathcal{A} \) if there is a family \(\phi = \{\phi_I: K \to \text{Markov}(\mathcal{A}(I), \Omega)\} \) of proper actions, which is compatible:

\[
\phi_J \upharpoonright \mathcal{A}(I) = \phi_I \quad \text{for} \ I \subset J
\]
Action on nets and fixed points

Remember: A finite hypergroup $K = \{c_0 = 1, c_1, \ldots, c_n\}$ acts properly on (M, Ω) if there is an injective affine map $\phi: \text{Conv}(K) \to \text{Markov}(M, \Omega)$ such that $\phi(\text{Conv}(K))$ a simplex with extreme points $\phi(K)$.

Definition (proper hypergroup action (generalized orbifold))

A finite hypergroup K acts properly on a conformal net \mathcal{A} if there is a family $\phi = \{\phi_I: K \to \text{Markov}(\mathcal{A}(I), \Omega)\}$ of proper actions, which is compatible: $\phi_J \upharpoonright \mathcal{A}(I) = \phi_I$ for $I \subset J$.

Theorem ([B. '17])

Let \mathcal{A} be a conformal net and K a hypergroup acting properly on \mathcal{A}.

Marcel Bischoff (Vanderbilt) Generalized fixed points of conformal nets 01/06/17
Remember: A finite hypergroup $K = \{c_0 = 1, c_1, \ldots, c_n\}$ acts properly on (M, Ω) if there is an injective affine map $\phi: \text{Conv}(K) \to \text{Markov}(M, \Omega)$ such that $\phi(\text{Conv}(K))$ a simplex with extreme points $\phi(K)$.

Definition (proper hypergroup action (generalized orbifold))

A finite hypergroup K acts properly on a conformal net \mathcal{A} if there is a family $\phi = \{\phi_I: K \to \text{Markov}(\mathcal{A}(I), \Omega)\}$ of proper actions, which is compatible: $\phi_J \upharpoonright \mathcal{A}(I) = \phi_I$ for $I \subset J$.

Theorem ([B. '17])

Let \mathcal{A} be a conformal net and K a hypergroup acting properly on \mathcal{A}.

Then \mathcal{A}^K defined by $I \mapsto \mathcal{A}(I)^K$ is an irreducible finite index conformal subnet with index

$$[\mathcal{A}(I) : \mathcal{A}(I)^K] = D(K) \equiv \sum_{k=0}^{n} w_k.$$
Finite index inclusions are generalized fixed points

Theorem ([B. '17])

Let \(B \subset A \) be a finite index subnet. Then:

1. \(B(I) \subset A(I) \) is irreducible with commutative 2-box space.
Finite index inclusions are generalized fixed points

Theorem ([B. ’17])

Let $\mathcal{B} \subset \mathcal{A}$ be a finite index subnet. Then:

1. $\mathcal{B}(I) \subset \mathcal{A}(I)$ is irreducible with commutative 2-box space.
2. There is a unique proper hypergroup action K on \mathcal{A}, such that $\mathcal{B} = \mathcal{A}^K$.

Corollary (absence of non-trivial Kac actions on conformal nets) [B ’17]

If $\mathcal{B} \subset \mathcal{A}$ is a finite index subnet which is fixed point by an outer action of a Kac (finite-dim C∗-Hopf algebra) then $\mathcal{B} = \mathcal{A}^G$ for a finite group G.

Let $\mathcal{B} \subset \mathcal{A}$ be finite index subnet, then

\exists subfactors $\{\mathcal{N}_i \subset \mathcal{M}_i\}_{n_i=1}^n [\mathcal{A}(I) : \mathcal{B}(I)] = 1 + n \sum_{i=1}^n [\mathcal{M}_i : \mathcal{N}_i] \in \{1, 2, 3, 4, 3 + \sqrt{3}, 5, \ldots\}$

due to Jones’ index rigidity $[\mathcal{M} : \mathcal{N}] \in \{4 \cos^2(\pi/n) : n = 3, 4, 5, \ldots\} \cup [4, \infty]$ and

$[\mathcal{M} : \mathcal{N}] \leq 5$ classification. New gap $(3 + \sqrt{3}, 5)$ cf. [Carpi–Kawahigashi–Longo ’10]
Finite index inclusions are generalized fixed points

Theorem ([B. ’17])

Let $B \subset A$ be a finite index subnet. Then:

1. $B(I) \subset A(I)$ is irreducible with commutative 2-box space.
2. There is a unique proper hypergroup action K on A, such that $B = A^K$.

Corollary (absence of non-trivial Kac actions on conformal nets) [B ’17]

If $B \subset A$ is a finite index subnet which is fixed point by an outer action of a Kac (finite-dim C^*-Hopf algebra) then $B = A^G$ for a finite group G.
Finite index inclusions are generalized fixed points

Theorem ([B. ’17])

Let $\mathcal{B} \subset \mathcal{A}$ be a finite index subnet. Then:

1. $\mathcal{B}(I) \subset \mathcal{A}(I)$ is irreducible with commutative 2-box space.
2. There is a unique proper hypergroup action K on \mathcal{A}, such that $\mathcal{B} = \mathcal{A}^K$.

Corollary (absence of non-trivial Kac actions on conformal nets) [B ’17]

If $\mathcal{B} \subset \mathcal{A}$ is a finite index subnet which is fixed point by an outer action of a Kac (finite-dim C*-Hopf algebra) then $\mathcal{B} = \mathcal{A}^G$ for a finite group G.

Let $\mathcal{B} \subset \mathcal{A}$ be finite index subnet, then \exists subfactors $\{N_i \subset M_i\}_{i=1}^n$

$$[\mathcal{A}(I) : \mathcal{B}(I)] = 1 + \sum_{i=1}^n [M_i : N_i]$$

Finite index inclusions are generalized fixed points

Theorem ([B. ’17])

Let $B \subset A$ be a finite index subnet. Then:

1. $B(I) \subset A(I)$ is irreducible with commutative 2-box space.
2. There is a unique proper hypergroup action K on A, such that $B = A^K$.

Corollary (absence of non-trivial Kac actions on conformal nets) [B ’17]

If $B \subset A$ is a finite index subnet which is fixed point by an outer action of a Kac (finite-dim C*-Hopf algebra) then $B = A^G$ for a finite group G.

Let $B \subset A$ be finite index subnet, then \exists subfactors $\{N_i \subset M_i\}_{i=1}^n$

$$[A(I) : B(I)] = 1 + \sum_{i=1}^n [M_i : N_i] \in \{1, 2, 3, \frac{1}{2}(5 + \sqrt{5}), 4, 3 + \sqrt{3}, 5, \ldots\}$$

due to Jones’ index rigidity $[M : N] \in \{4 \cos^2(\pi/n) : n = 3, 4, 5, \ldots\} \cup [4, \infty]$ and $[M : N] \leq 5$ classification. New gap $(3 + \sqrt{3}, 5)$ cf. [Carpi–Kawahigashi–Longo ’10]
Unitary (braided) fusion categories

Unitary fusion category $\mathcal{F} = \text{rigid semisimple C}^*$-$\otimes$-category with $|\text{Irr}(\mathcal{F})| < \infty$

- $\text{Rep}^k(G)$ for G finite group $k \in Z(G)$ with $k^2 = e$
- Hilb_G^ω for some $[\omega] \in H^3(G, \mathbb{T})$ or equivalently a G-kernel
- **even part** $\mathcal{F}_{N \subset M}$ of a finite index finite depth subfactor $N \subset M$
Unitary (braided) fusion categories

Unitary fusion category $\mathcal{F} = \text{rigid semisimple C}^*\otimes\text{-category with } |\text{Irr}(\mathcal{F})| < \infty$

- $\text{Rep}^k(G)$ for G finite group $k \in Z(G)$ with $k^2 = e$
- Hilb_G^ω for some $[\omega] \in H^3(G, \mathbb{T})$ or equivalently a G-kernel
- **even part** $\mathcal{F}_{N \subset M}$ of a finite index finite depth subfactor $N \subset M$

\mathcal{C} UFC with **braiding** $\{\varepsilon(\rho, \sigma) : \rho \otimes \sigma \rightarrow \sigma \otimes \rho\}$ denoted $\varepsilon_{\rho, \sigma} = \begin{array}{c} \sigma \\ \rho \end{array} \begin{array}{c} \rho \\ \sigma \end{array}$
Unitary fusion category \(\mathcal{F} = \text{rigid semisimple } C^*\otimes\text{-category with } |\text{Irr}(\mathcal{F})| < \infty \)

- \(\text{Rep}_k^G \) for \(G \) finite group \(k \in Z(G) \) with \(k^2 = e \)
- \(\text{Hilb}^\omega_G \) for some \([\omega] \in H^3(G, \mathbb{T}) \) or equivalently a \(G \)-kernel
- even part \(\mathcal{F}_{N \subset M} \) of a finite index finite depth subfactor \(N \subset M \)

\(\mathcal{C} \) UFC with braiding \(\{ \varepsilon(\rho, \sigma) : \rho \otimes \sigma \to \sigma \otimes \rho \} \) denoted \(\varepsilon_{\rho,\sigma} = \frac{\sigma}{\rho} \frac{\rho}{\sigma} \)

Müger’s centralizer \(\mathcal{D} \subset \mathcal{C} \) subcategory of \(\mathcal{C} \) braided fusion category:

\[
\mathcal{D}' \cap \mathcal{C} = \left\{ \rho \in \mathcal{C} : \varepsilon(\sigma, \rho)\varepsilon(\rho, \sigma) \equiv \frac{\sigma}{\rho} \frac{\rho}{\sigma} \equiv 1_{\rho \otimes \sigma} \text{ for all } \sigma \in \mathcal{D} \right\}
\]
Unitary fusion category $\mathcal{F} = \text{rigid semisimple } C^*-\otimes\text{-category with } |\text{Irr} (\mathcal{F})| < \infty$

- $\text{Rep}^k (G)$ for G finite group $k \in Z (G)$ with $k^2 = e$
- Hilb_G^ω for some $[\omega] \in H^3 (G, \mathbb{T})$ or equivalently a G-kernel
- **even part** $\mathcal{F}_{N \subset M}$ of a finite index finite depth subfactor $N \subset M$

\mathcal{C} UFC with **braiding** $\{ \varepsilon (\rho, \sigma) : \rho \otimes \sigma \rightarrow \sigma \otimes \rho \}$ denoted $\varepsilon_{\rho, \sigma} = \frac{\sigma \rho}{\rho \sigma}$

Müger’s centralizer $\mathcal{D} \subset \mathcal{C}$ subcategory of \mathcal{C} braided fusion category:

$$\mathcal{D}' \cap \mathcal{C} = \left\{ \rho \in \mathcal{C} : \varepsilon (\sigma, \rho) \varepsilon (\rho, \sigma) \equiv \frac{\sigma \rho}{\rho \sigma} \equiv 1_{\rho \otimes \sigma} \text{ for all } \sigma \in \mathcal{D} \right\}$$

- \mathcal{C} **symmetric** if $\mathcal{C}' \cap \mathcal{C} = \mathcal{C} \sim \mathcal{C} \cong \text{Rep}^k (G)$ [Doplicher–Roberts ’89]
Unitary (braided) fusion categories

Unitary fusion category $\mathcal{F} = \text{rigid semisimple } \mathbb{C}^*\boxtimes\text{-category with } |\text{Irr}(\mathcal{F})| < \infty$

- $\text{Rep}^k(G)$ for G finite group $k \in Z(G)$ with $k^2 = e$
- Hilb_G^ω for some $[\omega] \in H^3(G, \mathbb{T})$ or equivalently a G-kernel
- even part $\mathcal{F}_{N \subset M}$ of a finite index finite depth subfactor $N \subset M$

\mathcal{C} UFC with braiding $\{\varepsilon(\rho, \sigma) : \rho \otimes \sigma \rightarrow \sigma \otimes \rho\}$ denoted $\varepsilon_{\rho,\sigma} = \begin{array}{cc} \sigma & \rho \\ \rho & \sigma \end{array}$

Müger’s centralizer $\mathcal{D} \subset \mathcal{C}$ subcategory of \mathcal{C} braided fusion category:

$$\mathcal{D}' \cap \mathcal{C} = \left\{ \rho \in \mathcal{C} : \varepsilon(\sigma, \rho)\varepsilon(\rho, \sigma) \equiv \begin{array}{cc} \sigma & \rho \\ \rho & \sigma \end{array} \equiv 1_{\rho \otimes \sigma} \text{ for all } \sigma \in \mathcal{D} \right\}$$

- \mathcal{C} symmetric if $\mathcal{C}' \cap \mathcal{C} = \mathcal{C} \sim \mathcal{C} \cong \text{Rep}^k(G)$ [Doplicher–Roberts ’89]
- \mathcal{C} non-degenerate braided if $\mathcal{C}' \cap \mathcal{C} \cong \text{Hilb} \sim \text{unitary modular tensor category} \sim 3\text{-manifold invariants, topological field theory, etc.}$
If \mathcal{F} is a unitary fusion category, then the Drinfel’d center $Z(\mathcal{F})$ is a unitary modular tensor category.
Unitary (braided) fusion categories

- If \mathcal{F} is a unitary fusion category, then the Drinfel’d center $\mathcal{Z}(\mathcal{F})$ is a unitary modular tensor category.

- Assume \mathcal{A} is completely rational, i.e.

\[\mu_{\mathcal{A}} = \left[\mathcal{A} \left(\begin{array}{c} \circ \end{array} \right)^\prime : \mathcal{A} \left(\begin{array}{c} \circ \end{array} \right) \right] < \infty \]

$\sim \text{Rep}(\mathcal{A})$ is a unitary modular tensor category [Kawahigashi–Longo–Müger '01]
If \mathcal{F} is a unitary fusion category, then the Drinfel’d center $\mathcal{Z}(\mathcal{F})$ is a unitary modular tensor category.

Assume \mathcal{A} is completely rational, i.e.

$$\mu_{\mathcal{A}} = \left[\mathcal{A} \left(\begin{array}{c} \circ \end{array} \right) \right] < \infty$$

$\sim \text{Rep}(\mathcal{A})$ is a unitary modular tensor category [Kawahigashi–Longo–Müger ’01]

\mathcal{A} is called holomorphic if $\mu_{\mathcal{A}} = 1$. Then $\text{Rep}(\mathcal{A}) \cong \text{Hilb}$.
Unitary (braided) fusion categories

- If \mathcal{F} is a unitary fusion category, then the **Drinfel'd center** $Z(\mathcal{F})$ is a unitary modular tensor category.

- Assume \mathcal{A} is **completely rational**, i.e.

 $\mu_{\mathcal{A}} = \left[\mathcal{A} \left(\begin{array}{c}
 O \\
 O
 \end{array} \right)^{\prime} : \mathcal{A} \left(\begin{array}{c}
 O \\
 O
 \end{array} \right) \right] < \infty$

 $\sim \text{Rep}(\mathcal{A})$ is a unitary modular tensor category [Kawahigashi–Longo–Müger '01]

- \mathcal{A} is called **holomorphic** if $\mu_{\mathcal{A}} = 1$. Then $\text{Rep}(\mathcal{A}) \cong \text{Hilb}$.

Conjecture [Kawahigashi, ...]

If \mathcal{F} is a **unitary fusion category** there exists a completely rational conformal net \mathcal{A}, such that $\text{Rep}(\mathcal{A})$ is braided equivalent to $Z(\mathcal{F})$.
If \(\mathcal{F} \) is a unitary fusion category, then the **Drinfel’d center** \(Z(\mathcal{F}) \) is a unitary modular tensor category.

Assume \(\mathcal{A} \) is **completely rational**, i.e.

\[
\mu_\mathcal{A} = \left[\mathcal{A} \left(\begin{array}{c} \circ \\ \circ \end{array} \right)' : \mathcal{A} \left(\begin{array}{c} \circ \\ \circ \end{array} \right) \right] < \infty
\]

\(\sim \) \(\text{Rep}(\mathcal{A}) \) is a unitary modular tensor category [Kawahigashi–Longo–Müger '01]

\(\mathcal{A} \) is called **holomorphic** if \(\mu_\mathcal{A} = 1 \). Then \(\text{Rep}(\mathcal{A}) \cong \text{Hilb} \).

Conjecture [Kawahigashi, ...]

If \(\mathcal{F} \) is a **unitary fusion category** there exists a completely rational conformal net \(\mathcal{A} \), such that \(\text{Rep}(\mathcal{A}) \) is braided equivalent to \(Z(\mathcal{F}) \).

\(\sim \) **Reconstruction Program** [Jones]. Examples: [B. '15][Xu '16][Evans–Gannon]

Proposition [B. '16]

Let \(N \subset M \) be a finite index finite depth subfactor. If there is a conformal net \(\mathcal{A} \) such that \(\text{Rep}(\mathcal{A}) \cong Z(\mathcal{F}_{N \subset M}) \), then \(N \subset M \) arises from \(\mathcal{A} \).
Theorem (classification of actions & categorification - holomorphic case [B. '17])

Let F be a proper hypergroup acting on a holomorphic net \mathcal{A}.
Theorem (classification of actions & categorification - holomorphic case [B. '17])

Let F be a proper hypergroup acting on a holomorphic net \mathcal{A}.

Then there exist a fusion category \mathcal{F} with Grothendieck ring $K_0(\mathcal{F})$ equal to F and $\text{Rep}(\mathcal{A}^F)$ braided equivalent to the Drinfel'd center $Z(\mathcal{F})$.

Interpretation (in analogy with finite groups):

▶ F is obtained by α-induction $\sim \text{K-twisted representations of } \mathcal{A}$

▶ $\text{Rep}(\mathcal{A}^F) = \text{K-equivariantization}$
Let F be a proper hypergroup acting on a holomorphic net \mathcal{A}.

Then there exist a fusion category \mathcal{F} with Grothendieck ring $K_0(\mathcal{F})$ equal to F and $\text{Rep}(\mathcal{A}^F)$ braided equivalent to the Drinfel’d center $Z(\mathcal{F})$.

uses that $\mathcal{B}(I) \subset \mathcal{A}(I)$ is a Longo–Rehren subfactor
Theorem (classification of actions & categorification - holomorphic case [B. '17])

Let F be a proper hypergroup acting on a holomorphic net \mathcal{A}.

Then there exist a fusion category \mathcal{F} with Grothendieck ring $K_0(\mathcal{F})$ equal to F and $\text{Rep}(\mathcal{A}^F)$ braided equivalent to the Drinfel’d center $Z(\mathcal{F})$.

uses that $\mathcal{B}(I) \subset \mathcal{A}(I)$ is a Longo–Rehren subfactor

Case: $F = G$ a finite group then $\mathcal{F} \cong \text{Hilb}_G^{\omega}$ for some $[\omega] \in H^3(G, \mathbb{T})$ [Müger]
Hypergroup actions on holomorphic nets

Theorem (classification of actions & categorification - holomorphic case [B. ’17])

Let F be a proper hypergroup acting on a holomorphic net \mathcal{A}.

Then there exist a fusion category \mathcal{F} with Grothendieck ring $K_0(\mathcal{F})$ equal to F and $\text{Rep}(\mathcal{A}^F)$ braided equivalent to the Drinfel’d center $Z(\mathcal{F})$.

uses that $\mathcal{B}(I) \subset \mathcal{A}(I)$ is a Longo–Rehren subfactor
Case: $F = G$ a finite group then $\mathcal{F} \cong \text{Hilb}_G^\omega$ for some $[\omega] \in H^3(G, \mathbb{T})$ [Müger]

Theorem (··· - completely rational case [B. ’17])

Let K be a proper hypergroup acting on a completely rational net \mathcal{A}.

Then there exists a fusion category $\mathcal{F} \supset \text{Rep}(\mathcal{A})$ and $K = K_0(\mathcal{F})/K_0(\text{Rep}(\mathcal{A}))$ and $\text{Rep}(\mathcal{A}^K)$ is braided equivalent to the Müger centralizer $\text{Rep}(\mathcal{A})' \cap Z(\mathcal{F})$.

Interpretation (in analogy with finite groups):

- \mathcal{F} is obtained by α^+-induction $\sim “K$-twisted representations of $\mathcal{A}”$
- $\text{Rep}(\mathcal{A}^K) = “\mathcal{F}^K \sim K$-equivariantization”
Consider unitary fusion category \mathcal{F} with Grothendieck ring $F = K_0(\mathcal{F}) = G \cup \{\rho\}$ with $\rho^2 = \sum_{g \in G} g$ and $\rho g = g \rho = \rho$.

Then G is abelian and \mathcal{F} are given by a non-degenerate bicharacter (Fourier transformation) on G and a sign (Frobenius–Schur indicator)

[Tambara–Yamagami '98]
Consider unitary fusion category \(\mathcal{F} \) with Grothendieck ring \(F = K_0(\mathcal{F}) = G \cup \{\rho\} \) with \(\rho^2 = \sum_{g \in G} g \) and \(\rho g = g \rho = \rho \).

Then \(G \) is abelian and \(\mathcal{F} \) are given by a non-degenerate bicharacter (Fourier transformation) on \(G \) and a sign (Frobenius–Schur indicator)

[Tambara–Yamagami '98]

Theorem ([B. in preparation])

Let \(\mathcal{F} \) **as above with** \(G \) **odd (abelian) group, then there is**

1. **and even lattice self-dual lattice** \(L \)
2. **an action of** \(F \) **on** \(\mathcal{A}^{\mathcal{F}}_{TL} = \mathcal{A}_L \)

such that \(\text{Rep}(\mathcal{A}^{\mathcal{F}}_{TL}) \) **is braided equivalent to** \(Z(\mathcal{F}) \).
Reconstruction I: Tambara–Yamagami categories

Consider unitary fusion category \mathcal{F} with Grothendieck ring $F = K_0(\mathcal{F}) = G \cup \{\rho\}$ with $\rho^2 = \sum_{g \in G} g$ and $\rho g = g \rho = \rho$.

- Then G is abelian and \mathcal{F} are given by a non-degenerate bicharacter (Fourier transformation) on G and a sign (Frobenius–Schur indicator)

[Tambara–Yamagami '98]

Theorem ([B. in preparation])

Let \mathcal{F} as above with G odd (abelian) group, then there is

1. and even lattice self-dual lattice L
2. an action of F on $A_{TL} = A_L$

such that $\text{Rep}(A^F_{TL})$ is braided equivalent to $Z(\mathcal{F})$.

$\mathcal{F} \cong \text{Hilb}_G \rtimes \mathbb{Z}_2$ is a nilpotent fusion category $\sim F//G \cong \mathbb{Z}_2$

$A^F_L(I) \subset A_L(I) \sim R^{\mathbb{Z}_2} \subset R \rtimes \Delta(G)$ for action of $(G \rtimes _{-1} \mathbb{Z}_2) \times G$ on R

\mathbb{Z}_2-action on $A_{\tilde{L}}$ and choose $L = (\tilde{L} \times \tilde{L}') \oplus G$ and \tilde{L}' mirror of \tilde{L}

Uses that (G, q) lifts always lifts to a lattice \tilde{L} [Nikulin '79] relation to real projective K3 surfaces???
Reconstruction II: Izumi–Xu near group categories and even part of $2^G 1$ subfactors

- **Izumi–Xu** unitary fusion categories \mathcal{F}, i.e. $F = K_0(\mathcal{F}) = G \cup \{\rho\}$ with $\rho^2 = |G|\rho + \sum_{g \in G} g$

- **Cuntz algebra approach** [Izumi '01][Evans–Gannon '13] \sim polynomial eqs.

- Existence: solution only known for $|G| \leq 13$ (conjectured for all odd G)

Conjecture

For every G odd abelian group there exists an even lattice L and an action of $K = F//G = \{\text{id}, \phi\}$ on \mathcal{A}_L, such that $\text{Rep}(\mathcal{A}_L^F) = Z(\mathcal{F})$ for some categorification \mathcal{F} of F.

\[a_{\text{conj}}: \text{involving lattice lifts of } (G, q) \text{ and } (G', q') \text{ with } |G'| = |G| + 4 \]

<table>
<thead>
<tr>
<th>G</th>
<th>L</th>
<th>\mathcal{A}_L^K</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{Z}_1</td>
<td>E_8</td>
<td>$\mathcal{A}{G{2,1} \times F_{4,1}}$</td>
</tr>
<tr>
<td>\mathbb{Z}_2</td>
<td>D_8</td>
<td>$\mathcal{A}{\text{SU}(2){10} \times \text{Spin}(11)_{1} \times \mathbb{Z}_2}$</td>
</tr>
<tr>
<td>\mathbb{Z}_3</td>
<td>$E_6 \times A_2$</td>
<td>$\mathcal{A}{G{2,3} \times \text{SU}(2)_{1}}$</td>
</tr>
<tr>
<td>$\mathbb{Z}_3 \times \mathbb{Z}_3$</td>
<td>$(E_6 \times A_2)^2$</td>
<td>$\mathcal{A}{\text{Hg} \otimes \mathcal{A}{E_6 \times A_2}}$</td>
</tr>
</tbody>
</table>

[Dynkin '52][?][B. '16]
[B. '16]
[Dynkin '52][Xu unpublished] hypothetical [EvGa '11]

*these come from inclusion of corresponding Lie algebras already studied by Dynkin
Thank you for your attention!