Semigroup elements associated to conformal nets and boundary quantum field theory

Marcel Bischoff
http://www.mat.uniroma2.it/~bischoff

Dipartimento di Matematica
Università degli Studi di Roma Tor Vergata

Meeting of GDRE GREFI-GENCO
Institut Henri Poincaré
Paris, 1 June 2011
Introduction

- Algebraic quantum field theory: A family of algebras containing all local observables associated to space-time regions.
- Many structural results, recently also construction of interesting models
- Conformal field theory (CFT) in 1 and 2 dimension described by AQFT quite successful, e.g. partial classification results (e.g. $c < 1$) (Kawahigashi and Longo, 2004)
- Boundary Conformal Quantum Field Theory (BCFT) on Minkowski half-plane: (Longo and Rehren, 2004)
- Boundary Quantum Field Theory (BQFT) on Minkowski half-plane: (Longo and Witten, 2010)
Conformal Nets

Nets on Minkowski half-plane

Standard subspaces

Conformal nets associated to lattices

Semigroup elements
Conformal Nets

\(\mathcal{H} \) Hilbert space, \(\mathcal{I} = \text{family of proper intervals on } S^1 \cong \mathbb{R} \)

\[\mathcal{I} \ni I \mapsto \mathcal{A}(I) = \mathcal{A}(I)^{''} \subset \mathcal{B}(\mathcal{H}) \]

A. Isotony. \(I_1 \subset I_2 \implies \mathcal{A}(I_1) \subset \mathcal{A}(I_2) \)

B. Locality. \(I_1 \cap I_2 = \emptyset \implies [\mathcal{A}(I_1), \mathcal{A}(I_2)] = \{0\} \)

C. Möbius covariance. There is a unitary representation \(U \) of the Möbius group (\(\cong \text{PSL}(2, \mathbb{R}) \)) on \(\mathcal{H} \) such that

\[U(g)\mathcal{A}(I)U(g)^* = \mathcal{A}(gI). \]

D. Positivity of energy. \(U \) is a positive-energy representation, i.e. generator \(L_0 \) of the rotation subgroup (conformal Hamiltonian) has positive spectrum.

E. Vacuum. \(\ker L_0 = \mathbb{C}\Omega \) and \(\Omega \) (vacuum vector) is a unit vector cyclic for the von Neumann algebra \(\bigvee_{I \in \mathcal{I}} \mathcal{A}(I) \).

Consequences

Marcel Bischoff (Uni Roma II)

Semigroup elements associated to conformal nets and BQFT

Paris, 1 June 2011
Outline

Conformal Nets

Nets on Minkowski half-plane

Standard subspaces

Conformal nets associated to lattices

Semigroup elements
Some consequences

- Irreducibility. $\bigvee_{I \in \mathcal{I}} \mathcal{A}(I) = B(\mathcal{H})$
- Reeh-Schlieder theorem. Ω is cyclic and separating for each $\mathcal{A}(I)$.
- Bisognano-Wichmann property. The Tomita-Takesaki modular operator Δ_I and and conjugation J_I of the pair $(\mathcal{A}(I), \Omega)$ are
 \[
 U(\Lambda(-2\pi t)) = \Delta^it, \quad t \in \mathbb{R}
 \]
 \[
 U(r_I) = J_I
 \]
 (Gabbiani and Fröhlich, 1993), (Guido and Longo, 1995)
- Haag duality. $\mathcal{A}(I') = \mathcal{A}(I)'$.
- Factoriality. $\mathcal{A}(I)$ is III_1-factor (in Connes classification)
- Additivity. $I \subset \bigcup_i I_i \implies \mathcal{A}(I) \subset \bigvee_i \mathcal{A}(I_i)$ (Fredenhagen and Jörß, 1996).
Complete rationality

Completely rational conformal net (Kawahigashi, Longo, Müger 2001)

- **Split property.** For every relatively compact inclusion of intervals \(\exists \) intermediate **type I factor** \(M \)

\[
\mathcal{A}(\bigcirc) \subset M \subset \mathcal{A}(\bigcirc)
\]

- **Strong additivity.** Additivity for touching intervals:

\[
\mathcal{A}(\bigcirc) \lor \mathcal{A}(\bigcirc) = \mathcal{A}(\bigcirc)
\]

- **Finite \(\mu \)-index:** finite Jones index of subfactor

\[
\mathcal{A}(\bigcirc) \lor \mathcal{A}(\bigcirc) \subset (\mathcal{A}(\bigcirc) \lor \mathcal{A}(\bigcirc))'
\]

where the intervals are splitting the circle.

Consequences

- Only finite sectors, each sector has finite statistical dimension
- **Modularity:** The category of DHR sectors is modular, i.e. non degenerated braiding.
Complete rationality

Completely rational conformal net \(\text{\textit{(Kawahigashi, Longo, M"uger 2001)}}\)

- **Split property.** For every relatively compact inclusion of intervals \(\exists\) intermediate type I factor \(M\)

\[\mathcal{A}(\bigcirc) \subset M \subset \mathcal{A}(\bigcirc) \]

- **Strong additivity.** Additivity for touching intervals:

\[\mathcal{A}(\bigcirc) \vee \mathcal{A}(\bigcirc) = \mathcal{A}(\bigcirc) \]

- **Finite \(\mu\)-index:** finite Jones index of subfactor

\[\mathcal{A}(\bigcirc) \vee \mathcal{A}(\bigcirc) \subset (\mathcal{A}(\bigcirc) \vee \mathcal{A}(\bigcirc))^\prime \]

where the intervals are splitting the circle.

Consequences

- **Only finite sectors, each sector has finite statistical dimension**

- **Modularity:** The category of DHR sectors is modular, i.e. non degenerated braiding.
Complete rationality

Completely rational conformal net *(Kawahigashi, Longo, Müger 2001)*

- **Split property.** For every relatively compact inclusion of intervals \exists intermediate type I factor M

$$\mathcal{A}(\bigcirc) \subset M \subset \mathcal{A}(\bigcirc)$$

- **Strong additivity.** Additivity for touching intervals:

$$\mathcal{A}(\bigcirc) \lor \mathcal{A}(\bigcirc) = \mathcal{A}(\bigcirc)$$

- **Finite μ-index:** finite Jones index of subfactor

$$\mathcal{A}(\bigcirc) \lor \mathcal{A}(\bigcirc) \subset (\mathcal{A}(\bigcirc) \lor \mathcal{A}(\bigcirc))'$$

where the intervals are splitting the circle.

Consequences

- Only finite sectors, each sector has finite statistical dimension
- **Modularity:** The category of DHR sectors is modular, i.e. non degenerated braiding.
Complete rationality

Completely rational conformal net (Kawahigashi, Longo, Müger 2001)

▶ **Split property.** For every relatively compact inclusion of intervals \(\exists \) intermediate type I factor \(M \)

\[
\mathcal{A}\begin{array}{c}
\text{interval}
\end{array} \subset M \subset \mathcal{A}\begin{array}{c}
\text{interval}
\end{array}
\]

▶ **Strong additivity.** Additivity for touching intervals:

\[
\mathcal{A}\begin{array}{c}
\text{interval}
\end{array} \lor \mathcal{A}\begin{array}{c}
\text{interval}
\end{array} = \mathcal{A}\begin{array}{c}
\text{interval}
\end{array}
\]

▶ **Finite \(\mu \)-index:** finite Jones index of subfactor

\[
\mathcal{A}\begin{array}{c}
\text{interval}
\end{array} \lor \mathcal{A}\begin{array}{c}
\text{interval}
\end{array} \subset \left(\mathcal{A}\begin{array}{c}
\text{interval}
\end{array} \lor \mathcal{A}\begin{array}{c}
\text{interval}
\end{array} \right)'
\]

where the intervals are splitting the circle.

Consequences

▶ Only finite sectors, each sector has finite statistical dimension

▶ **Modularity:** The category of DHR sectors is modular, i.e. non degenerated braiding.
Example

G compact Lie group

Loop group: $LG = C^\infty(S^1, G)$ (point wise multiplication)

Projective representations \leftrightarrow representations of a central extension

\[
1 \rightarrow T \rightarrow \tilde{LG} \rightarrow LG \rightarrow 1
\]

$\pi_{0,k}$ projective **positive-energy** and **vacuum** representation (classified by the level k)

\[
I \mapsto A_{G,k}(I) = \pi_{0,k}(L_I G)''
\]

is a **conformal net**; $L_I G$ loops supported in I.

Example

$G = SU(n)$ gives completely rational conformal net (Xu, 2000)
Loop group net

Example

G compact Lie group

Loop group: $L^G = C^\infty(S^1, G)$ (point wise multiplication)

Projective representations \leftrightarrow representations of a central extension

$$1 \rightarrow \mathbb{T} \rightarrow \widetilde{L}^G \rightarrow L^G \rightarrow 1$$

$\pi_{0,k}$ projective **positive-energy** and **vacuum** representation (classified by the level k)

$$I \mapsto \mathcal{A}_{G,k}(I) = \pi_{0,k}(L^G)''$$

is a **conformal net**; L^G loops supported in I.

Example

$G = SU(n)$ gives completely rational conformal net (Xu, 2000)
Example

G compact Lie group

Loop group: $L G = C^\infty (S^1, G)$ (point wise multiplication)

Projective representations \leftrightarrow representations of a central extension

$$1 \longrightarrow \mathbb{T} \longrightarrow \widetilde{L}G \longrightarrow LG \longrightarrow 1$$

$\pi_{0,k}$ projective **positive-energy** and **vacuum** representation (classified by the level k)

$$I \longmapsto A_{G,k}(I) = \pi_{0,k}(LIG)'$$

is a **conformal net**; LIG loops supported in I.

Example

$G = SU(n)$ gives completely rational conformal net (Xu, 2000)
Example

G compact Lie group

Loop group: $LG = C^\infty(S^1, G)$ (point wise multiplication)

Projective representations \leftrightarrow representations of a central extension

$$1 \longrightarrow \mathbb{T} \longrightarrow \widetilde{LG} \longrightarrow LG \longrightarrow 1$$

$\pi_{0,k}$ projective **positive-energy** and **vacuum** representation (classified by the level k)

$$I \longmapsto \mathcal{A}_{G,k}(I) = \pi_{0,k}(L_{IG})''$$

is a **conformal net**; L_{IG} loops supported in I.

Example

$G = SU(n)$ gives completely rational conformal net (Xu, 2000)
Outline

Conformal Nets

Nets on Minkowski half-plane

Standard subspaces

Conformal nets associated to lattices

Semigroup elements
Nets on the real line

- Conformal net on the **real line** identifying $S^1 \setminus \{-1\} \cong \mathbb{R}$

```
Conformal net on $S^1$ \[\rightarrow\] Conformal net on $\mathbb{R}$
```

$\{\}$
Minkowski half-plane M_+

- **Minkowski half-plane** $x > 0$, $ds^2 = dt^2 - dx^2$

- **Double cone** $\mathcal{O} = I_1 \times I_2$ where I_1, I_2 disjoint intervals
- **Minkowski half-plane** $x > 0$, $ds^2 = dt^2 - dx^2$
- **Double cone** $\mathcal{O} = I_1 \times I_2$ where I_1, I_2 disjoint intervals
Boundary conformal quantum field theory *(Longo and Rehren, 2004)*

\[\mathcal{A}_+(\mathcal{O}) = \mathcal{A}(I_1) \vee \mathcal{A}(I_2) \]

Boundary quantum field theory *(Longo and Witten, 2010)*

\[\mathcal{A}_V(\mathcal{O}) = \mathcal{A}(I_1) \vee V \mathcal{A}(I_2)V^* \]

V unitary on *H*

- \([V, T(t)] = 0\), i.e. commutes with translation *T(t)*
- \(V \mathcal{A}(\mathbb{R}_+)V^* \subseteq \mathcal{A}(\mathbb{R}_+)\)
Boundary conformal quantum field theory (Longo and Rehren, 2004)

\[\mathcal{A}_+(\mathcal{O}) = \mathcal{A}(I_1) \vee \mathcal{A}(I_2) \]

Boundary quantum field theory (Longo and Witten, 2010)

\[\mathcal{A}_V(\mathcal{O}) = \mathcal{A}(I_1) \vee V \mathcal{A}(I_2) V^* \]

\(V \) unitary on \(\mathcal{H} \)

- \([V, T(t)] = 0\), i.e. commutes with translation \(T(t) \)
- \(V \mathcal{A}(\mathbb{R}_+) V^* \subseteq \mathcal{A}(\mathbb{R}_+) \)
A local (time) translation covariant net on Minkowski half-plane on a Hilbert space \mathcal{H} is a map $\mathcal{K}_+ \ni \mathcal{O} \mapsto \mathcal{B}(\mathcal{O}) \subset \mathcal{B}(\mathcal{H})$ which fulfills:

1. **Isotony.** $\mathcal{O}_1 \subset \mathcal{O}_2$ implies $\mathcal{B}(\mathcal{O}_1) \subset \mathcal{B}(\mathcal{O}_2)$.

2. **Locality.** If $\mathcal{O}_1, \mathcal{O}_2 \in \mathcal{K}_+$ are mutually space-like separated then $[\mathcal{B}(\mathcal{O}_1), \mathcal{B}(\mathcal{O}_2)] = \{0\}$.
Local nets on Minkowski half-plane

A local (time) translation covariant net on Minkowski half-plane on a Hilbert space \mathcal{H} is a map $\mathcal{K}_+ \ni \mathcal{O} \mapsto \mathcal{B}(\mathcal{O}) \subset \mathcal{B}(\mathcal{H})$ which fulfills:

1. **Isotony.** $\mathcal{O}_1 \subset \mathcal{O}_2$ implies $\mathcal{B}(\mathcal{O}_1) \subset \mathcal{B}(\mathcal{O}_2)$.

2. **Locality.** If $\mathcal{O}_1, \mathcal{O}_2 \in \mathcal{K}_+$ are mutually space-like separated then $[\mathcal{B}(\mathcal{O}_1), \mathcal{B}(\mathcal{O}_2)] = \{0\}$.

![Diagram showing the relationship between operators and regions in Minkowski half-plane](image)
Local nets on Minkowski half-plane

A local (time) translation covariant net on Minkowski half-plane on a Hilbert space \mathcal{H} is a map $\mathcal{K}_{+} \ni \mathcal{O} \mapsto \mathcal{B}(\mathcal{O}) \subset \mathcal{B}(\mathcal{H})$ which fulfills:

1. **Isotony.** $\mathcal{O}_1 \subset \mathcal{O}_2$ implies $\mathcal{B}(\mathcal{O}_1) \subset \mathcal{B}(\mathcal{O}_2)$.

2. **Locality.** If $\mathcal{O}_1, \mathcal{O}_2 \in \mathcal{K}_{+}$ are mutually space-like separated then $[\mathcal{B}(\mathcal{O}_1), \mathcal{B}(\mathcal{O}_2)] = \{0\}$.
A local (time) translation covariant net on Minkowski half-plane on a Hilbert space \mathcal{H} is a map $\mathcal{K}_+ \ni \mathcal{O} \mapsto \mathcal{B}(\mathcal{O}) \subset \mathcal{B}(\mathcal{H})$ which fulfills:

1. **Isotony.** $\mathcal{O}_1 \subset \mathcal{O}_2$ implies $\mathcal{B}(\mathcal{O}_1) \subset \mathcal{B}(\mathcal{O}_2)$.

2. **Locality.** If $\mathcal{O}_1, \mathcal{O}_2 \in \mathcal{K}_+$ are mutually space-like separated then $[\mathcal{B}(\mathcal{O}_1), \mathcal{B}(\mathcal{O}_2)] = \{0\}$.

3. **Time-translation covariance.** There exists an unitary one-parameter group $T(t) = e^{itP}$ with positive generator P such that:

$$T(t)\mathcal{B}(\mathcal{O})T(t)^* = \mathcal{B}(\mathcal{O}_t), \quad \mathcal{O} \in \mathcal{K}_+, \quad \mathcal{O}_t = \mathcal{O} + (t, 0)$$
A local (time) translation covariant net on Minkowski half-plane on a Hilbert space H is a map $\mathcal{K}_+ \ni \mathcal{O} \mapsto B(\mathcal{O}) \subset B(H)$ which fulfills:

1. **Isotony.** $\mathcal{O}_1 \subset \mathcal{O}_2$ implies $B(\mathcal{O}_1) \subset B(\mathcal{O}_2)$.

2. **Locality.** If $\mathcal{O}_1, \mathcal{O}_2 \in \mathcal{K}_+$ are mutually space-like separated then $[B(\mathcal{O}_1), B(\mathcal{O}_2)] = \{0\}$.

3. **Time-translation covariance** \exists an unitary one-parameter group $T(t) = e^{itP}$ with positive generator P such that:

 $$T(t)B(\mathcal{O})T(t)^* = B(\mathcal{O}_t), \quad \mathcal{O} \in \mathcal{K}_+, \quad \mathcal{O}_t = \mathcal{O} + (t, 0)$$

4. **Vacuum.** $\Omega \in H$ is a up to the multiple unique T invariant vector and cyclic and separating for every $B(\mathcal{O})$ for $\mathcal{O} \in \mathcal{K}_+$.
Semigroup $E(A)$ associated to a conformal net A

Semigroup $E(A)$ of unitaries on \mathcal{H} (associated to A)

- $[V, T(t)] = 0$, i.e. commutes with translation $T(t)$
- $VA(\mathbb{R}_+)V^* \subset A(\mathbb{R}_+) \sim VA(a + \mathbb{R}_+)V^* \subset A(a + \mathbb{R}_+)$

Trivial examples of elements in $E(A)$:

- $V = T(t)$ $t > 0$ positive translations
- V inner symmetry, i.e. $VA(I)V^* = A(I)$ for all proper I

Construction

\[\begin{array}{c}
\text{Conformal net} \\
A \text{ on } \mathbb{R}
\end{array} + \begin{array}{c}
\text{semigroup element} \\
V \in E(A)
\end{array} \longrightarrow \begin{array}{c}
\text{local net } A_V \\
on M_+
\end{array} \]
Outline

Conformal Nets

Nets on Minkowski half-plane

Standard subspaces

Conformal nets associated to lattices

Semigroup elements
Standard subspaces

\(\mathcal{H} \) complex Hilbert space, \(H \subset \mathcal{H} \) real subspace. Symplectic complement:

\[
H' = \{ x \in \mathcal{H} : \text{Im}(x, H) = 0 \} = iH^\perp
\]

Standard subspace: closed, real subspace \(H \subset \mathcal{H} \) with \(\overline{H} + iH = \mathcal{H} \) and \(H \cap iH = \{0\} \).

Define antilinear unbounded closed involutive \((S^2 \subset 1)\) operator

\[
S_H : x + iy \mapsto x - iy \text{ for } x, y \in H.
\]

Conversely \(S \) densely defined closed, antilinear involution on \(\mathcal{H} \), \(H_S = \{ x \in \mathcal{H} : Sx = x \} \) is a standard subspace:

| standard subspaces \(H \) | 1:1 | densely defined, closed, antilinear involutions \(S \) |

Modular Theory: Polar decomposition \(S_H = J_H \Delta_H^{1/2} \)

\[
J_H H = H' \quad \Delta_H^{it} H = H
\]
Standard subspaces

\mathcal{H} complex Hilbert space, $H \subset \mathcal{H}$ real subspace. Symplectic complement:

$$H' = \{ x \in \mathcal{H} : \text{Im}(x, H) = 0 \} = iH^\perp$$

Standard subspace: closed, real subspace $H \subset \mathcal{H}$ with $\overline{H} + iH = \mathcal{H}$ and $H \cap iH = \{0\}$.

Define antilinear unbounded closed involutive ($S^2 \subset 1$) operator $S_H : x + iy \mapsto x - iy$ for $x, y \in H$.

Conversely S densely defined closed, antilinear involution on \mathcal{H}, $H_S = \{ x \in \mathcal{H} : Sx = x \}$ is a standard subspace:

| standard subspaces H | 1:1 | densely defined, closed, antilinear involutions S |

Modular Theory: Polar decomposition $S_H = J_H \Delta_H^{1/2}$

$$J_H H = H' \quad \Delta_H^{it} H = H$$
Standard subspaces

\mathcal{H} complex Hilbert space, $H \subset \mathcal{H}$ real subspace. Symplectic complement:

$$H' = \{ x \in \mathcal{H} : \text{Im}(x, H) = 0 \} = iH^\perp$$

Standard subspace: closed, real subspace $H \subset \mathcal{H}$ with $\overline{H + iH} = \mathcal{H}$ and $H \cap iH = \{0\}$.

Define antilinear unbounded closed involutive ($S^2 \subset 1$) operator $S_H : x + iy \mapsto x - iy$ for $x, y \in H$.

Conversely S densely defined closed, antilinear involution on \mathcal{H}, $H_S = \{ x \in \mathcal{H} : Sx = x \}$ is a standard subspace:

| standard subspaces H | $1:1$ | densely defined, closed, antilinear involutions S |

Modular Theory: Polar decomposition $S_H = J_H \Delta_H^{1/2}$

$$J_H H = H' \quad \Delta_H^{it} H = H$$
Standard subspaces

\mathcal{H} complex Hilbert space, $H \subset \mathcal{H}$ real subspace. Symplectic complement:

$$H' = \{ x \in \mathcal{H} : \text{Im}(x, H) = 0 \} = iH^\perp$$

Standard subspace: closed, real subspace $H \subset \mathcal{H}$ with $H + iH = \mathcal{H}$ and $H \cap iH = \{0\}$.

Define antilinear unbounded closed involutive ($S^2 \subset 1$) operator

$$S_H : x + iy \mapsto x - iy \text{ for } x, y \in H.$$

Conversely S densely defined closed, antilinear involution on \mathcal{H}, $H_S = \{ x \in \mathcal{H} : Sx = x \}$ is a standard subspace:

\[
\begin{array}{c|c}
\text{standard subspaces } H & \text{densely defined, closed, antilinear involutions } S \\
\hline
1:1
\end{array}
\]

Modular Theory: Polar decomposition $S_H = J_H \Delta_H^{1/2}$

$$J_H H = H' \quad \Delta_H^{it} H = H$$
Standard subspaces

\(\mathcal{H} \) complex Hilbert space, \(H \subset \mathcal{H} \) real subspace. Symplectic complement:

\[
H' = \{ x \in \mathcal{H} : \text{Im}(x, H) = 0 \} = iH^\perp
\]

Standard subspace: closed, real subspace \(H \subset \mathcal{H} \) with \(\overline{H + iH} = \mathcal{H} \) and \(H \cap iH = \{0\} \).

Define antilinear unbounded closed involutive \((S^2 \subset 1)\) operator

\[
S_H : x + iy \mapsto x - iy \text{ for } x, y \in H.
\]

Conversely \(S \) densely defined closed, antilinear involution on \(\mathcal{H} \), \(H_S = \{ x \in \mathcal{H} : Sx = x \} \) is a standard subspace:

\[
\begin{array}{ccc}
\text{standard subspaces } H & \xrightarrow{1:1} & \text{densely defined, closed, antilinear involutions } S \\
\end{array}
\]

Modular Theory: Polar decomposition \(S_H = J_H \Delta_H^{1/2} \)

\[
J_H H = H' \quad \Delta_H^{it} H = H
\]
Standard subspaces and inner functions

Standard pair. \((H, T)\)

- \(H \subset \mathcal{H}\) standard subspace with
- \(T(t) = e^{itP}\) one-param. group with **positive generator** \(P\)
- \(T(t)H \subset H\) for \(t \geq 0\)

Theorem (Borchers Theorem for standard subspaces)

Let \((H, T)\) be a standard pair, then

\[
\Delta^i_s T(t) \Delta^{-i_s}_H = T(e^{-2\pi s t}) \quad (s, t \in \mathbb{R})
\]

\[
J_H T(t) J_H = T(-t) \quad (t \in \mathbb{R})
\]
Standard subspaces and inner functions

Standard pair. \((H, T)\)

- \(H \subset \mathcal{H}\) standard subspace with
- \(T(t) = e^{itP}\) one-param. group with **positive generator** \(P\)
- \(T(t)H \subset H\) for \(t \geq 0\)

Theorem (Borchers Theorem for standard subspaces)

Let \((H, T)\) be a standard pair, then

\[
\Delta_H^{is} T(t) \Delta_H^{-is} = T(e^{-2\pi s t}) \quad (s, t \in \mathbb{R})
\]

\[
J_H T(t) J_H = T(-t) \quad (t \in \mathbb{R})
\]
Standard subspaces and inner functions

\[\mathcal{E}(H) = \text{unitaries } V \text{ on } \mathcal{H} \text{ such that } VH \subset H \text{ and } [V, T(t)] = 0. \]

Analog of the Beurling-Lax theorem.

Characterization of \(\mathcal{E}(H) \). (Longo and Witten, 2010)

If \((H, T)\) irreducible standard pair, then are equivalent

1. \(V \in \mathcal{E}(H) \), i.e. \(VH \subset H \) with \(V \) unitary on \(\mathcal{H} \) commuting with \(T \).

2. \(V = \varphi(P) \) with \(\varphi \) boundary value of a symmetric inner analytic \(L^\infty \) function \(\varphi : \mathbb{R} + i\mathbb{R}_+ \to \mathbb{C} \), where
 - symmetric \(\overline{\varphi(p)} = \varphi(-p) \) for \(p \geq 0 \)
 - inner \(|\varphi(p)| = 1 \) for \(p \in \mathbb{R} \).
Standard subspaces and inner functions

\[\mathcal{E}(H) = \text{unitaries } V \text{ on } \mathcal{H} \text{ such that } VH \subset H \text{ and } [V, T(t)] = 0. \]

Analog of the Beurling-Lax theorem.

Characterization of \(\mathcal{E}(H) \). \((\text{Longo and Witten, 2010}) \)

\((H, T) \) irreducible standard pair, then are equivalent

1. \(V \in \mathcal{E}(H) \), i.e. \(VH \subset H \) with \(V \) unitary on \(\mathcal{H} \) commuting with \(T \).
2. \(V = \varphi(P) \) with \(\varphi \) boundary value of a symmetric inner analytic \(L^\infty \) function \(\varphi : \mathbb{R} + i\mathbb{R}_+ \to \mathbb{C} \), where
 - **symmetric** \(\overline{\varphi(p)} = \varphi(-p) \) for \(p \geq 0 \)
 - **inner** \(|\varphi(p)| = 1 \) for \(p \in \mathbb{R} \).
\[E(H) = \text{unitaries } V \text{ on } \mathcal{H} \text{ such that } VH \subset H \text{ and } [V, T(t)] = 0. \]

Analog of the Beurling-Lax theorem.

Characterization of \(E(H) \). (Longo and Witten, 2010)

\((H, T)\) irreducible standard pair, then are equivalent

1. \(V \in E(H) \), i.e. \(VH \subset H \) with \(V \) unitary on \(\mathcal{H} \) commuting with \(T \).

2. \(V = \varphi(P) \) with \(\varphi \) boundary value of a symmetric inner analytic \(L^\infty \) function \(\varphi : \mathbb{R} + i\mathbb{R}_+ \to \mathbb{C} \), where
 - **symmetric** \(\varphi(p) = \varphi(-p) \) for \(p \geq 0 \)
 - **inner** \(|\varphi(p)| = 1 \) for \(p \in \mathbb{R} \).
Conformal Nets

Nets on Minkowski half-plane

Standard subspaces

Conformal nets associated to lattices

Semigroup elements
Net of free bosons.

Net of standard subspaces (prequantised theory)

- \(L \mathbb{R} = C^\infty(S^1, \mathbb{R}) \) yields a Hilbert space \(\mathcal{H} = \overline{L \mathbb{R}}\|\cdot\| \) using
 - semi-norm. \(\|f\| = \sum_{k>0} k|\hat{f}_k| \)
 - complex-structure. \(\mathcal{J}: \hat{f}_k \mapsto -i \text{sign}(k) \hat{f}_k \)
 - symplectic form. \(\omega(f, g) = \text{Im}(f, g) = 1/(4\pi) \int g df \)

- Local spaces: \(L_I \mathbb{R} = \{ f \in L \mathbb{R} : \text{supp} f \subset I \} \)
 \[I \mapsto H(I) = \overline{L_I \mathbb{R}} \subset \mathcal{H} \]

Conformal net of a free boson

- Second quantization. Conformal net on the symmetric Fock space \(e^\mathcal{H} \) by CCR functor (Weyl unitaries):
 \[I \mapsto A(I) := \text{CCR}(H(I))'' \subset B(e^\mathcal{H}) \]

- Weyl unitaries
 \[W(f)W(g) = e^{-i\omega(f,g)}W(f + g), \]

- Vacuum state
 \[\phi(W(f)) = (\Omega, W(f)\Omega) = e^{-1/2\|f\|^2} \]
Net of free bosons.

Net of standard subspaces (prequantised theory)

- \(L_\mathbb{R} = C^\infty(S^1, \mathbb{R}) \) yields a Hilbert space \(\mathcal{H} = \overline{L_\mathbb{R}} \| \cdot \| \) using
 - semi-norm. \(\| f \| = \sum_{k>0} k |\hat{f}_k| \)
 - complex-structure. \(\mathcal{J} : \hat{f}_k \mapsto -i \text{sign}(k) \hat{f}_k \)
 - symplectic form. \(\omega(f,g) = \text{Im}(f,g) = 1/(4\pi) \int g df \)

- Local spaces: \(L_I \mathbb{R} = \{ f \in L_\mathbb{R} : \text{supp} f \subset I \} \)
 \[I \mapsto H(I) = \overline{L_I \mathbb{R}} \subset \mathcal{H} \]

Conformal net of a free boson

- Second quantization. Conformal net on the symmetric Fock space \(e^\mathcal{H} \) by CCR functor (Weyl unitaries):
 \[I \mapsto \mathcal{A}(I) := \text{CCR}(H(I))'' \subset B(e^\mathcal{H}) \]

- Weyl unitaries \(W(f)W(g) = e^{-i\omega(f,g)} W(f + g) \)
- Vacuum state \(\phi(W(f)) = (\Omega, W(f)\Omega) = e^{-1/2\|f\|^2} \)
Localized automorphisms

Conformal net of n free bosons

$$A_n(I) = A_1^\otimes n(I) = CCR(H(I) \oplus \cdots \oplus H(I))$$

Local endomorphisms (representations) of $A_n = A^\otimes n$

$\ell : S^1 \rightarrow \mathbb{R}^n$ smooth with compact support in $I \in \mathcal{I}$ gives localized automorphism

$$\rho_\ell(W(f)) = e^{-\frac{i}{2\pi} \int \langle \ell, f \rangle_{\mathbb{R}^n} W(f)}$$

Charge:

$$q_\ell = \frac{1}{2\pi} \int_{S^1} \ell \in \mathbb{R}^n \quad \rho_\ell \simeq \rho_m \iff q_\ell = q_m$$

Statistics operator:

$$\epsilon(\rho_\ell, \rho_m) = e^{\pm i\pi \langle q_\ell, q_m \rangle_{\mathbb{R}^n}}$$

Local extension: If $\langle q_\ell, q_\ell \rangle \in 2\mathbb{Z}$ then $\epsilon(\rho_\ell, \rho_\ell) = 1 \sim$ local extension (by cross product).
Localized automorphisms

Conformal net of \(n \) free bosons

\[
\mathcal{A}_n(I) = \mathcal{A}_1^\otimes n(I) = \text{CCR}(H(I) \oplus \cdots \oplus H(I))
\]

Local endomorphisms (representations) of \(\mathcal{A}_n = \mathcal{A}^\otimes n \)

\(\ell : S^1 \longrightarrow \mathbb{R}^n \) smooth with compact support in \(I \in \mathcal{I} \) gives localized automorphism

\[
\rho_\ell(W(f)) = e^{-i\pi \int_{\mathbb{R}^n} \langle \ell, f \rangle} W(f)
\]

Charge:

\[
q_\ell = \frac{1}{2\pi} \int_{S^1} \ell \in \mathbb{R}^n \quad \rho_\ell \simeq \rho_m \iff q_\ell = q_m
\]

Statistics operator:

\[
\epsilon(\rho_\ell, \rho_m) = e^{\pm i\pi \langle q_\ell, q_m \rangle_{\mathbb{R}^n}}
\]

Local extension: If \(\langle q_\ell, q_\ell \rangle \in 2\mathbb{Z} \) then \(\epsilon(\rho_\ell, \rho_\ell) = 1 \sim \text{local extension} \) (by cross product).
Localized automorphisms

Conformal net of n free bosons

$$\mathcal{A}_n(I) = \mathcal{A}_1 \otimes^n (I) = \text{CCR}(H(I) \oplus \cdots \oplus H(I))$$

Local endomorphisms (representations) of $\mathcal{A}_n = \mathcal{A} \otimes^n$

$\ell : S^1 \longrightarrow \mathbb{R}^n$ smooth with compact support in $I \in \mathcal{I}$ gives localized automorphism

$$\rho_{\ell}(W(f)) = e^{-\frac{i}{2\pi} \int_{S^1} \langle \ell, f \rangle_{\mathbb{R}^n} W(f)}$$

Charge:

$$q_{\ell} = \frac{1}{2\pi} \int_{S^1} \ell \in \mathbb{R}^n$$

$$\rho_{\ell} \cong \rho_m \iff q_{\ell} = q_m$$

Statistics operator:

$$\epsilon(\rho_{\ell}, \rho_m) = e^{\pm i\pi \langle q_{\ell}, q_m \rangle_{\mathbb{R}^n}}$$

Local extension: If $\langle q_{\ell}, q_{\ell} \rangle \in 2\mathbb{Z}$ then $\epsilon(\rho_{\ell}, \rho_{\ell}) = 1 \sim$ local extension (by cross product).
Localized automorphisms

Conformal net of n free bosons

$$\mathcal{A}_n(I) = \mathcal{A}_1^\otimes n(I) = \text{CCR}(H(I) \oplus \cdots \oplus H(I))$$

Local endomorphisms (representations) of $\mathcal{A}_n = \mathcal{A}^\otimes n$

$\ell : S^1 \longrightarrow \mathbb{R}^n$ smooth with compact support in $I \in \mathcal{I}$ gives localized automorphism

$$\rho_\ell(W(f)) = e^{-\frac{i}{2\pi} \int \langle \ell, f \rangle_{\mathbb{R}^n} W(f)}$$

Charge:

$$q_\ell = \frac{1}{2\pi} \int_{S^1} \ell \in \mathbb{R}^n \quad \rho_\ell \simeq \rho_m \iff q_\ell = q_m$$

Statistics operator:

$$\epsilon(\rho_\ell, \rho_m) = e^{\pm i\pi \langle q_\ell, q_m \rangle_{\mathbb{R}^n}}$$

Local extension: If $\langle q_\ell, q_\ell \rangle \in 2\mathbb{Z}$ then $\epsilon(\rho_\ell, \rho_\ell) = 1 \sim$ local extension (by cross product).
Localized automorphisms

Conformal net of \(n \) free bosons

\[
\mathcal{A}_n(I) = \mathcal{A}_1^\otimes n(I) = \text{CCR}(H(I) \oplus \cdots \oplus H(I))
\]

Local endomorphisms (representations) of \(\mathcal{A}_n = \mathcal{A}^\otimes n \)
\(\ell : S^1 \rightarrow \mathbb{R}^n \) smooth with compact support in \(I \in \mathcal{I} \) gives localized automorphism

\[
\rho_\ell(W(f)) = e^{-\frac{i}{2\pi} \int_{\mathbb{R}^n} \langle \ell, f \rangle} W(f)
\]

Charge:

\[
q_\ell = \frac{1}{2\pi} \int_{S^1} \ell \in \mathbb{R}^n \quad \rho_\ell \simeq \rho_m \iff q_\ell = q_m
\]

Statistics operator:

\[
\epsilon(\rho_\ell, \rho_m) = e^{\pm i\pi \langle q_\ell, q_m \rangle_{\mathbb{R}^n}}
\]

Local extension: If \(\langle q_\ell, q_\ell \rangle \in 2\mathbb{Z} \) then \(\epsilon(\rho_\ell, \rho_\ell) = 1 \sim \text{local extension} \) (by cross product).
Let Q be an (positive-definite) **even lattice** (eg. root lattice) of rank n

- $\forall \alpha \in Q$: $\langle \alpha, \alpha \rangle \in 2\mathbb{N} \implies$ integral $\forall \alpha, \beta \in Q$: $\langle \alpha, \beta \rangle \in \mathbb{Z}$.

- **dual lattice** (characters)

 $Q^* = \{ \alpha \in E_Q : \langle \alpha, Q \rangle \in \mathbb{Z} \} \subset E_Q \equiv Q \otimes_{\mathbb{Z}} \mathbb{R}$. (eg. weight lattice in case of root lattices).

\[
A_2 \leftrightarrow SU(3)
\]

corresponding torus

$T_Q = E_Q/Q$
Even lattices

Let \(Q \) be an (positive-definite) **even lattice** (eg. root lattice) of rank \(n \)

\[\forall \alpha \in Q: \langle \alpha, \alpha \rangle \in 2\mathbb{N} \implies \text{integral} \quad \forall \alpha, \beta \in Q: \langle \alpha, \beta \rangle \in \mathbb{Z}. \]

dual lattice (characters)
\[Q^* = \{ \alpha \in E_Q : \langle \alpha, Q \rangle \in \mathbb{Z} \} \subset E_Q \equiv Q \otimes_{\mathbb{Z}} \mathbb{R}. \] (eg. weight lattice in case of root lattices).

\[A_2 \leftrightarrow SU(3) \]

corresponding torus
\[T_Q = E_Q / Q \]
Conformal nets associated to lattices

Local extension. For a lattice Q of rank n there is $\mathcal{A}_Q \supset \mathcal{A} \otimes n$ containing of the net $\equiv \mathcal{A} \otimes n$ of n free bosons. Locally

$$\mathcal{A}_Q(I) = (\mathcal{A}(I) \otimes \ldots \otimes \mathcal{A}(I)) \rtimes Q$$

(Buchholz, Mack, Todorov 1988) ($n = 1$) (Staszkiewicz, 1995) (Dong and Xu, 2006)

Construction

- Conformal nets corresponding to Lattice Vertex Operator Algebras.

Some properties:

- Sectors finite group Q^*/Q, each sector statistical dimension 1.
- Completely rational net $\mu = |Q^*/Q|$ (Dong and Xu, 2006).
Conformal nets associated to lattices

Local extension. For a lattice Q of rank n there is $\mathcal{A}_Q \supset \mathcal{A}^\otimes n$ containing of the net $\equiv \mathcal{A}^\otimes n$ of n free bosons. Locally

$$\mathcal{A}_Q(I) = (\mathcal{A}(I) \otimes \ldots \otimes \mathcal{A}(I)) \rtimes Q$$

(Buchholz, Mack, Todorov 1988) ($n = 1$) (Staszkiewicz, 1995) (Dong and Xu, 2006)

Construction

- Conformal nets corresponding to **Lattice Vertex Operator Algebras**.

Some properties:

- Sectors finite group Q^*/Q, each sector statistical dimension 1.
- Completely rational net $\mu = |Q^*/Q|$ (Dong and Xu, 2006).
Conformal nets associated to lattices

Local extension. For a lattice Q of rank n there is $\mathcal{A}_Q \supset \mathcal{A}^\otimes n$ containing of the net $\equiv \mathcal{A}^\otimes n$ of n free bosons. Locally

$$\mathcal{A}_Q(I) = (\mathcal{A}(I) \otimes \ldots \otimes \mathcal{A}(I)) \rtimes Q$$

(Staszkiewicz, 1995) (Dong and Xu, 2006)

Construction

| even lattice Q of rank n | Completely rational conformal net \mathcal{A}_Q |

- Conformal nets corresponding to **Lattice Vertex Operator Algebras**.

Some properties:

- Sectors finite group Q^*/Q, each sector statistical dimension 1.
- Completely rational net $\mu = |Q^*/Q|$ (Dong and Xu, 2006).
Simply laced groups and root lattices

G simply-connected **simple-laced** Lie group, e.g.

- **A** $SU(n + 1), \ n \geq 1 \leftrightarrow A_n:\
 \begin{array}{c}
 -
 \end{array}$

- **D** $Spin(2n), \ n \geq 3 \leftrightarrow D_n:\
 \begin{array}{c}
 -
 \end{array}$

- **E** Exceptional Lie Groups $E_6, E_7, E_8:\
 \begin{array}{c}
 -
 \end{array}$

Q root lattice spanned by simple roots $\{\alpha_1, \ldots, \alpha_n\}$

Cartan matrix $(C_{ij})\ \langle \alpha_i, \alpha_j \rangle = C_{ij} = \begin{cases} 2 & i = j \\ -1 & i \rightarrow j \\ 0 & \end{cases}$
Simply laced groups and root lattices

\(G \) simply-connected **simple-laced** Lie group, e.g.

- A. \(\text{SU}(n+1), \; n \geq 1 \leftrightarrow A_n \)
- D. \(\text{Spin}(2n), \; n \geq 3 \leftrightarrow D_n \)
- E. Exceptional Lie Groups \(E_6, E_7, E_8 \)

Q root lattice spanned by simple roots \(\{\alpha_1, \ldots, \alpha_n\} \)

Maximal torus \((Q \otimes \mathbb{Z} \mathbb{R})/Q \cong T \subset G \sim \mathcal{A}_{T,1} \equiv \mathcal{A}_Q \)

(Conjectured) equivalence (proofed in case \(G = \text{SU}(n) \) (Xu, 2009))

\[
\begin{array}{ccc}
\text{loop group net} & = \mathcal{A}_{G,1} \leftrightarrow \sim & \mathcal{A}_Q \\
\text{for such } G \text{ at level } 1 & & \text{conformal net associated at } Q
\end{array}
\]
Outline

Conformal Nets

Nets on Minkowski half-plane

Standard subspaces

Conformal nets associated to lattices

Semigroup elements
Second quantization unitaries

\(\mathcal{H} \) one-particle space of a bosons (completion of \(L\mathbb{R} \) \(H(\mathbb{R}_+) \) standard subspace localized in \(\mathbb{R}_+ \)

\(\varphi : \mathbb{R} \rightarrow \mathbb{C} \) inner function, then

\[
V_0 = \varphi(P_0) \implies V_0 H(\mathbb{R}_+) \subset H(\mathbb{R}_+), \ [V_0, e^{itP_0}] = 0
\]

\(P_0 \) generator of translation.

By second quantization \(\mathcal{A}(I) = \text{CCR}(H(I))'' \).

\[
V = \Gamma(V_0) \implies V \in \mathcal{E}(\mathcal{A})
\]
More general for n bosons

$$\mathcal{A}_n(\mathbb{R}_+) \cong \mathcal{A}(\mathbb{R}_+) \otimes^n = \text{CCR}(H(\mathbb{R}_+) \oplus \cdots \oplus H(\mathbb{R}_+))$$

Theorem (Prequantized semigroup reducible case (Longo and Witten, 2010))

$V_0 \in \mathcal{E}(H(\mathbb{R}_+) \oplus \cdots \oplus H(\mathbb{R}_+))$, then $V_0 = \varphi_{kl}(P_0)$ matrices of functions such that $\varphi_{kl}(p)$ unitary matrix for almost all $p > 0$, φ_{kl} boundary value of a L^∞ function analytic on the upper half-plane which is symmetric $\varphi_{kl}(p) = \varphi_{kl}(-p)$.

Theorem

$V = \Gamma(V_0) \in \mathcal{E}(\mathcal{A}_n)$ for the second quantization of V_0 given above.
More general for n bosons

$$\mathcal{A}_n(\mathbb{R}_+) \cong \mathcal{A}(\mathbb{R}_+)^{\otimes n} = \text{CCR}(H(\mathbb{R}_+) \oplus \cdots \oplus H(\mathbb{R}_+))$$

Theorem (Prequantized semigroup reducible case (Longo and Witten, 2010))

$V_0 \in \mathcal{E}(H(\mathbb{R}_+) \oplus \cdots \oplus H(\mathbb{R}_+))$, then $V_0 = \varphi_{k\ell}(P_0)$ matrices of functions such that $\varphi_{k\ell}(p)$ unitary matrix for almost all $p > 0$, $\varphi_{k\ell}$ boundary value of a L^∞ function analytic on the upper half-plane which is symmetric $\varphi_{k\ell}(p) = \varphi_{k\ell}(-p)$.

Theorem

$V = \Gamma(V_0) \in \mathcal{E}(\mathcal{A}_n)$ for the second quantization of V_0 given above.
Question

Which elements of the semigroup $\mathcal{E}(\mathcal{A}_n)$ extend to the local extensions by lattices?

$$\mathcal{A}_Q(I) = \mathcal{A}_n(I) \rtimes Q$$

where Q even lattice of rank n
Induction for local extension by free abelian groups

Extension of the endomorphism $\eta = \text{Ad} V$ of $\mathcal{A}_n(\mathbb{R}_+)$ with $V \in \mathcal{E}(\mathcal{A}_n)$ to

$$\mathcal{A}_Q(\mathbb{R}_+) = \mathcal{A}_n(\mathbb{R}_+) \rtimes \beta_i Q$$

β_i localized in \mathbb{R}_+

Assume η and β_i commute up to some cocycle $z_i \in \mathcal{A}_n(\mathbb{R}_+)$

$$z_i \in \text{Hom}(\eta \beta_i, \beta_i \eta) \iff z_i \beta_i(\eta(x)) = \eta(\beta_i(x))z_i \text{ for all } x \in \mathcal{A}_n(\mathbb{R}_+)$$

and the **compatibility condition**

$$z_i \beta_i(z_j) = z_j \beta_j(z_i)$$

then η extends to $\tilde{\eta} = \text{Ad} \tilde{V}$.

$$V \in \mathcal{E}(\mathcal{A}_n) \xrightarrow{\text{extends}} \tilde{V} \in \mathcal{E}(\mathcal{A}_Q)$$
Extension of the endomorphism $\eta = \text{Ad} V$ of $\mathcal{A}_n(\mathbb{R}_+)$ with $V \in \mathcal{E}(\mathcal{A}_n)$ to

$$\mathcal{A}_Q(\mathbb{R}_+) = \mathcal{A}_n(\mathbb{R}_+) \rtimes \beta_i Q$$

β_i localized in \mathbb{R}_+

Assume η and β_i commute up to some cocycle $z_i \in \mathcal{A}_n(\mathbb{R}_+)$

$$z_i \in \text{Hom}(\eta \beta_i, \beta_i \eta) \iff z_i \beta_i(\eta(x)) = \eta(\beta_i(x)) z_i \quad \text{for all } x \in \mathcal{A}_n(\mathbb{R}_+)$$

and the **compatibility condition**

$$z_i \beta_i(z_j) = z_j \beta_j(z_i)$$

then η extends to $\tilde{\eta} = \text{Ad} \tilde{V}$.

$$V \in \mathcal{E}(\mathcal{A}_n) \xrightarrow{\text{extends}} \tilde{V} \in \mathcal{E}(\mathcal{A}_Q)$$
Existence of \(z_i \in \text{Hom}_{\mathcal{A}_n(\mathbb{R}_+)}(\eta/\beta_i, \beta_i \eta) \) with the above properties in our model ensure

\[
V = \Gamma(\varphi_{ik}(P_0)) \in \mathcal{E}(\mathcal{A}_n) \xrightarrow{\text{extends?}} \tilde{V} \in \mathcal{E}(\mathcal{A}_Q)
\]

Restrictions. Such \(z_i \) can be constructed if

- **Algebraic obstruction.** The “inner function matrix” has to be constant on every component of the lattice
- **Analytical obstruction.** The “inner function” need to be Hölder continuous at 0, i.e.

\[
\frac{|1 - \varphi(p)|^2}{|p|} \text{ locally integrable at } p = 0
\]
Existence of \(z_i \in \text{Hom}_{\mathcal{A}_n(\mathbb{R}^+_0)}(\eta \beta_i, \beta_i \eta) \) with the above properties in our model ensure

\[
V = \Gamma(\varphi_{ik}(P_0)) \in \mathcal{E}(\mathcal{A}_n) \overset{\text{extends?}}{\longrightarrow} \tilde{V} \in \mathcal{E}(\mathcal{A}_Q)
\]

Restrictions. Such \(z_i \) can be constructed if

- **Algebraic obstruction.** The “inner function matrix” has to be constant on every component of the lattice
- **Analytical obstruction.** The “inner function” needs to be Hölder continuous at 0, i.e.

\[
\frac{|1 - \varphi(p)|^2}{|p|} \text{ locally integrable at } p = 0
\]
Semigroup elements for lattice models

Existence of $z_i \in \text{Hom}_{\mathcal{A}_n}(\mathbb{R}_+, (\eta/\beta_i, \beta_i \eta))$ with the above properties in our model ensure

$$V = \Gamma(\varphi_{ik}(P_0)) \in \mathcal{E}(\mathcal{A}_n) \xrightarrow{\text{extends?}} \tilde{V} \in \mathcal{E}(\mathcal{A}_Q)$$

Restrictions. Such z_i can be constructed if

- **Algebraic obstruction.** The “inner function matrix” has to be constant on every component of the lattice
- **Analytical obstruction.** The “inner function” need to be Hölder continuous at 0, i.e.

 $$\frac{|1 - \varphi(p)|^2}{|p|} \text{ locally integrable at } p = 0$$
Results

Theorem

Let \mathcal{A} be conformal net of the family

\mathcal{A}_Q associated to an even irreducible lattice Q

$\mathcal{A}_{G,1}$ for $G = SU(n)$ (G simple, simply connected, simple-laced)

\mathcal{A} and φ Hölder cont. $\rightarrow V \in \mathcal{E}(\mathcal{A}) \rightarrow$ local net \mathcal{A}_V on Minkowski half-plane

Further

U inner symmetry $V \in \mathcal{E}(\mathcal{A}) \implies Vu \in \mathcal{E}(\mathcal{A})$

$V_i \in \mathcal{E}(\mathcal{A}_i) \implies V_1 \otimes \ldots \otimes V_n \in \mathcal{E}(\mathcal{A}_1 \otimes \ldots \otimes \mathcal{A}_n)$
Theorem

Let \mathcal{A} be conformal net of the family

- \mathcal{A}_Q associated to an even irreducible lattice Q
- $\mathcal{A}_{G,1}$ for $G = SU(n)$ (G simple, simply connected, simple-laced)

\mathcal{A} and φ Hölder cont. $\quad \xrightarrow[]{} \quad V \in \mathcal{E}(\mathcal{A}) \quad \xrightarrow[]{} \quad$ local net \mathcal{A}_V on Minkowski half-plane

Further

- U inner symmetry $V \in \mathcal{E}(\mathcal{A}) \implies VU \in \mathcal{E}(\mathcal{A})$
- $V_i \in \mathcal{E}(\mathcal{A}_i) \implies V_1 \otimes \ldots \otimes V_n \in \mathcal{E}(\mathcal{A}_1 \otimes \ldots \otimes \mathcal{A}_n)$
Other constructions using $\mathcal{E}(\mathcal{A})$

Models in 2D Minkowski space

If there is a one-parameter group V_t with $V_t \in \mathcal{E}(\mathcal{A})$ for $t \geq 0$ with **negative** generator

\leadsto local Poincaré covariant net on 2D Minkowski space (Longo).

\leadsto wedge-local Poincaré covariant net on 2D Minkowski space with non-trivial scattering (Tanimoto).

Example

For \mathcal{A} the net of free boson ($U(1)$-current) and the inner function $\varphi_t(p) = e^{-it/P}$ we have $V_t = \Gamma(\varphi_t(P_0))$ like above and the construction yields the free massive scalar boson on 2D Minkowski space.

- Works for all “free field construction”
- But because of the mentioned Hölder continuity this does not work for extensions by lattices.
Other constructions using $\mathcal{E}(\mathcal{A})$

Models in 2D Minkowski space

If there is a one-parameter group V_t with $V_t \in \mathcal{E}(\mathcal{A})$ for $t \geq 0$ with **negative** generator

\leadsto local Poincaré covariant net on 2D Minkowski space (Longo).

\leadsto wedge-local Poincaré covariant net on 2D Minkowski space with non-trivial scattering (Tanimoto).

Example

For \mathcal{A} the net of free boson ($\mathbb{U}(1)$-current) and the inner function $\varphi_t(p) = e^{-it/P}$ we have $V_t = \Gamma(\varphi_t(P_0))$ like above and the construction yields the free massive scalar boson on 2D Minkowski space.

- Works for all “free field construction”
- But because of the mentioned Hölder continuity this does not work for extensions by lattices.
Other constructions using $\mathcal{E}(\mathcal{A})$

Models in 2D Minkowski space

If there is a one-parameter group V_t with $V_t \in \mathcal{E}(\mathcal{A})$ for $t \geq 0$ with \textbf{negative} generator

\rightsquigarrow local Poincaré covariant net on 2D Minkowski space (Longo).

\rightsquigarrow wedge-local Poincaré covariant net on 2D Minkowski space with non-trivial scattering (Tanimoto).

Example

For \mathcal{A} the net of free boson ($U(1)$-current) and the inner function $\varphi_t(p) = e^{-it/P}$ we have $V_t = \Gamma(\varphi_t(P_0))$ like above and the construction yields the free massive scalar boson on 2D Minkowski space.

- Works for all “free field construction”
- But because of the mentioned Hölder continuity this does not work for extensions by lattices.
Extensions by the lattice \mathbb{Z}^n (not even!) yields Fermi (=twisted local) net $\mathcal{F} = \text{Fer}_\mathbb{C} \otimes^n$. Even part $\mathcal{A} := \mathcal{F}_{\mathbb{Z}^2}$ local conformal net, i.e.

$$\text{Fer}_\mathbb{C} \otimes^n = \mathcal{A}_{\mathbb{Z}^n}$$

But $\text{Fer}_\mathbb{C}$ can be realized on antisymmetric Fock space (CAR). Using second quantization...

...we have two methods to construct elements in $\mathcal{E}(\mathcal{F})$ (and $\mathcal{E}(\mathcal{A})$).

- $\mathcal{E}(\mathcal{F})_{\text{CCR}}$: constructed as extensions by the lattice
- $\mathcal{E}(\mathcal{F})_{\text{CAR}}$: second quantization unitaries in the CAR algebra (analogous like the CCR case).

$$\mathcal{E}(\mathcal{F})_{\text{CAR}} \cap \mathcal{E}(\mathcal{F})_{\text{CCR}} = \text{trivial elements}.$$
Extensions by the lattice \mathbb{Z}^n (not even!) yields Fermi (=twisted local) net $\mathcal{F} = \text{Fer}_C^\otimes n$. Even part $\mathcal{A} := \mathcal{F}^{\mathbb{Z}_2}$ local conformal net, i.e.

$$\text{Fer}_C^\otimes n = \mathcal{A}_{\mathbb{Z}^n}$$

But Fer_C can be realized on antisymmetric Fock space (CAR). Using second quantization.

...we have two methods to construct elements in $\mathcal{E}(\mathcal{F})$ (and $\mathcal{E}(\mathcal{A})$).

- $\mathcal{E}(\mathcal{F})_{\text{CCR}}$: constructed as extensions by the lattice
- $\mathcal{E}(\mathcal{F})_{\text{CAR}}$: second quantization unitaries in the CAR algebra (analogous like the CCR case).

$\mathcal{E}(\mathcal{F})_{\text{CAR}} \cap \mathcal{E}(\mathcal{F})_{\text{CCR}} = \text{trivial elements.}$
Extensions by the lattice \mathbb{Z}^n (not even!) yields Fermi (=twisted local) net $\mathcal{F} = \text{Fer}_C^\otimes n$. Even part $\mathcal{A} := \mathcal{F}^{\mathbb{Z}_2}$ local conformal net, i.e.

$$\text{Fer}_C^\otimes n = \mathcal{A}_{\mathbb{Z}^n}$$

But Fer_C can be realized on antisymmetric Fock space (CAR). Using second quantization. . .

. . . we have two methods to construct elements in $\mathcal{E}(\mathcal{F})$ (and $\mathcal{E}(\mathcal{A})$).

- $\mathcal{E}(\mathcal{F})_{\text{CCR}}$: constructed as extensions by the lattice
- $\mathcal{E}(\mathcal{F})_{\text{CAR}}$: second quantization unitaries in the CAR algebra (analogous like the CCR case).

$\mathcal{E}(\mathcal{F})_{\text{CAR}} \cap \mathcal{E}(\mathcal{F})_{\text{CCR}} = \text{trivial elements.}$
Boson-Fermion correspondence

Extensions by the lattice \mathbb{Z}^n (not even!) yields Fermi (\(\equiv\)twisted local) net $\mathcal{F} = \text{Fer}_\mathbb{C}^\otimes n$. Even part $\mathcal{A} := \mathcal{F}_{\mathbb{Z}^2}$ local conformal net, i.e.

$$\text{Fer}_\mathbb{C}^\otimes n = \mathcal{A}_{\mathbb{Z}^n}$$

But $\text{Fer}_\mathbb{C}$ can be realized on antisymmetric Fock space (CAR). Using second quantization...

...we have two methods to construct elements in $\mathcal{E}(\mathcal{F})$ (and $\mathcal{E}(\mathcal{A})$).

- $\mathcal{E}(\mathcal{F})_{\text{CCR}}$: constructed as extensions by the lattice
- $\mathcal{E}(\mathcal{F})_{\text{CAR}}$: second quantization unitaries in the CAR algebra (analogous like the CCR case).

$$\mathcal{E}(\mathcal{F})_{\text{CAR}} \cap \mathcal{E}(\mathcal{F})_{\text{CCR}} = \text{trivial elements.}$$
Extensions by the lattice \mathbb{Z}^n (not even!) yields Fermi (\equivtwisted local) net $\mathcal{F} = \text{Fer}_C \otimes^n$. Even part $\mathcal{A} := \mathcal{F}^\mathbb{Z}_2$ local conformal net, i.e.

$$\text{Fer}_C \otimes^n = \mathcal{A}^\mathbb{Z}_n$$

But Fer_C can be realized on antisymmetric Fock space (CAR). Using second quantization...

...we have two methods to construct elements in $\mathcal{E}(\mathcal{F})$ (and $\mathcal{E}(\mathcal{A})$).

- $\mathcal{E}(\mathcal{F})_{\text{CCR}}$: constructed as extensions by the lattice
- $\mathcal{E}(\mathcal{F})_{\text{CAR}}$: second quantization unitaries in the CAR algebra (analogous like the CCR case).

$$\mathcal{E}(\mathcal{F})_{\text{CAR}} \cap \mathcal{E}(\mathcal{F})_{\text{CCR}} = \text{trivial elements}.$$
Extensions by the lattice \mathbb{Z}^n (not even!) yields Fermi (=twisted local) net $\mathcal{F} = \text{Fer}_C^\otimes n$. Even part $\mathcal{A} := \mathcal{F}^\mathbb{Z}_2$ local conformal net, i.e.

$$\text{Fer}_C^\otimes n = \mathcal{A}_{\mathbb{Z}^n}$$

But Fer_C can be realized on antisymmetric Fock space (CAR). Using second quantization.

...we have two methods to construct elements in $\mathcal{E}(\mathcal{F})$ (and $\mathcal{E}(\mathcal{A})$).

- $\mathcal{E}(\mathcal{F})_{\text{CCR}}$: constructed as extensions by the lattice
- $\mathcal{E}(\mathcal{F})_{\text{CAR}}$: second quantization unitaries in the CAR algebra (analogous like the CCR case).

$$\mathcal{E}(\mathcal{F})_{\text{CAR}} \cap \mathcal{E}(\mathcal{F})_{\text{CCR}} = \text{trivial elements.}$$
Summary

We have constructed

▶ Elements of the semigroup $E(A)$ for a large class of rational conformal field theories is found

→ New models of boundary quantum field theory.

Open questions

▶ Loop group nets at higher level (Coset construction/Orbifold)
▶ Restriction of a net of free fermions (semigroup elements by second quantization) should give more examples.
▶ Construction of 1+1D massive models one-parameter semigroup. Until yet just examples from free field construction.
Merci beaucoup!!

Semigroup elements associated to conformal nets and boundary quantum field theory

Marcel Bischoff
http://www.mat.uniroma2.it/~bischoff

Dipartimento di Matematica
Università degli Studi di Roma Tor Vergata

Meeting of GDRE GREFI-GENCO
Institut Henri Poincaré
Paris, 1 June 2011

