A Multiresolution Tensor Spline Method
for Fitting Functions on the Sphere
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Abstract. We present the details of a multi-resolution method which we pro-
posed in Taormina in 1993 (see [6]) which is suitable for fitting functions or data
on the sphere. The method is based on tensor products of polynomial splines
and trigonometric splines, and produces surfaces which are tangent plane con-
tinuous. The result is a convenient compression algorithm for dealing with large
amounts of data on the sphere. We give full details of a computer implemen-
tation which is highly efficient with respect to both storage and computational
cost. We also demonstrate the performance of the method on two typical test
examples.
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§1. Introduction

In many applications (e.g., in geophysics, meteorology, medical modelling, etc.), one
needs to construct smooth functions defined on the unit sphere S which approximate
or interpolate data. As shown in [11], one way to do this is to work with tensor-
product functions of the form

:ZZCW (¢) (1.1)

=1 j=1
defined on the rectangle
H:={0,¢): —7/2<6<7/2 and 0< ¢ < 2r},

where the ¢; are quadratic polynomial B-splines on [—n/2,7/2], and the @; are
periodic trigonometric splines of order three on [0,27]. With some care in the
choice of the coefficients (see Sect. 2), the associated surface

Sp:=A{f(6,¢)v(8,¢): (6,9) € H}
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with v(6,6) = [cos(8) cos(¢), cos(#)sin(), sin(8)]T will be tangent plane continu-
ous.

In practice we often encounter very large data sets, and to get good fits using
tensor product splines (1.1), a large numbers of knots are required, resulting in many
basis functions and many coefficients. Since two spline spaces are nested if their
knot sequences are nested, one way to achieve a more efficient fit without sacrificing
quality is to look for a multiresolution representation of (1.1), i.e., to recursively
decompose it into splines on coarser meshes and corresponding correction (wavelet)
terms. Then compression can be achieved in the standard way by thresholding out
small coefficients.

The paper 1s organized as follows. In Sect. 2 we introduce notation and give
details on the tensor product splines to be used here. In Sect. 3 we describe the
general decomposition and reconstruction algorithm in matrix form, while in Sect. 4
we present a tensor version of the algorithms. The required matrices correspond-
ing to the polynomial and trigonometric spline spaces, respectively, are derived in
Sections 5 and 6. Sect. 7 is devoted to details of implementing the algorithm. In
Sect. 8 we present test examples, and in Sect. 9 several concluding remarks.

§2. Tangent plane continuous tensor splines

Let ¢1,...,9m be the standard normalized quadratic B-splines associated with the
knot sequence

—7T/2:ZL‘1 =Ty =23 <Xy << Ty < T4l = Tm42 = Tm43 :ﬂ'/2
Recall that ¢; is supported on the interval [z;, z;y3], and that the B-splines form

a partition of unity on [~7/2,7/2]. Let Ty,..., T~ be the classical trigonometric

B-splines of order 3 defined on the knot sequence 71, ... where

g
0=21 <22 <--- <> <27,
and T4 i= T; + 27,1 =1,...,3, see Sect. 6. Recall that 7} is supported on the

interval [Z;, #j43]. Let
~ T;(x), j=1,....m—2,
¢j(x) = T .~ ~
() 4+ Tj(x —27), j=m—1,m,

be the associated 27-periodic trigonometric B-splines, see [10]. These splines can
be normalized so that for ¢ € [0, 27]

1=)cos (%)cﬁj(qﬁ) (2.1)
cos(¢) = Z cos (M>¢J(¢)v (2.2)

2

sin(g) =Y sin (DT L2y 4 (2.3)



Since the left and right boundaries of H map to the north and south poles,
respectively, a function f of the form (1.1) will be well-defined on S if and only if

M)) j=1,....,m (2.4)

cl’j:fgcos( 5

and

Cm,j = farcos (%), j=1,...,m, (2.5)
where fs and far are the values at the poles. Now since f is 27-periodic in the ¢
variable and is C'! continuous in both variables, we might expect that the corre-
sponding surface Sy has a continuous tangent plane at nonpolar points. However,
since we are working in a parametric setting, more is needed. The following theo-
rem shows that under mild conditions on f which are normally satisfied in practice,
we do get tangent plane continuity except at the poles.

Theorem 2.1. Suppose f is a spline as in (1.1) which satisfies the conditions
(2.4) and (2.5), and that in addition f(8,¢) > 0 for all (6,¢) € H. Then the

corresponding surface Sy is tangent plane continuous at all nonpolar points of S.

Proof: Since f is a C! spline, the partial deriviatives fp and f, are continuous
on H. Now t1(6,¢) := Dy[f(6,¢)v(8,¢)] and t2(6, ¢) := Dy [f(0, ¢)v(0, ¢)] are two
tangents to the surface Sy at the point f(6,¢)v(6,¢). The normal vector to the
surface at this point is given by the cross product n := #; x t3. By the hypotheses,
n is continuous, and thus to assure a continuous tangent plane, it suffices to show
that n has positive length (which insures that the surface does not have singular
points or cusps). Using Mathematica, it is easy to see that

In(6,9)° = f2(6, )| cos(6)” f(8.6)* + f4(8. )" + cos(6)” fo(6, ¢)*],
which is clearly positive for all values of (6, ¢) € H with § # +x/2. O

With some additional side conditions on the coefficients of f, we can make the
surface Sy also be tangent plane continuous at the poles. The required conditions

(cf. [3,11]) are that

crj=ci1;+ M[AS cos (M) + Bg sin (Mﬂ

2 2 2

and

(l’m+1 - wm) [

9 A cos (—fﬂ_l+5;j+2)—I—BNsin<—jj+1;£j+2)]

cm_laj = cm;j -

for y =1,...,m, where Ag,Bs,An, and Bys are constants.

3



§3. Basic decomposition and reconstruction formulae

Suppose Vg, Vq, ... are a nested sequence of finite-dimensional linear subspaces of
an inner-product space X, i.e.

VoCViC--CVp C---

Let
Vi =Vi—1 & Wi

be the corresponding orthogonal decompositions.

For our application, it is convenient to express decomposition and recon-
struction in matrix form, cf. [12]. Let @k 1,..., 9k m, be a basis for Vi, and let
Yk—1,15---,Vk—1,n,_, be a basis for Wi_;, where ny_; = mp —mg_1. Then by the
nestedness, there exists an my X my_q matrix Py such that

9‘9,]{—1 = g@;{Pk, (31)

where
k= (Phytye s Phmy) -

The equation (3.1) is the usual refinement relation. Similarly, there exists an my x
ng—1 matrix Qx such that

Vi1 = 91 Qs (3.2)

where

Yr—1 = (Yr-1,1,--- 777Z)k—1,nk_1)T- (3.3)

Let
Gr =({©k,is Pk,j)

Hk_l :(<77Z)k—1,i7 ¢k—1,j>)

be the Gram matrices of size my X my and ng_q1 X ng_q, respectively. It is easy to
see that
Hi—1 = Q{GrQy. (3.4)

Clearly, the Gram matrices G and Hy_; are symmetric. The linear independence
of the basis functions ¢ ; and of 1 ; implies that both G} and Hj_; are positive
definite, and thus nonsingular.

The following lemma shows how to decompose and reconstruct functions in Vi
in terms of functions in Vip_; and Wg_;.

Lemma 3.1. Let f; = L,o;{ak be a function in V} associated with a coefficient
vector ar € R™*, and let

fe = fe—1 + gr—1 (3.5)

be its orthogonal decomposition, where

feo1 = ©i_qakr—1 € Vi1, Jk—1 = Yi_1bk—1 € Wi_1.



Then
ap_1 :G,:ilPkTGkak

-1 T
br—1 =H, _,Q} Grag.
Moreover,

ap = Prag—1 + Qrbr—1. (3.6)

Proof: To find a;_1, we take the inner-product of both sides of (3.5) with ¢g_1;
for i = 1,...,mg_1. Using the refinement relation (3.1) and the orthogonality of
the pr—1,; with ¥r_1 ;, we get

T
P, Grar = Gr—1ak—1,

which gives the formula for a;_;. If we instead take the inner-products with ¢ _q,
we get the formula for bg_;. In view of the linear independence of the functions
Ok1s---Pk,my, the reconstruction formula (3.6) follows immediately from (3.5)
and the refinement relations. O

§4. Tensor-product decomposition and reconstruction

In this section we discuss decomposition and reconstruction of functions in tensor
product spaces Vi X V¢, where the Vj, are as in the previous section, and where Vy
are similar subspaces of an inner-product space X. In particular, suppose

VoCViC-CViCeer,
and that
Ve=Vi—1 S Wi

Let Py, Q, G, and Hy be as in the previous section, and let ﬁg, @g, CN}'g, and H,
be the analogous matrices associated with the spaces Vy.

Theorem 4.1. Let fr, = @%Ak,g‘@g be a function in V; X g{ associated with a
coefficient matrix Ay . Then fy ¢ has the orthogonal decomposition

Jee = fr-1,0-1+ gl(cl—)l,f—l + 912:2—)1,z—1 + gl(cg—)l,z—lv (4.1)

with B
Fre1,0-1 =03 1 Ak—1,0-1P0—1 € Vi—1 X Vi1
1 1
gl(c)u1 ‘Pk 1B](<;)1g 1W 1€ Vi 1><W£1
2 2)
gl(c)1£1 =i 1B(1z 1Pe—1 € Wi L x Ve

91(63)1 -1 —1/’16—1 123321,g_1¢£—1 € Wi X Wg_l,
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where the matrices Ax_1 ¢—1, Bél_)l o—17 B;CZ_)I o—1, and B,(:fl ¢—1, are computed from
the system of equations

Gr-1Ar- 1,z—1@z—1 :PkTDkﬁz

Gr1By, ,_ Hyy =P Dy Qs
Hk—1B,(€_1,g_1G£—1 :Q;{Dk,fﬁf
Hk—1B,@1,g_1ﬁz—1 =QT Dy Qo

with B
Dyi¢ = GrAk Gy

Moreover,

Ak = Pdror o1 PF + PLBYY, K—lég + QkBl(c2—)1,£ Pl +QiBY, z_léf- (4.3)

Proof: To find the formula for Ak_l’g_l, we take the inner—product of both sides
of (4.1) with @y ,; for e = 1,... ,mr_q and with ¢¢_q ; for j = 1,. ¥ . The
formulae for the Bi; i) 1,0—1 are obtained in a similar way. The reconstr uctlon f01mu1a
(4.3) follows directly from (4.1) after inserting the refinement relations and using
the linear independence of the components of the vectors ¢ and in @,. O

Note that computing the matrices Ax_q ¢~ and B;ﬁl ¢—1 1n a decomposition
step can be done quite efficiently since several matrix pro’ducts occur more than
once, and we need only solve linear systems of equations involving the four matrices
Gr—1, Hip—1, Gg 1, and Hg 1- As we shall see below, in our setting the first two
of these are banded matrices, and the second two are periodic versions of banded
matrices. All of them can be precomputed and stored in compact form.

§5. The decomposition matrices for the polynomial splines

In this section we construct the matrices Py, @k, and G needed for the decom-
position and reconstruction of quadratic polynomial splines on the closed interval
[—7/2,m/2]. Consider the nested sequence of knots

k k k k k k k k
where
¥ = —n/24 (1 =3k,  i=4,...,my, (5.1)
with by = 7/(mg—2) and my = 3-284+-2. Let {¢k,i} ik be the associated normalized
quadratic B-splines with supports on the intervals [z%, x Z+3], 1 = 1,...,mg. For
each k, the span Vi of pr1,..., ¢, m is the mj dimensional linear space of C!

quadlatlc splines with knots at the z¥. These spaces are clearly nested. In addition
to the well-known refinement relatwns
(0k2i—3 + 30k 2i—2 + 30k 2i—1 + Pk,2i)

Prk—1,i = ’ ’ 1 ’ =, 1=3,...,mp_1 — 2, (5.2)




a simple computation shows that

4o+ 2¢k2)/4

20k2 + 3¢k 3 + Pra)/d

20k mp—1 + 3Pk, my—2 T Pk,my—3)/4
40k my + 20k mi—1)/4

Pk—-1,1 =
Pk—1,2 = (5.3)

Pk—1,mp_1—1 =

e~~~

g‘ok_l;mk—l =

Equations (5.2), (5.3) provide the entries for the matrix P. In particular,
the first two and last two columns are determined by (5.3), while for any 3 <
t < mg—1 — 2, the ¢-th column of P contains all zeros except for the four rows
2¢ — 3,...,2: which contain the numbers 1/4, 3/4, 3/4, and 1/4. For example,

ANy

OO OO OO N
SO OO O HWNO
SO WWHEOO
SN WL OO OO
=N OO oo oo

In general, Py has at most two nonzero entries in each row and and at most four
nonzero entries in each column.

In order to construct the matrices @, we now give a basis for the wavelet
space Wy_1. Here we work with the usual Ly inner-product on Ly[—n/2,7/2]. Let
Ng_1 =M —Mp_1 =3 - 2k—1,

Theorem 5.1. Given k > 1, let

6
Vh—1,1 1= Z 45,1%k,j

i=1
6

Uk mess = D €G1Pkme—jt1
i=1

and for k > 2, let

8
Vr—1,2 := Z 45,2%k,5

J=2
8

Vhk—1ny -1 = E 452Pk,my—j+1,
j=2
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where

01 6864 92,2 780
421 8346 q3’2 —1949
g | 1| —a067 G2 | g [ 048]
= — s q5’2 = — —3362 . (54:)

qa.1 14 2083 11

451 —4:06 q6,2 1618
g1 14 a2 31

’ qs .2 11

In addition, for k > 2, let

Vr_1,i = —Pk2i—3 + 290k 2i—2 — 1470k 2i—1 + 3030k 2; — 3030k 2i41

(5.5)
+ 1470k 2i42 — 290k 2i43 + ©k 2i44,

forv=3,...,np_1 — 2, and set
oz = 4 5 9 4 9 5 4
0,2 = —¥1,2 2991,3 2991,4 2991,5 2501,6 ¥1,7-

Then ¥p_11,...,Yk-1,n,_, form a basis for Wj_1.

Proof: The wavelets in (5.5) are just the well-known quadratic spline wavelets,
see e.g., [1]. As described in [5], the coeflicients of the remaining wavelets can
be computed by forcing orthogonality to Vi_;. In view of (3.2), the wavelets
Yk—115---,Vk—1,n,_, are linearly independent if and only if the matrix @ is
of full rank. This follows since the submatrix of () obtained by taking rows
2,4,...,3-25"1 and 3-2¥-1 43,3.2%1 15 ..., 3-2F + 1 can easily be seen to be
diagonally dominant. For an alternate proof of linear independence, see Lemma 11

of [5]. O

In view of properties of B-splines, it is easy to see that

1/)]6_1’1‘(:‘:71'/2):0, i:2,...,nk_1 —1, (5 6)
Dgtpg—1,i(£m/2) = 0, i=3,. .., np_1 — 2. '

We now describe the matrices (Jx. By Theorem 5.1,

q1,1 0 0
g1 1 0
43,1 5/2 g6 1
Ql _ qa1 —9/2 d5.1
qd5,1 9/2 q4.1
gde6,1 —5/2 g3,

0 1 92,1

0 0 q1.1




and

91,1
92,1
q3,1
4,1
q5,1
g6,1

e}

SO oo oo

0

0
42,2
q3,2
44,2
q5,2
g6,2
q7,2
qs8,2

oo OO

0

—147

0

1

29

30

3

—303

14

7

o OO

29

—147
303
—303
147
—29

1
0
0

o OO oo

0
qs8,2
q7,2
96,2
q5,2
44,2
q3,2
q2,2

0

S OO oo oo

0
d6,1
q5,1
4,1
q3,1
q2,1
q1,1

For general k > 2, the nonzero elements in the third column of @)y are repeated in
columns, 4,...,nr_1 — 2, where in each successive column they are shifted down
by two rows. The first two and last two columns of ()} contain the same nonzero
elements as (2. Clearly, (J} has at most 4 nonzero entries in each row and at most
8 nonzero entries in each column.

We now describe the Gram matrices G, which in general are symmetric and
five-banded. To get G, we start with the matrix with 66k/120 on the diagonal,
26h/120 on the first subdiagonal, and hj /120 on the second diagonal. Then replace
the entries in the 3 x 3 submatrices in the upper-left and lower-right corners by

24 14 2 66 25 2
ULy:=-— (14 40 25|, LR.:=-— |25 40 14
120\ 2 25 66 20\ 2 14 2
For example,
24 14 2 0 0
po[14 40 25 1 0
0
Go=-— 1|2 25 66 25 2
0o 1 25 40 14
0 0 2 14 24
and
24 14 2 0 0 0 0 0
14 40 25 1 0 0 0 0
2 25 66 26 1 0 0 O
G oofif0 1 26 66 2 1 0 0
2000 0 1 26 66 26 1 0
0 0 0 1 26 66 25 2
0 0 0 0 1 25 40 14
0 0 0 0 0 2 14 24



§6. The decomposition matrices for the trigonometric splines

In this section we present the matrices ﬁg, Qvg, and Gy needed for the decomposition
and reconstruction of periodic trigonometric splines of order 3. Suppose ¢ > 1, and
that )

P =G —Dhy,  i=1,...,m¢+3, (6.1)

is a nested sequence of knots, where hy = 20=07/3 and my = 3 - 2¢. Let

M i(9) == Tiu(ﬁb - %f)v

where
__sin(¢/2)*
sin(h/2)sin(h)’ 0<od<h
1 _ sin((@=h)/2)*+sin((2h=6)/2)* 5 6 < 2h
@)= C?S;g/;iqs)/z)? T T (6.2)
sin(h/2) sin(h) ’ 2h < ¢ <3h
0, otherwise.

is the usual trigonometric B-spline of order three associated with uniformly spaced

knots (0, h,2h,3h). Set

. ( B {J\Jg’i(qé), t=1,...,mg— 2,
Fei B J\Jg’i(gé) + ]\Ig’i(gé — 271'), =My — 1, my.

For later use we define ¢, i = pgi fore=1,...,6.

The span Ve of Pe15-- 1P, ol is the space of periodic trigonometric splines
of order three. Clearly, these spaces are nested, and in fact we have the following
refinement relation:

Theorem 6.1. Forall { > 1 and 1 <1< my_q,

Go—1,i = u(he)Pei—1 +v(he)Pe2i + v(he)@e2iv1 + ulhe)Pe2ive, (6.3)

where

. 1 ~_cos(h/2)
u(h) = 4 cos(h/2)cos(h) v(h):= cos(h)

Proof: By nestedness and the nature of the support of T},

—u(h).

Ton(¢) = u(h)Th(¢) + v(h)Tw($ — h) + w(h)Th(¢ — 2h) + 2(h)Th(¢ — 3h)

for some numbers u,v,w,z. By symmetry, it is enough to compute u and v. To
find u, we note that on [0, &],

Ton(9) = u(h)Th(4).
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Then using (6.2) we can solve for u. To find v we note that
Ton(2h) = u(h)Th(2h) + v(h)TH(R),

and then solve for v using (6.2). O

Theorem 6.1 can now be used to find the entries in the matrix ﬁ[ needed
in Sect. 2. In particular, each column has exactly the four nonzero elements
u(ﬁg), v(iu),v(ﬁg),u(iu), starting in the first row in column one, and shifted down
by two rows each time we move one column to the right (where in the last column
the last two elements are moved to the top of the column). For example,

u(hr) 0 o(h)
W u(h) o
P ) o) 0
0 w(h1) u(h)
0 u(hy) v(hy)

Next we describe a basis for the wawvelet space Wg_l which has dimension
fie—q1 = 3.2 for £ > 1. In this case we work with the usual L, inner-product on

[0, 27].
Theorem 6.2. Given ¢ > 1, let

7
Yori = @i(h)Pegivjo1, =1, 71, (6.4)
=0
where
Go(h) =1
71 () = —h + 5hcos(h) — hcos(2h) — 3sin(h)
q1 = D(h)
(k) = 3h — Thcos(h) — bh cos(2h) + 3sin(3h)
q2 = D(h)
() = —2h — Thcos(h) + 4h cos(2h) — 4h cos(3h) + 3sin(3h)
q3 = D(h)
and
gr—j(h) = —q;(h), j=0,...,3,
with

D(h) :=2h + hcos(h) — 3sin(h).
Then 77/;[_1’1, .. ,77/;[_1’;”_1 is a basis for the space Wg_l.

Proof: To construct wavelets in Wg_l, we apply Theorem 5.1 of [6] which gives
explicit formulae for the ¢; in terms of inner-products of ¢, ; with @,—1 ;. To show

11



that 77/;[_1’1, e 7772f—1,7~u—1 are linearly independent, it suffices to show that @g is of
full rank. To see this, we construct a ny—; X ng_y matrix By by moving the last
column of @g in front of the first column, and then selecting rows 2,4, ..., mg. We
now show that this matrix is strictly diagonally dominant, and thus of full rank.

First, we note that in each row of By the element on the diagonal is q},(ﬁg)
while the sum of the absolute values of the off diagonal elements is |Gy (k)| +
|G5(he)| + |Gr(he)|. A simple computation shows that each of the functions D(h)
and r;(h) := ¢i(h)D(h) has a Taylor expansion which is an alternating series. In
particular, using the first two terms of each series, we get

D(h) >h°[1/60 — h?/1260] > 0,
ri(h) <h®[—29/60 + 26h*/315] < 0,
ra(h)

r3(h)

>h3[49/20 — 8942 /105] > 0,
<h®[—101/20 + 100942 /420] < O

for 0 <h<7/3= i~zl. Now it is easy to see that

gs(h)| = |gr(W)|] D(h) = —r3(h) — r2(h) + r1(h) — D(h)

a(h) = [1gs(h)| = g1 (h)] —
also has an alternating series expansion, and we get
a(h) > h°[71/10 — 103h*/70] > 0

for the same range of h. This shows that By is strictly diagonally dominant, and
the proof is complete. O

_ The formulae for the ¢; in Theorem 6.2 are not appropriate for small values of
h¢—1. In this case we can use the following Taylor expansions:

do(h) =1

25 103 1255
(k)= —29 + —h? — — p* B
Q1 (h) T3 5ss " 1 271656

307 . 3301 545273
Go(h) = 147 — =— h? 4 6
¢2(h) 7 T 5ss 1353280

908

3131 642583
— ! K
127 ' " 339570

Gz(h) = —303 + - R*

Rather than computing them each time we need them, we can precompute
and store the necessary values of §i(he), G2(he), and §3(he) for various levels ¢,
see Table 1 in Sect. 7. We can now describe the matrix @}y needed in Sect. 2 for

12



decomposing and reconstructing with trigonometric splines. For ¢ = 1 we have

qo + gs qa g2
q1 + Gz gs g3
@1 _ <z2 @) + q:6 <z4 ’
qs3 q1 + g7 qs
qa 72 do + e
s g3 q1 + g7

where all §; are evaluated at izl. For ¢ > 2, each column of @g contains the 8 entries
o G1+ G2, G3, Ga, G5, G, G7, evaluated at hg. In particular, these entries start in row
1 in column 1, and are shifted down by two each time we move one column to the
right (where in the last three columns, entries falling below the last row are moved

to the top). Clearly, Qvg has exactly four nonzero entries in each row. For example,

/ o 0 0 ¢ g1 ¢
g 0 0 g7 ¢ g3
@2 g 0 0 g qa
g @ 0 0 g7 g5
g4 ¢ ¢ 0 0 g

0, — (25 (23 q:1 9 0 g
g6 44+ ¢ G 0 0|’
g7 ¢ g q 0 O
0 g ¢ q ¢ O
0 ¢ ¢ ¢ ¢ 0
0 0 g 41 @ qo
0 0 ¢ ¢ @G ¢

where all ¢; are evaluated at izz.
Finally, we describe the Gram matrices.

Theorem 6.3. For { > 1, the 3-2¢ x 3-2¢ Gram matrix CN}'g associated with the
Pe,i 1s given by

Ijo Iov Io2 O -+ 0 oo Ioy

Iyv Ioo Ion Ioo O --- 0 Ip

Iyo Ioy Ioo Ior  Ioo 0 0
Gy =

0 0 - Iyo Ion Ioo Ior oo

Ijo, 0 - 0 Ioo Iy Ioo 1oy

Iyy Ioo O - 0 Iyo Ior Ipo

13



where

",
Tit1 . . . ~
[ @g’i @g’i_g = ’yg[ﬁuu + 2hy COS(th) — 3Sin(2hz)]

Iyz :=

£

Fiis
Iy :/ Do Pei—1 = ’yg[—4hg — 20hy COS(th) +6 Sin(?hg) +3 Sin(4hg)]

&t

Ziis
Iyo :/ gﬁf’i = v¢[4h¢ cos(2he) + 8hy cos(4hy) + 24hy — 6 sin(2hy) — 6 sin(4hy))]
with

- 1
e 64 sin(izg)‘1 cos(iNLg)2 .

Moreover,

_ Ioo Ioy + o2 lo1 + Io2
Go := | o1 + Loz IToo Io1 + Io2
Inv + Io2 Io1 + lo2 Ino
Proof: Using (6.2), the necessary integrals can be computed directly. O

_ The formulae in Theorem 6.3 are clearly not appropriate for small values of
h¢, in which case the following formulae can be used:

he

31., 134-, 2971-

Ty =—2 iy iy £ el ST

02 120[ 51"t T 105" T 3ges e T ]
13hy 205.. 146-, 299.

Iy = 1 B2 & RS ..

o1 60[+273f+195f+693f+ }
11hy 71 - 674 -, 12233.

Tog =—L[1 + =72 4 6 +...].

90790 [ Tt st ggrs e T }

We can precompute and store the values of Iy, Iy1, and Iy, for various levels
l, see Table 2 in Sect. 7 for the values up to £ = 12.

§7. Implementation
7.1. Decomposition

The decomposition procedure begins with a tensor spline of the form (1.1) based on
polynomial splines ¢y, ;(#) at a given level £ > 1 and periodic trigonometric splines
@¢,j(¢) at a given level £ > 1 with coeflicient matrix C' := Ay, ¢ of size my x my. To
carry out one step of the decomposition, we solve the systems (4.2) for Ag_1 ¢—1,

(1) (2) (3)
Bk—l,f—p Bk_l,g_p Bk_u_l, and set

Ak—l,f—l Bl(cl—)l £—1
C=1 R
Byl o1 Brlie—
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To continue the decomposition, we now carry out the same procedure on the matrix
Aj—1,¢0-1. This process can be repeated at most min(k, £) — 1 times, where at each
step the new spline coefficients and wavelet coefficients are stored in €. Thus,
the entire decomposition process requires no additional storage beyond the original
coefficient matrix.

Because of the banded nature of the matrices appearing in (4.2), with careful
programming and the use of appropriate band matrix solvers, the j-th step of the
decomposition can be carried out with O(my_;41m¢—;41) operations. To help keep
the number of operations as small as possible, we precompute and store the entries
of the matrices G, H, P, Qr and Gy, Hy, Py, Q. appearing in (4.2). Table 1 gives
the values of tjl(ﬁk), q~2(i~zg) and tjg(;bg) for  =1,...,12 needed for the @g. Table 2
gives the values of Ioo/iu, Io,l/izg and Ioz/iu needed for the (N;'g. The matrices

Hj are symmetric positive definite and seven-banded, while the H, are symmetric
positive definite periodic seven-banded matrices.

To check the robustness of the decomposition process, we computed the exact
condition numbers of the matrices Gy, H, G¢, and Hy for up to eight levels. None
of the condition numbers exceeded 10, and we can conclude that the algorithm is
highly robust.

4 qi(he) G2(he) g3(he)
1 -25.288158402784911895 105.15263361113964758 -184.01710881949438326
2 -28.033943811096385992 135.39009725820806026 -269.00057271914225083
3 -28.756039535012008061 144.02032194736046124 -294.20897139729685258
4 -28.938855942719881876 146.25016593522229565 -300.78362470238002386
5 -28.984704348047217637 146.81223291013457079 -302.44473588115810747
6 -28.996175484404513950 146.95303891951439472 -302.86111072242944246
7 -28.999043833434183593 146.98825852278080426 -302.96527310098241998
8 -28.999760956004299506 146.99706455524617238 -302.99131798899351388
9 -28.999940238853933503 146.99926613409589417 -302.99782947935722381
10 -28.999985059704287025 146.99981653322924416 -302.99945736872110255
11 -28.999996264925496984 146.99995413328889043 -302.99986434211038783
12 -28.999999066231338323 146.99998853332107132 -302.99996608552322897

Tab. 1. Trigonometric spline wavelet coefficients for various £.

7.2. Thresholding

Typically, in the j-th step of the decomposition, many of the entries in the matrices
B,(Cllj’[_j of wavelet coeflicients will be quite small. Thus, to achieve compression,
these can be removed by a thresholding process. In view of (5.6), tangent plane
continuity will be maintained at the poles if we retain all coefficients in the first two
and last two rows of these matrices. Given e, at the j-th level we remove all other
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14 Ioo/he In1/he Ioa/he
0 2.0000000000000000000 0.9423311143775626914 0.05766888562243730858
1 0.7173865882718287392 0.29529339212946177894 0.012679980401290518133
2 0.5863256235682111689 0.23350674787359713392 0.009228825204542694601
3 0.5587848830466661676, 0.22072647211850900468 0.008547276418657547047
4 0.5521783423263619826 0.21767257645539869275 0.008386225140326574126
5} 0.5505434780490859489 0.21691758424366982979 0.008346519562452568337
6 0.5501358004443718685 0.21672936114999970712 0.008336627601639628844
7 0.5500339457967328606 0.21668233810682990252 0.008334156757445556228
8 0.5500084861795729324 0.21667058439043531220 0.008333539180427623907
9 0.5500021215280431720 0.21666764608909212581 0.008333384794548569195
10 0.5500005303809576733 0.21666691152174074237 0.008333346198602246618
11 0.5500001325951735985 0.21666672788040191760 0.008333336549648380680
12 0.5500000331487892859 0.21666668197009840015 0.008333334137411958859

Tab. 2. Inner products of Trigonometric B-splines for various .

wavelet coefficients in B,(Cl_)j —j and B,(f_)j —j whose absolute values are smaller than

/2. We do the same for Bl(c?fj,ﬁ—j using a threshold value of €/(300 - 27). This

smaller threshold is applied because of the scaling of the wavelets.

7.3. Reconstruction

In view of (4.3), to carry out one reconstruction step simply involves matrix multi-
plication using our stored matrices. Because of the band nature of these matrices,
the computation of A_;¢—; requires O(my_;m_;) operations. At each step of
the reconstruction we can store these coefficients in the same matrix C' where the
decomposition was carried out.

§8. Examples

To test the general performance of the algorithms, we begin with the following
simple example.

Example 1. Let £ =8 and ¢ = 9, and let s be the tensor spline with coefficients

Cij = COS((5;?+2 - 5/’?4—1)/2)7
Discussion: Since the normalized quadratic B-splines form a partition of unity,
it follows from (2.1) that with these coefficients, s = 1 for all (6, ¢) € H, i.e., the
corresponding surface is exactly the unit sphere. In this case the coefficient matrix
is of size 770 x 1536, and involves 1,182,720 coeflicients. To test the algorithms, we
performed decomposition with various values of €, including zero. In all cases, after
reconstruction we got coeflicients which were correct to machine accuracy (working
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in double precision). The run time on a typical workstation is just a few seconds
for a full 7 levels of decomposition and reconstruction. O

The illustrate the ability of our multiresolution approach to achieve high levels
of compression while retaining important features of a surface, we now create a
tensor spline fit to a smooth surface with a number of bumps.

Example 2. Let B be the surface shown in the upper left-hand corner of Figure 1.

Discussion: The surface B was created by fitting a spline fs g to data created
by choosing 10 random sized subrectangles at random positions in H, and adding
tensor product quadratic B-splines of maximum height 3/4 with support on each
such rectangle to the constant values corresponding to the unit sphere. For k =
¢ = 8, the coefficient matrix is of size 770 x 768 and involves 591,360 coefficients.
To test the algorithms, we performed decomposition with the thresholding values
e, = 107" forr = 1,...,9. Table 3 shows the results of a typical run with e = .0001.

step nco
0 591360
152064
43150
16649
10720
9772
9746
9745

=1 O Ot i W N~

Tab. 3. Reduction in coefficients in Example 2 with ¢ = .0001.

Almost 3/4 of the coefficients are removed in the first step of decomposition, and
after 7 steps we end up with only 9745 coefficients (which amounts to a 60:1 com-
pression ratio). Table 4 shows the differences between the original coefficients and
the coefficients obtained after reconstruction. The table lists both the maximum
norm

€oo 1= max|ei; — éijl,

and the average ¢; norm
> leis — ¢ijl
€ 1= —————,
mm

where ¢;; are the original coefficients, and ¢;; are the reconstructed ones. Due to the
scaling of the wavelets these numbers are somewhat larger than the corresponding
€.

The surfaces corresponding to the values € = 0,107%,1073,1072 are shown in
Figure 1. At e = .0001 we get near perfect looking reconstruction, while at e = .001

the major features are reproduced with only small wiggles in the surface. At e = .01

17



e =0, nco= 591360 e = .0001, nco = 9745

e = .001, nco = 8276 e = .01, nco = T668

Fig. 1. Compressed surfaces for Example 2.

we have larger oscillations in the surface. This example shows that there is a critical
value of € beyond which the surface exhibits increasing oscillations with very little
additional compression. O

§89. Remarks

Remark 9.1. The approach discussed in this paper was first presented at the
Taormina Wavelet Conference in October of 1993, and as far as we know was the
first spherical multiresolution method to be proposed. The corresponding proceed-
ings paper [6] focuses on the general theory of L-spline wavelets, and due to space
limitations, a full description of the method could not be included. In the meantime
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0 591360 0 0
10 (-9) | 110365 | 5.54 (-7) | 2.73 (-8)
10 (-8) | 73928 | 6.93(-6) | 2.33(-7)
10 (-7) | 44304 | 5.79 (-5) | 1.81(-6)
10 (-6) | 24414 | 3.74 (-4) | 1.39 (-5)
10 (-5) | 13800 | 3.10(-3) | 8.00 (-5)
10 (-4) 9745 | 1.39 (-2) | 4.70 (-4)
10 (-3) 8276 | 5.69 (-2) | 2.83 (-3)
10 (-2) 7740 | 2.69 (-1) | 1.51(-2)
10 (-1) 7668 | 6.02(-1) | 3.24 (-2)

Tab. 4. Coefficient errors in Example 2 for selected e.

we have become aware of the recent work [2,4,8,9,13]. In [2] the authors use ten-
sor splines based on exponential splines in the ¢ variable. The method in [4] uses
discretizations of certain continuous wavelet transforms based on singular integral
operators, while the method in [8] uses tensor functions based on polynomials and
trigonometric polynomials. Finally, the method in [9] utilizes C° piecewise linear
functions defined on spherical triangulations. Except for the last method, we are
not aware of implementations of the other methods.

Remark 9.2. In our original paper [6], an alternative way of making sure that
tangent plane continuity is maintained at the poles was proposed. The idea is to
decompose the original tensor product function s into two parts sy and sp, where

me—2 my

SH 1= Z Zcz‘jwk,itﬁﬂ,]‘

i=3 j=1

and sp := s — sy. Then decomposition, threshnolding, and reconstruction can be
performed on sp. After adding sp, the reconstructed spline possesses tangent plane
continuity at the poles. Our implementation of this method exhibits essentially the
same performance in terms of compression and accuracy as the method described
here, but for higher compression ratios produces surfaces which are not quite as
visually pleasing near the poles.

Remark 9.3. The method described here can be extended to the case of nonuni-
form knots in both the # and ¢ variables. In this case the computational effort
increases considerably since the various matrices can no longer be precomputed
and stored.

Remark 9.4. In Sect. 4 we have presented the details of the tensor-product de-
composition and reconstruction algorithms assuming that the initial function fi »
lies in the space Vi & ﬁg, with k£ and £ not necessarily the same. Since these spaces
can always be reindexed, this is not strictly necessary in the abstract setting, but
was convenient for our application where there is a natural indexing for our spaces.
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Remark 9.5. In computing the coefficients needed in Sections 5 and 6, we found
it convenient to use Mathematica.

Remark 9.6. There are several methods for computing approximations of the
form (1.1). An explicit quasi-interpolation method using data on a regular grid
(along with derivatives at the north and south poles) can be found in [11]. The
same paper also describes a two-stage method which can be used to interpolate
scattered data, and a least squares method which can be used to fit noisy data. A
general theory of quasi-interpolation operators based on trigonometric splines can

be found in [7].

Remark 9.7. A closed, bounded, connected set U in R® which is topologically
equivalent to a sphere is called a sphere-like surface. This means that there exists a
one-to-one mapping of U onto the unit sphere S. Moreover, there exists a point O
inside the volume surrounded by U, such that every point on the surface U can be
seen from Q. Such surfaces are also called starlike. For applications, we can focus
on the class of sphere-like surfaces of the form

U={vp(v): veS}

where p 1s a smooth function defined on S. Then each function f defined on U is
just the composition f(-) = g(p(-)) with p of a function ¢ defined on S.

Remark 9.8. As indicated in [9], compression methods on the sphere can be
adapted to the problem of creating multiresolution representations of bidirectional
reflection distribution functions (BRDF’s), althought the basic domain for such
functions is actually a hemisphere. We will explore the use of our method for this
purpose in a later paper.

Remark 9.9. It is well-known that the polynomial B-splines are stable. In partic-
ular for quadratic B-splines (y;) with general knots

1
slellee = | > cipillz < lelloo

for all coefficient vectors ¢. The same bounds hold for trigonometric splines since
the linear functionals

Nif = [ F(E) + 2004 o) (T~ faa))2
introduced in [11] are dual to the @;, i.e.,
Aigj = bij, i,9=1,...,m,
where o; := cos((Zi42) — Tit1)/2). Analogous stability results hold for general

pP-norms.
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