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Abstract. We review the theory of homogeneous splines and their relationship
to special rational splines considered by J. Sdnchez—Reyes and independently
by P. de Casteljau who called them focal splines. Applying an appropriate
duality, we transform focal splines into a remarkable class of rational curves
with rational offsets. We investigate geometric properties of these dual focal
splines, and discuss applications to curve design problems.

1. Introduction

In this paper we discuss an interesting connection between trigonometric splines and
a class of rational splines introduced by J. Sanchez-Reyes [29,30] and independently
by P. de Casteljau [2], who called them focal splines. The properties of homogeneous
and trigonometric splines (see Sects. 2 and 3) suggest the study of a class of rational
spline curves which generalize the classical NURBS curves. In Sect. 4 we show
that focal splines are contained in this class of rational splines, and that they can
be viewed as graphs of trigonometric splines. Moreover, a special polarity map
transforms focal splines into dual focal splines consisting of a remarkable class
of rational curves whose offset curves are also rational (Sect. 5). We finish the
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Fig. 1. A knot polygon.

paper with some examples and a discussion of potential applications. A detailed
description of the use of dual focal splines in the design of cam profiles is given in

[22].

2. Homogeneous Splines

In this section we briefly review the theory of homogeneous splines, cf. [12,13,35].
Let T := {ti}fion"i'l be a knot sequence consisting of nonzero vectors in IR?. Each
knot ¢; is characterized by its polar angle 6; and its polar radius p; > 0. We assume
that the sequence {#6; fion"i'l is nondecreasing with 0 < ;4,41 — 6; < 7, and that
t; =t; whenever 6; = 6;. The polygon connecting the vertices ¢; will be called the
knot polygon. It may wind around the origin more than once, but in such a way
that any k + 2 consecutive vertices define a turning angle less than =, see Fig. 1.
Given two linearly independent vectors vy, vs, every v € IR? is uniquely repre-

sented as v = byvy + byvy with

d(v,v2) _d(v1,v)

by = 5 =
! d(vl,vz)’ 2 d(’[)l,’l)g)7

where d(vy,vy) is the determinant of the matrix whose columns are the vectors vy
and ve. The numbers by, by are the coordinates of v with respect to vy, vs, which
reduce to the usual coordinates if t; = (1,y;) and t = (1,y). It will be convenient to
introduce the wedges [v1, v2] := {b1v1+bva, by, by > 0}, [v1,v2) 1= {b1v1 +bava, by >
0,5y > 0}, etc., as counterparts of real intervals.

The normalized homogeneous B-splines {NF}"_, of degree k are defined by the
recurrence

d(vvti) r—l(v) d(ti+r+1’v) N.T_l(v) r=1

N7 (v) i = ————2_N!
() d(tipr ti) ' d(tigrsr,tivr)

1

k(21



where the lowest-degree B-splines are given by

0 L 1, for v € [ti,tH_l)
Ni(v) = {0, otherwise.

For a knot polygon that winds around the origin more than one complete rotation,
some vectors v belong to more than one wedge [t;,#;+1). Thus in using recurrence
(2.1), it is necessary to know which wedge to consider. A way to formalize this is
to express vectors in terms of polar coordinates with polar angles varying from a
starting value, say 0, to the total rotational angle of the knot polygon.

The functions N¥ are piecewise homogeneous polynomials of degree k supported
on [ti,tivk+1]- They are analogs of the classical polynomial B-splines. Also known
as truncated power functions or cone splines, these functions were introduced by
Dahmen [3] (see also [21]).

A homogeneous spline curve s with control points Dy, ..., D, in R? is defined

by
s(v) = ZDiNik(v). (2.2)

One may also consider homogeneous spline curves to be defined in the projectively
extended Euclidean d-space P? by considering the control points D; as points in
P¢. 1t is customary to express a point X in P? in terms of homogeneous Carte-
sian coordinates X = (Xy,...,X4) with the convention that points at infinity are
characterized by Xg = 0. For each : = 0,...,n, we suppose that the homogeneous
representation of the control point D; is the vector D; = (DY, ..., D%).

Note that (2.2) indeed represents a curve in P?¢, since by homogeneity of the
basis functions, the set {s(Av), A > 0} represents a single point in P¢. This means
that it suffices to evaluate s(v) for v on the knot polygon. To draw the curve, we
sample the polygon and thereby always know which sheet of the domain we are on.

If the weights DY are positive, the control points can be connected by affine line
segments, and we obtain the usual affine control polygon. Instead of weights, we
can use frame points as geometric input. These are the points with homogeneous
coordinate vectors F; := D; + D;41, ©+ = 0,...,n — 1. The frame points may
be used to define a projective control polygon which consists of those segments of
the projective lines D;D;yy containing F;, see [20,23]. For positive weights, the
projective control polygon coincides with the affine control polygon.

From the homogeneous piecewise polynomial representation, it is clear that the
curves (2.2) are piecewise rational. Introducing the cumulative arc length of the
knot polygon as a parameter, we see that the curve representation is generally only
C°. However, with respect to the polar angle of the parameter domain, the curve
is C*=" at a knot with multiplicity . Therefore, in standard CAGD terminology
[4], homogeneous spline curves are (special) rational geometric splines. When the
knot polygon lies on a line, we get the familiar NURBS curves.



It is known [34,35] that if ¢; < ¢t;4; and j <¢ < j 4+ k, then the coefficient D;
is given by

D; = Sj(tit1,-- - titk), (2.3)
where Sj(vy,...,vg) is the (homogeneous) polar form of s restricted to [t;,tj41),
ie., Sj is the unique symmetric multi-linear function such that S;(v,...,v) = s(v)

for all v € [t;,tj41). This immediately implies the following de Boor algorithm:
Given v € [t;,tj4+1), let

d(ti-l-k-l-l—rvv) DET_—ll] d(vvtl) ZDET—I]7

d(titk+1—r,ti) d(titk+1—r.ti)

where DEO] :=D;, t=j—k,...,j. Then s(v) = ng].
Another consequence is an algorithm for inserting a knot ¢ € [¢;.%;41) into the

pll .= j—k+r<i<j, (24)

spline s. The new coefficients Cy,...,C,4+1 of s with respect to the refined knot
sequence T'U {t} are given by
D;, 0<i<j—k
J— d(t;ti) 3 d(tz ,t) . : . -
Cl - d(tiqgr,ts) ¢ + d(ti:_kk,ti)Dl—la J k< < J (25)
D;_q, j<i<n+l.

For positive weights, the factors in (2.5) are nonnegative, and therefore knot in-
sertion is a corner cutting algorithm. Hence, the curve (2.2) satisfies the variation
diminishing property with respect to the control polygon. This is true for general
weights in a projective sense as described in [20].

In curve design with open curves we usually use a knot vector with (k4 1)-fold
knots at the endpoints of a given interval [a,b]. An important special case is

T* = {CL = to == tk,tk+1 = = t2k+1 = b} (26)

In this case the homogeneous spline consists of only one segment, and the basis
functions N¥ are the homogeneous Bernstein polynomials of degree k defined by

Bf@ﬁ:::<k>blﬁgk_%2ﬁoﬁ i=0,...,k,

i
with by(v) = d(v,b)/d(a,b) and by(v) = d(a,v)/d(a,b). The restriction of these
functions to the unit circle gives circular Bernstein polynomials [1] associated with
the interval [a, ], where o and 3 are the polar angles of a and b.

3. Trigonometric Splines

Suppose all knots in 7T lie on the unit circle C' with center at the origin O, 1.e. t; =
(cosB;,sin6;), i =0,...,k+n+ 1. Then the restriction to C of the homogeneous
spline

s(v) =Y diNf(v), dieR.
1=0



is called a trigonometric spline, and is given by
s(6) = s(v(f)) = ZdiTik(G), v(0) = (cos 8,sin6), (3.1)
1=0

where TF are the normalized trigonometric B-splines with knots 6;,. .., 0; 441, see

[15,17,33]. Piecewise, s belongs to the space

T — span{l, cos(20),sin(26), ..., cos(k6),sin(k6)}, k even,
B span{cos(),sin(f), cos(36),sin(30), ..., cos(kf),sin(kf)}, k odd.

of trigonometric polynomials of degree k. The coordinates b; and by of a vector
v = (cos 6, sin ) with respect to two knots t;,t; € C are (see [1])
sin(6y — 6) sin(6 — 6;)

by = ——~*F% = Y 3.2
! Sin(ek — 91)’ ? Sin(ek - 91)7 ( )

and hence (2.1) coincides with the familiar three-term recurrence for trigonometric
B-splines, see [12,15,17,33].

The similarity between polynomial and trigonometric splines is not unexpected
since the normal curves of 7 in the sense of [23] are rational curves of degree
k, and so are the normal curves of polynomials of degree k. Hence, the polar
forms of trigonometric spline segments agree up to a reparameterization with the
multi-projective polar forms of rational curves. We recall that the polar form of a
trigonometric polynomial [10,11] can be obtained by homogeneously extending it
to a bivariate homogeneous polynomial and by restricting the polar form of this
polynomial to C'.

4. Focal Spline Curves

In this section we discuss another special class of homogeneous splines. These
curves have been investigated by J. Sdnchez—Reyes [30] (without reference to the
literature on trigonometric and homogeneous splines), and can be viewed as graphs
of trigonometric spline functions. The same curves have also been studied indepen-
dently by P. de Casteljau [2], who called them focal splines. Given a spline s(6) as
in (3.1), consider

g(0) = (s(8),cos kb, sin k6). (4.1)
It is known (cf. [15,19]) that

cos kf = z": cos(k&NTH(6)
i=0
sin kf = zn: sin(k&)TF(9),

=0



where
1 i+k
&= Rz (4.2)
j=it1

Thus ¢ is a homogenous spline, and
9(6) =) DT/ (8),
1=0

where the homogeneous coordinates of the control points D; are
D; = (d;,cos k&;, sin k&;).

Instead of the weights d;, we could use the frame points F; = D; + D;4+1. The
point F; lies on the line D;D;y1, and its polar angle is k(& + £41)/2. Thus F; lies
on the bisector of the polar rays of D; and D,y i.e., the bisector of the oriented
lines passing through O with polar angles k¢; and k€41, respectively. Note that

for a positive d;, the orientation of the polar ray of D; is given by the vector OD;.

The inhomogeneous representation of (4.1) is

1 1 .
(@ cos k6, @ sin k0). (4.3)

The curve g is a graph of the function s obtained by plotting the points whose polar
coordinates are (1/s(6), k0), see Fig. 2.

D,

Fig. 2. Graph of a trigonometric spline s in the sense of (4.3).



The control points D; are consistent with the graph (4.3) since they are ob-
tained by plotting the reciprocal values of the spline coefficients 1/d; on the polar
ray with polar angle k¢;. For d; = 0, D; is a point at infinity. Summarizing, we

have

Theorem 4.1. Let s be a trigonometric spline given by (3.1) and let g be its
associated focal spline curve whose graph (4.3) has polar coordinates (r,¢) =
(1/s(6),k6). Then g is a homogeneous spline of degree k whose control points D,
have polar coordinates

The weights of g are equal to the coefficients d;, and its frame points F; lie on the
bisectors of the polar rays of D; and D;y,. Moreover, if S is the polar form of one
of the trigonometric pieces of s, then the polar form G of the focal spline curve g
corresponding to the same piece of s is given by

G(b1,...,0k) = (S(b1,...,0k),cos(6y + -+ 0k),sin(0; + -+ 6)). (4.4)

The polar distance of the point G(61,...,0x)is1/S(6.,...,0;), while its polar angle
is 6y + -+ 6.

If we choose the special knot sequence (2.6) with no interior knots, then the
corresponding focal spline curve ¢ consists of a single rational Bézier curve, called
a focal Bézier curve. In the sense of the previous section, a focal Bézier curve is
the graph of a circular Bernstein-Bézier polynomial s with coefficients d;. In order
to find points on g, we can apply the classical de Casteljau algorithm (see Fig. 3).
Alternatively, one can use the circular arc corresponding to [«, 3] as a parameter
domain, and use (2.4) to compute s(#), based on an array of auxiliary values dET].
It follows from Theorem 4.1 that the two approaches are equivalent. In particular,
we have

Theorem 4.2. [29] Let g be a focal Bézier curve corresponding to a circular
Bernstein-Bézier curve s of degree k with coefficients d;, 1 =0, ..., k, defined on a
circular arc [a, ]. Then, in the r-th step of the de Casteljau algorithm applied to
g and 0 € [a, 3], the polar coordinates of the points DET] are (1/d£r] J(k—1—1)6) +
i9k+1 + T'e)

Focal Bézier curves of degree two are clearly conics. The angle properties
illustrated in Fig. 3 imply that the origin O is a focal point of the conics, since the
projectivity between two fixed tangents (say the end tangents) induced by the set of
tangents is projected from O by a rotation. The conic tangents passing through O
are the fixed lines in this rotation, hence isotropic lines (the two pencils of isotropic
lines of a Euclidean plane have in each Cartesian system the complex direction



5(6) = d

Fig. 3. de Casteljau algorithm for a focal Bézier curve.

vectors (1,4) and (1, —¢)). According to J. Pliicker, this characterizes O as a focal
point. A direct analytic proof follows from the polar coordinate representation and
is given in [29]. This fact motivated P. de Casteljau [2] to coin the name focal
splines. We show later (end of Sect. 5) that for arbitrary degree k, O is always
a focal point of ¢ in the sense of Pliicker, i.e. the intersection of isotropic curve
tangents.

Using polar coordinates (r, ¢), consider the mapping

1 ¢

6 (T, ¢) = (;7 E)v

which is the composition of an inversion with a so-called fan transformation which
multiplies each polar angle with the constant value 1/k. Applying 6 to ¢g(6), we
obtain exactly the graph curves p(6) = (s(8)cos 6, s(0)sin ) discussed in [1]. The
projective control polygon of g is mapped onto the curved control structure of
p described in [1] for the Bézier case. Thus, algorithms for focal Bézier curves
correspond to the algorithms for CBB curves given in [1]. Moreover, the control
curves for trigonometric splines introduced in [15] for graphs of the form (6, s(9))
are related to the control polygons for focal spline curves by a transcendental trans-
formation.

5. Dual Focal Splines

In this section we investigate a remarkable class of rational curves with rational
offsets (also called rational PH curves [24,25]). We need a description of curves
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which is closely related to the polar coordinate representation. Assuming that the
curve ¢ to be described is C'!, piecewise C? and free of inflection points, we impose
an orientation on its tangents and represent them in the form

T(¢): wcos(¢) +ysin(¢) = h(¢), ¢ € [a,b].

Thus, ¢ is the angle between the z-axis and the normal, and h is the signed distance
of the tangent to the origin, see Fig. 4. The function h(¢) is called the support
function of c.

Fig. 4. A curve defined by a support function.

The curve ¢ is the envelope of the lines L(¢), and (cf. [36]) admits the para-
metric representation ¢ = {(z(4),y(4)), ¢ € [a,b]} with

(@) = h(¢) cos(¢) — B'($) sin(¢),
y(¢) = h()sin() + h'(¢) cos().

This representation also reflects the fact that the curve normals possess distance
h'(¢) from the origin, see Fig. 4.
The signed radius of curvature of the curve ¢ is given by

() = h(¢) + h"(¢). (5.1)

A closed curve ¢ is convez if and only if p(¢) has no sign change in [0,2x]. The
length of the curve c¢ is given by

L= [ o)+ H(@)de.

Using support functions one can easily express offset curves. Namely, ¢; with
support function hg(¢) := d+ h(¢) is the offset curve at signed distance d from Cj,.
For more details on the description of curves with help of their support function,
see [36].

A focal spline curve g of degree k is characterized by a polar equation r(¢) =
1/s(¢/k), where s is a trigonometric spline function of degree k and the origin O
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is the focal point of g. We now apply the polarity II with respect to the unit circle
C with center O. It maps each point (z,y) onto the line zz + yy = 1. Hence the
points of ¢ are mapped to the lines z cos(¢) + ysin(¢) = s(¢/k). The envelope of
this family of lines is defined as image curve p := II(¢) and will be called a dual
focal spline curve. We see that the support function of p is

h(¢) = s(¢/k). (5.2)

To explore the properties of p, we need to work with polarities. First, we
extend the definition of II to the entire projective plane and use homogeneous
Cartesian coordinates (xg,z1,z2) for points. Lines are solutions of linear homo-
geneous equations ugxg + u1x; + uzry = 0 and (ug,uq,us) are the homogeneous
line coordinates. A point X = (x¢,21,22) is then mapped under II onto the line
L =1I(X) = (—zg,x1,22). All points of L are mapped to lines passing through
X. Therefore, we extend the map II by its dual (for simplicity also denoted by
IT), which maps L onto X. We thus have a map which transforms points to lines
and lines to points. The points of the circle C' are mapped to its tangents and
vice versa. Points and tangents of a curve are mapped to tangents and points of
the image curve. A rational curve of algebraic order k and algebraic class ¢ (=
algebraically counted number of tangents passing through a point) is mapped to a
rational curve of order ¢ and class k. Furthermore, I preserves contact of order r
between two curves.

Since focal spline curves ¢ are rational splines of order k& with geometric con-
tinuity C*~# at a knot of multiplicity u, we immediately have

Theorem 5.1. Let g be a focal spline curve of degree k with focal point Q. Then,
a polarity with respect to a circle centered at O transforms ¢ into a dual focal spline
curve p. This is a rational geometric spline curve with geometric continuity C*~#
at a knot of multiplicity p.

A standard NURBS representation of a spline curve requires a knot vector
where all inner knots appear with multiplicity &. This implies that the control
points of this curve agree with the Bézier points of the spline segments. We will
therefore now restrict our attention to the segments of dual focal splines i.e., to
dual focal Bézier curves. Let ¢ be a focal Bézier curve with control points D; =
(d;, cos ¢;,sin ¢;) corresponding to a; = (k — i)+ ¢3. The points of the curve have
homogeneous coordinates Y D; B¥(¢) and therefore the tangents of its image curve
p under IT have the line coordinates

T(¢) = ZLiBf(qﬁ), with L; = (—d;, cos ¢, sin ;). (5.3)

This is the so-called dual representation of the Bézier curve p introduced into CAGD
by Hoschek [14], see also [26]. The lines L; = II(D;) are the Bézier lines of the



11

Fig. 5. Polarity applied to a focal cubic Bézier curve.

curve. We see that consecutive oriented Bézier lines L;, L;;1 of p all form an angle
of size f — «, and the frame lines F* := L; + L;;; are simply the bisectors of
L; Liyq, see Fig. 5.

The computation of p follows directly from (5.3). We apply the algorithm of
de Casteljau to the vectors Ly, ..., L, until there are just two vectors L§_1(¢>) and
Lf_l(qﬁ) left. These vectors represent lines through the desired curve point p(¢)
which is therefore computable as the vector product p(¢) = LE71(4) x LF71(¢).
This immediately leads to the following parametric representation of p as a rational
Bézier curve of degree 2k — 2:

2k—2

po)= Y PBIH)

where . LN (1
( 1 ) it j=1 J
One can show that p(¢) # 0 for all ¢, and therefore a degree reduction is not

possible. Thus, the algebraic order of p is exactly 2k — 2 and we have proved the
following result.

Theorem 5.2. Let g be a focal spline curve of degree k with focal point O, and
let p be the associated dual focal spline. Then, each segment of p is a rational
curve of algebraic order 2k — 2 and class k. In the dual Bézier representation of p,
consecutive oriented Bézier lines L;, L;+1 form the same angle and the frame lines
F* are their bisectors.

The support function (5.2) shows that dual focal Bézier curves are so-called
higher cycloidal trochoids [39]. They arise as envelopes of straight lines under
special planar one—parameter motions (trochoidal motions) which are composed of
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a finite number of continuous rotations p; with constant angular velocities w;. In
our case, the ratio of the angular velocities of any two of these generating rotations
is rational, and therefore the curves and their offsets are rational [39]. This can
also be seen by computing the parametric representation from the support function,
which yields a curve representation with sine and cosine terms of rational multiples
of ¢ and thus the representation can be rationalized by standard substitutions. For
k even, the space of trigonometric splines contains constants, and in this case the
offset curves at distance d with support function h(¢)-+ d are also of the same kind.

Theorem 5.3. Dual focal spline curves possess piecewise rational offset curves. In
particular, all offsets of a dual focal spline p with even class k are dual focal splines
of the same kind.

Theorem 5.4. Consider a dual Bézier curve p with Bézier lines L; and frame lines
F* such that all consecutive oriented Bézier lines L;, L;1, form a constant angle

and the frame lines F* are their bisectors. Then all offsets of p are rational.

We conclude this section by justifying the name ”focal spline”. Since dual
focal spline segments are cycloidal trochoids, it is known that they pass through
the absolute points [39], i.e., the complex points with homogeneous Cartesian co-
ordinates (0,1,47) and (0,1, —4). The polarity II"' = II maps these points to lines
with coordinates (0,1, 4:). They are the isotropic lines through O and tangents of
g, such that O appears as focal point. Thus the origin O of the polar coordinate
system which we used to define a focal spline curve as a graph of a trigonometric
spline is a focal point for each spline segment ¢ in the sense of J. Plucker. This
means that it is the intersection of isotropic curve tangents of the algebraic curve
¢ in the complex projective plane.

6. Conversion of Dual Focal Splines to NURBS

To convert from the support function (5.2) to the rational representation, we can
perform knot insertion on the trigonometric spline s until each inner knot appears
with multiplicity k. Denote the new trigonometric spline coefficients by b;. The
spline segment over the interval [#;_1,6;] leads to a focal Bézier curve segment p;
of p, whose normals have directional angles in [k#;_1, k6;]. The curve p; has a dual
Bézier representation, whose control lines Ly, ..., Ly possess the homogeneous line
coordinates L; = (—=b(j_1)k+it1,c0s(¢;),sin(¢;)) with ¢; := (k —4)8;_1 +:6;. With
L; we compute the homogeneous coordinates P; of the control points of the rational
Bézier curve p; with the help of (5.4).

7. Examples
We now examine a few simple examples.

Example: & = 2. The dual focal Bézier curve has a support function of the form

h(¢) = ag + ay cos ¢ + ay sin ¢,
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y A

-1 3
B
h(¢) 0
@3 \(@
ol
symm. O ag } A X
2
L(0)
h(¢) = a5 cos (¢/3)

Fig. 6. A dual focal Bézier curve of degree 3.

and thus is a circle with radius ag and center (ay,ay). For ay = 0 it degenerates
to a point. Therefore, with k¥ = 2, focal splines are arc splines. We see that arc
spline approximations of a curve ¢ may also be obtained by splitting ¢ at inflections,
describing the noninflecting pieces by their support functions and approximating
these with trigonometric splines of degree 2. A multiresolution analysis of arc
splines based on this idea has recently been proposed by J. Wallner [38].

Example: £ = 3. In this case the dual focal Bézier curve is a rational quartic of

class 3 with the support function

h(¢) = ay cos ¢ + az sin ¢ + ag cos g + a4 sin g
The kinematic generation as a cycloidal trochoid is as follows. Consider two moving
lines OA and [ = AB, such that OA rotates around O with angular velocity 2 and
[ rotates around A with angular velocity 3, see Fig. 6. Then, the envelope of [ is a

quartic of the present kind and is called a cardioid.

Example: k£ = 4. In this case we get dual focal Bézier curves with a support
function

h(¢) = ag + ay cos ¢ + az sin ¢ + as Cosg—l—a4sin§.

The curves are rational curves of order 6 and class 4. Kinematically, they are
obtained as the envelope of a line under a motion composed of two rotations with
angular velocities wy : wy = 1 : 2 (see Fig. 7). For ap = 0, the generating line
passes through the second rotation center, in which case the envelope is a so-called
nephroid. Otherwise, the curves are offsets of nephroids. The corresponding focal
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y -l >
B
¢ o —
@2
h(e) }
|
symm. O a3 } A X
1
L(0)
symm.

h(g) = a3 cos (¢/2)
Fig. 7. A dual focal Bézier curve of degree 4.

spline curves have third order geometric continuity (at single knots), and their
offsets are of the same type. This is the first example we have seen of a low order
PH spline curve with third order geometric continuity.

8. Applications

The fact that the support function (5.2) of dual focal splines is basically a trigono-
metric spline allows us to solve certain curve design problems in a surprisingly
simple way. In particular, the fact that they are piecewise rational and thus rep-
resentable in standard CAD/CAM systems, makes them especially useful for the
design of cam profiles [22], constant length curves [27,28] and other curves which
arise in NC milling and layered manufacturing, see [5,6,7,24,25] and the references
therein.

Rational PH curves have been an active area of CAGD research in the past
few years (see e.g., [8,9]). Using our class of rational curves with rational offsets,
we can guide the shape of a Bézier curve via its dual representation, see [14,25].
This means we can interactively design rational PH curves by keeping the angles
between consecutive control lines constant.
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