Kasparov's operator K-theory and applications 4. Lafforgue's approach

Georges Skandalis

Université Paris-Diderot Paris 7 Institut de Mathématiques de Jussieu

NCGOA Vanderbilt University Nashville - May 2008

Lafforgue's approach

3 steps

- Construction of a KK-theory for Banach algebras, and main properties.
- e Equality $\gamma=1$ in $KK^{ban}_G(\mathbb{C},\mathbb{C})$ in many cases. Almost all. The first two steps establish the Bost conjecture and some variants.
- 3 Construction of a suitable spectral dense subalgebra.

B-pairs

B Bancah algebra.

Right (resp. left) Banach B-module: Banach space E endowed with a right (resp. left) action of B such that, for all $x \in E$ and $a \in B$, we have $\|xa\| \le \|x\| \|a\|$ (resp. $\|ax\| \le \|a\| \|x\|$).

B-pair:

- left Banach B-module $E^{<}$,
- right Banach B-module $E^>$,
- bilinear map $\langle , \rangle : E^{<} \times E^{>} \rightarrow B$

satisfying: $\forall x \in E^>$, $\xi \in E^<$, the map $\eta \mapsto \langle \eta, x \rangle$ (resp. $y \mapsto \langle \xi, y \rangle$) left (resp. right) *B*-linear and $\|\langle \xi, x \rangle\| \leq \|\xi\| \|x\|$. Often $E^<$ not specified: take $E^< = (E^>)^* = \mathcal{L}(E, B)$.

Morphisms of B-pairs E

- Morphism from $E = (E^{<}, E^{>})$ to $F = (F^{<}, F^{>})$ couple $f = (f^{<}, f^{>})$ where $f^{<}: F^{<} \to E^{<}$ and $f^{>}: E^{>} \to F^{>}$ \mathbb{C} -linear, left (resp. right) B-linear, continuous; $f^{>}$ and $f^{<}$ ajoint: $\langle \eta, f^{>}(x) \rangle = \langle f^{<}(\eta), x \rangle$.
- $\mathcal{L}(E, F)$ the Banach space of morphisms from E to F (norm $(f^{<}, f^{>}) \mapsto \sup(\|f^{<}\|, \|f^{>}\|)$).
- $f \in \mathcal{L}(E, F)$ and $g \in \mathcal{L}(F, G)$ define morphism $gf = (f^{<} \circ g^{<}, g^{>} \circ f^{>}) \in \mathcal{L}(E, F)$.
- $\mathcal{L}(E) = \mathcal{L}(E, E)$ Banach algebra.
- Let $y \in F^{>}$ and $\xi \in E^{<}$. We note $\theta_{y,\xi} \in \mathcal{L}(E,F)$ (or $|y\rangle\langle\xi|$) the morphism given by
 - $F^{<} \ni \eta \mapsto \langle \eta, y \rangle \xi \in E^{<}$
 - \triangleright $E^{>} \ni x \mapsto y \langle \xi, x \rangle \in F^{>}$.
- $\mathcal{K}(E,F)$ closed vector span in $\mathcal{L}(E,F)$ of morphisms $\theta_{y,\xi}$.

Definition of the Banach KK-theory

A,B be Banach algebras. Cycle for $KK^{\mathrm{ban}}(A,B)$: triple (E,π,f) where

- E is a $\mathbb{Z}/2\mathbb{Z}$ -graded B-pair,
- $\pi: A \to \mathcal{L}(E)^{(0)}$ is a homomorphism
- $f \in \mathcal{L}(E)^{(1)}$

such that
$$f\pi(a) - \pi(a)f \in \mathcal{K}(E)$$
, $(f^2 - 1)\pi(a) \in \mathcal{K}(E)$ $(a \in A)$.

Sum of cycles and homotopy defined exactly as for Hilbert modules. $KK^{\text{ban}}(A, B)$ set of homotopy classes of cycles. Abelian group.

Bifunctor: contravariant in A, covariant in B.

Action on K-theory

- $KK^{\mathrm{ban}}(M_n(A), B)$ isomorphic $KK^{\mathrm{ban}}(A, B)$.
- Idempotent $p \in A$, homomorphism $i_p : \mathbb{C} \to A$ setting $i_p(\lambda) = \lambda p$.
- bilinear map $\varphi: K_0(A) \times KK^{\mathrm{ban}}(A,B) \to KK^{\mathrm{ban}}(\mathbb{C},B)$ $(p,x) \mapsto (i_p)^*(x)$. Can be constructed when A not unital.
- $K_0(A) \simeq KK^{\mathrm{ban}}(\mathbb{C}, A) \quad (x \mapsto \varphi(x, 1_A)).$
- Banach-KK-theory acts on the K-theory.

The equivariant case

G locally compact group acting on A and B. Define $KK_G^{\mathrm{ban}}(A,B)$ same way as the corresponding Kasparov group.

A, B C^* -algebras, natural homomorphism $KK_G(A, B) \to KK_G^{\mathrm{ban}}(A, B)$.

Morphism j_G

Morphism $j_G^r: KK_G^{\mathrm{ban}}(A,B) \to KK^{\mathrm{ban}}(A\rtimes_r G,B\rtimes_r G)$ impossible. Need Banach algebras crossed product, extending reduced crossed product.

Natural crossed product for Banach algebras: $L^1(G; A)$. Morphism $j_G^{L^1}: KK_G^{\text{ban}}(A, B) \to KK^{\text{ban}}(L^1(G; A), L^1(G; B))$.

Using $j_G^{L^1}$ + equality $\gamma=1$ in $KK_G^{\mathrm{ban}}(\mathbb{C},\mathbb{C})\Rightarrow$ BC conjecture in $L^1(G)$.

 $L^1(G) \to C_r^*(G)$ isomorphism in K-theory? No general result (Bost).

Lafforgue: may perform other Banach crossed product.

Definition

Algebra norm N on $C_c(G)$ is *unconditional* if N(f) = N(|f|) $(f \in C_c(G))$.

Unconditional norms and crossed products

N unconditional norm \to natural norm on $C_c(G; A)$: $f \mapsto N(\| \|_A \circ f)$. Completion: Banach algebra $A \rtimes_N G$.

Same construction for B-pairs: $E \rtimes_N G$.

Morphism $j_G^N : KK_G^{\text{ban}}(A, B) \to KK^{\text{ban}}(A \rtimes_N G, B \rtimes_N G)$.

Conclusion of first step

Baum-Connes' conjecture for G with element $\gamma \in KK_G(\mathbb{C},\mathbb{C})$:

- Prove that $\gamma = 1$ in $KK_G^{\mathrm{ban}}(\mathbb{C}, \mathbb{C})$.
- ② Construct unconditional completion of $C_c(G)$ with same K-theory as $C_r^*(G)$.

Non isometric representations of G

Equality $\gamma=1$ proved in slight generalization $\mathit{KK}^{\mathrm{ban}}_{\mathit{G}}(\mathbb{C},\mathbb{C}).$

 ℓ length function on G: ℓ : $G \to \mathbb{R}_+$ (continuous) such that $\ell(1) = 0$ and $\ell(xy) \le \ell(x) + \ell(y)$ for all $x, y \in G$.

 $KK_{G,\ell}^{\mathrm{ban}}(A,B)$ same way as $KK_G^{\mathrm{ban}}(A,B)$ action of G in the B-pairs not isometric but is *controlled by* ℓ *i.e.* continuous and $\|x \cdot \xi\| \leq \exp(\ell(x))\|\xi\|$.

 ℓ length function, N unconditional norm.

- Put $N': f \mapsto N(e^{\ell}f)$: unconditional norm.
- $j_G^{N,\ell}: KK_{G,\ell}^{\mathrm{ban}}(A,B) \to KK^{\mathrm{ban}}(A \rtimes_{N'} G, B \rtimes_N G).$

 ℓ length function. For $s \in \mathbb{R}_+^*$, define N_s unconditional norm $f \mapsto N(e^{s\ell}f)$. Subalgebra $\bigcup_{s \in \mathbb{R}_+^*} A \rtimes_{N_s} G$ of $A \rtimes_N G$ same K-theory as $A \rtimes_N G$.

 $\gamma=1$ in $KK^{\mathrm{ban}}_{G,s\ell}(\mathbb{C},\mathbb{C})$ for all s, implies γ identity in $K_0(A\rtimes_N G)$.

Homotopy between γ and 1

Two different cases:

- "geometric": complete riemannian manifold with nonpositive sectional curvature; real Lie groups and closed subgroups.
- "Combinatoric": "strongly bolic" metric space; p-adic Lie groups and closed subgroups.

Concentrate here to the combinatoric case: case of buildings of type \widetilde{A}_2 .

Recall: Julg Vallette γ element for A_2 buildings

G acts properly, isometrically on $\widetilde{A_2}$ building X.

$$X^{(i)}$$
 (0 $\leq i \leq$ 2) set of faces of dimension i in X .

$$(e_x)_{x\in X^{(0)}}$$
 canonical Hilbert basis of $H_0=\ell^2(X^{(0)})$.

$$H_1 \subset \Lambda^2(H_0)$$
 vector span of $e_{\sigma} = e_x \wedge e_y$, $\sigma = (x, y) \in X^{(1)}$
 $H_2 \subset \Lambda^3(H_0)$ vector span of $e_{\sigma} = e_x \wedge e_y \wedge e_z$, $\sigma = (x, y, z) \in X^{(2)}$.

- $\bullet \ H = (H_0 \oplus H_2) \oplus H_1.$
- $F = F_a = T_a + T_a^*$ depends on an origin $a \in X^{(0)}$.

Where
$$T_{\mathsf{a}}(e_\sigma) = \mathsf{v}_{\mathsf{a},\sigma} \wedge e_\sigma$$

 v_a : unit vector which points from σ to a.

Abstract results: elliptic complexes

G locally compact group, length function ℓ , A,B Banach algebras, E a $\mathbb{Z}/2\mathbb{Z}$ -graded B-pair with actions of A and G-action "controlled by ℓ ".

 $D = \{ S \in \mathcal{L}(E); [S, a] \in \mathcal{K}(E), g.S - S \in \mathcal{K}(E); g \mapsto g.S \text{ continuous} \}.$ $F \in D^{(1)} \text{ with } \mathrm{id}_E - F^2 \in \mathcal{K}(E): (E, F) \in KK_{G, \ell}^{\mathrm{ban}}(A, B).$

Lemma

Let $S \in D^{(1)}$ such that $S^2 \in \mathcal{K}(E)$ and $\exists T \in D^{(1)}$ with $\mathrm{id}_E - (TS + ST) \in \mathcal{K}(E)$ ((E, S) - or S elliptic complex).

- There exists such a T with $T^2 \in \mathcal{K}(E)$. Then $(E, S + T) \in KK_{G,\ell}^{\mathrm{ban}}(A, B)$.
- ② The class of (E, S + T) in $KK_{G,\ell}^{\mathrm{ban}}(A, B)$ does not depend on T.

Elliptic complexes define KK-elements.

- **1** TST is OK.
- $T \in D^{(1)}$; $ST + TS \mathrm{id}_E \in \mathcal{K}(E)$ is affine.

Abstract results: Elliptic complexes (2)

Lemma

 $S, T \in D^{(1)}$ such that $S^2 \in \mathcal{K}(E)$ and $T^2 \in \mathcal{K}(E)$. Assume that the spectrum of S + T in $D/\mathcal{K}(E)$ is disjoint from \mathbb{R}_- .

- S and T are elliptic complexes.
- **2** S and T define the same element of $KK_{G,\ell}^{\mathrm{ban}}(A,B)$.
- In $D/\mathcal{K}(E)$, (ST + TS) commutes with S and T. $T(ST + TS)^{-1}$ and $S(ST + TS)^{-1}$ 'quasi-inverses'.
- ② We may define a logarithm of ST + TS. The desired homotopy is $S(ST + TS)^{-t} + T(ST + TS)^{t-1}$.

Abstract results: Elliptic complexes (3)

Lemma

 $S,T\in D^{(1)}$. Assume that S commutes exactly to A and to G, that $S^2=0$ and $T^2\in \mathcal{K}(E)$, $ST+TS=\mathrm{id}_E$. Then the class of (E,S+T) in $KK^{\mathrm{ban}}_{G,\ell}(A,B)$ is zero.

May assume $T^2 = 0$ (replace T by TST). $S(E) \subset E$ invariant by A and G.

Decomposition $E = S(E) \oplus T(E)$, matrix of these elements is of the form $\begin{pmatrix} c_{1,1} & c_{1,2} \\ 0 & c_{2,2} \end{pmatrix}$. Note that $c_{1,2} \in \mathcal{K}(E)$ since $T \in D$.

Change these actions through a homotopy $\begin{pmatrix} c_{1,1} & tc_{1,2} \\ 0 & c_{2,2} \end{pmatrix}$ $(t \in [0,1])$. At t=0. S+T is degenerate.

Homotopy

$$\varphi = \varphi_a : X \to \mathbb{R}_+ : \varphi(f)$$
 distance to a of most remote point of f .

Put
$$\ell(g) = \varphi(g(a))$$
.

It is a length function: indeed

$$\ell(gh) = d(gh(a), a) \le d(gh(a), g(a)) + d(g(a), a) = d(h(a), a) + d(g(a), a)$$
 (g isometry).

Theorem

For all s > 0, the images of γ and 1 in $KK_{G,s\ell}^{ban}(\mathbb{C},\mathbb{C})$ coincide.

Homotopy (2)

 E_p Banach space, graded by 0,1,2: replace ℓ^2 norm by ℓ^p norm in construction of H: ℓ^p basis e_{σ} .

Consider
$$\partial: E_p \to E_p$$
 given by $\partial(e_x) = 0$, $\partial(e_x \wedge e_y) = e_y - e_x$ and $\partial(e_x \wedge e_y \wedge e_z) = (e_y \wedge e_z) - (e_x \wedge e_z) + (e_x \wedge e_y)$ (for all $(x, y, z) \in X^{(2)}$).

For t > 0, let A_t multiplication by $e^{t\varphi}$ (unbounded) $\partial_t = A_t \circ \partial \circ A_t^{-1}$ (bounded).

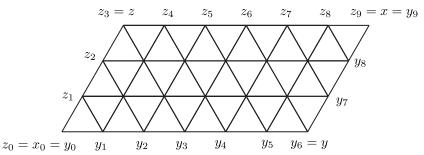
 $\partial_t - g \cdot \partial_t$ is compact in every E_p ($\varphi_a - \varphi_{ga}$ almost constant at infinity).

Proposition

- For all s > 0, $\partial_s : E_1 \to E_1$ elliptic complex.
- ② There exists s > 0 such that for all $p \in [1, 2]$, $\partial_s : E_p \to E_p$ elliptic complex.

Construction of a quasi-inverse

Let $x \in X^{(0)}$. Points x and $a = x_0$ determine a parallelogram x_0, y, x, z in the building X.



We set
$$T_0(e_x) = (1 - \frac{j}{n}) \sum_{k=1}^n e_{z_{k-1}} \wedge e_{z_k} + \frac{j}{n} \sum_{k=1}^n e_{y_{k-1}} \wedge e_{y_k}$$
 where $d(x,y) = j (=6)$ and $d(x,z) = n - j (=3)$.

Clearly
$$\partial \circ T_0(e_x) = e_x - e_0$$
.

Construction of a quasi-inverse (2)

In order to define $T_0(e_x \wedge e_y)$, one uses the following lemma:

Lemma

 $e_x \wedge e_y - T_0 \partial (e_x \wedge e_y)$ is in the image of ∂ .

Restrict to the parallelogram containing $\{x_0, x, y\}$. ∂ restricted to vertices, edges and faces of this parallelogram is exact in dimensions 1 and 2.

 $T_0(e_x \wedge e_y)$ is the element ξ such that $\partial(\xi) = e_x \wedge e_y - T_0 \partial(e_x \wedge e_y)$ decribed above.

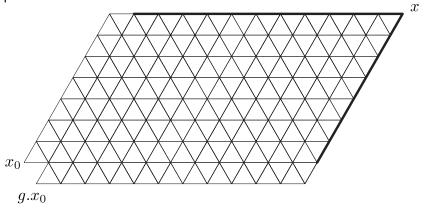
The desired quasi-inverse of ∂_s is $T_s = A_s \circ T_0 \circ A_s^{-1}$.

- For all s > 0, T_s is continuous from E_1 into E_1 .
- ② There exists t > 0 such that, for all $p \in [1,2]$, T_t is continuous from E_p in E_p and, for all $g \in G$, $T_t g$. $T_t \in \mathcal{K}(E_p)$.
- $\textbf{ § For all } s>0 \text{ and } g\in G, \ T_s-g.T_s\in \mathcal{K}(E_1).$

- Check $||T_s(e_x)||$ and $||T_s(e_x \wedge e_y)||$ bounded on X. Faces appearing located in parallelogram above; their number grows polynomially with the distance from x to x_0 ; coefficients appearing bounded. Conjugation by A_s multiplies by function with exponential decay.
- ② In $T_s^*(e_x \wedge e_y)$ appear all points z such that x,y is on the path from z to x_0 . The coefficients appearing have exponential decay $\exp(-s\varphi(z))$; their number z increases exponentially. Taking s large enough, one may control the ℓ^1 norm of $T_s^*(e_x \wedge e_y)$ and that of $T_s^*(e_x \wedge e_y \wedge e_z)$. It follows that T_s^* is continuous from E_1 into E_1 , whence T_s is continuous from E_∞ into E_∞ . As it is continuous from E_1 into E_1 , it is continuous from E_p into E_p for all p (by interpolation).

Similar arguments show that $T_s - g.T_s \in \mathcal{K}(E_p)$ for all $g \in G$.

3 Check that when $\{x,y\}$ goes to infinity, $\|(T_s-g.T_s)(e_x)\|$ and $\|(T_s-g.T_s)(e_x \wedge e_y)\|$ go to 0. $g.T_0$ is T_0 with x_0 replaced by $g.x_0$. For x far from x_0 , from x to x_0 and from x to $g.x_0$ used in construction of T_0 coincide near x. Since we conjugate by A_s only points near x count.



Homotopy: end

For s small, ∂_s almost invariant and we can use abstract results above to show that (E_1, ∂_s) defines element 1. (Use E_1^s : where norm is changed - with ∂).

For s large, ∂_s almost quasi-inverse of T_a appearing in γ and we can use abstract results above to show that (E_2, ∂_s) defines element γ .

These elements are homotopic!!

The last step... Case of Lie groups

G (real or p-adic) reductive Lie group: slight modification of Schwarz space (Harish-Chandra algebra) *spectral unconditional completion* of $C_c(G)$.

In this way, we get more direct proof of results of Wassermann (real case) and a generalization of Baum, Higson and Plymen (p-adic case).

Property (RD) Haagerup-Jolissaint

G discrete group ℓ length function on G. If G is finitely generated, may take word length.

$$H^{\infty}(G,\ell)$$
 vector space functions $f:G\to\mathbb{C}$ such that, for all $p\in\mathbb{R}_+$, $\sum_{x\in G}\ell(x)^p|f(x)|^2<\infty$. *Unconditional*.

Theorem (Haagerup)

G finitely generated free group. $H^{\infty}(G)$ subalgebra of $C_r^*(G)$ stable under holomorphic functional calculus (spectral). In particular, inclusion $H^{\infty}(G) \to C_r^*(G)$ induces K-theory isomorphism.

Jolissaint:

Definition

Fnitely generated group G property (RD) if $H^{\infty}(G) \subset C_r^*(G)$.

Then $H^{\infty}(G)$ spectral subalgebra of $C_r^*(G)$.

Groups with property (RD)

Jolissaint: many groups behaving like free groups (e.g. cocompact subgroups of simple real Lie groups of rank 1) have property (RD).

De la Harpe: Gromov's hyperbolic groups.

Ramagge, Robertson and Steger: discrete groups acting properly with compact quotient on \widetilde{A}_2 buildings (e.g. discrete subgroups of $SL_3(\mathbb{Q}_p)$).

Lafforgue adapts proof of Ramagge, Robertson and Steger to the case of cocompact subgroups of $SL_3(\mathbb{R})$ and $SL_3(\mathbb{C})$.

Finally, these results extended by M. Talbi and I. Chaterji so to contain also the quaternionic case and products of above groups.