On Stable Local Bases for Bivariate
Polynomial Spline Spaces

Oleg Davydov V) and Larry L. Schumaker 2

Abstract. Stable locally supported bases are constructed for the spaces Sj(A)

of polynomial splines of degree d > 3r 4+ 2 and smoothness r defined on trian-
gulations A, as well as for various superspline subspaces. In addition, we show
that for » > 1, it is impossible to construct bases which are simultaneously

stable and locally linearly independent.

§1. Introduction

This paper deals with the classical space of polynomial splines
Sg(A):={s € C"(Q): s|r € Py for all triangles T' € A},

where Py is the space of polynomials of degree d, and A is a regular triangulation
of a polygonal set 2. We also discuss superspline subspaces of the form

S;P(A):={seSj(A): s€ CP(v) for all v € V}, (1.1)

with p := {py}vey, where p, are given integers such that r < p, < d, and V is the
set of all vertices of A.

Our aim is to describe algorithms for constructing locally supported bases
{Bi}¢ct for these spaces which are stable in the following sense:

Killclee < 1Y ciBillse < Kallel (1.2)
1€ET

for all choices of the coefficient vector ¢ = (¢;)iez. We are interested in a construc-
tion for which (1.2) holds with constants Ky and K3 which depend only on d and
the smallest angle 8 in the triangulation, and not on the number of triangles or
any other property of /A. Stable bases are of critical importance for both theoretical
and practical purposes.
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To date, algorithms which produce stable local bases have been described only
for certain very special spline spaces, see Remarks 8.2-8.5. In this paper we give
algorithms to construct locally supported stable bases for general superspline spaces
SyP(A) with d > 3r 4+ 2. Such bases for the full spline spaces Sj(A) (which
correspond to the choice p, = r for all v € V) are of special importance due to the
fact that these spaces are nested for nested triangulations, while most superspline
spaces are not, see Remark 8.6.

The paper is organized as follows. In Sect. 2 we introduce some notation, and
review the minimal determining set approach to constructing bases for spline spaces.
In Sect. 3 we describe for later use a special construction of minimal determining sets
for superspline spaces defined on near-singular cells. In Sect. 4 we construct stable
local bases for the superspline space Sy (A) defined by choosing p, = p == r +
V';—IJ for all v € V. In Sect. 5 we consider the superspline spaces on arbitrary cells.
The main result for general superspline spaces §;”(A) is established in Sect. 6,
and the connection between stability and local linear independence is explored in
Sect. 7. We conclude the paper with several remarks in Sect. 8.

§2. Dual bases and minimal determining sets

The key tool for constructing stable spline bases is the well-known Bernstein-Bézier
representation for polynomial splines of degree d on a triangulation A used in
almost all of the papers cited below. In particular, we use the fact that there is a
1-1 correspondence between the set of splines SY(A) and the set of B-coefficients

{Cé}éevd,A > where

Da,n ::{f:fzw,wherei—l—j—l—k:d
and T := (u,v,w) is a triangle in A}

are the domain points associated with d and A. Throughout the paper, whenever
we write a triangle T := (u,v,w) in terms of its vertices, we assume that u,v,w
appear in counterclockwise order.

Suppose S is a linear subspace of SY(A), and that M C D C Dy a. Then
M 1s said to be a determining set for & on D if setting the coefficients of s € §
associated with the domain points in M to zero implies that all coefficients of s
corresponding to domain points in D are zero. M 1is called a minimal determining
set (MDS) for S on D if 1) given any real numbers {c¢}ecaq, there exists at least
one spline s € § whose B-coefficients in M are {c¢}eca, and 2) all coefficients
associated with domain points in D\ M are uniquely determined by the coefficients
of s in M. We say that M is a stable MDS for § on D if all computed coefficients
are bounded by K maxgeaq |ce|, where K is a constant dependening only on d and
the smallest angle 6 in A. If M is a MDS for § on all of Dy A, we simply call it
a minimal determining set.

The algorithms presented here for constructing bases is based on the following
well-known (cf. [6]) result:



Algorithm 2.1. Suppose M is a MDS for §. For each £ € M, construct the
unique spline B¢ € S satisfying

ApBe = 0¢ y, alln € M. (2.1)

Then the set {B¢}eca 1s a basis for S. We call it the dual basis corresponding to
M.

Discussion: To construct the spline B, choose ¢g = 1, and set all other coefficients
corresponding to n € M to zero. Then since M is a MDS, all remaining coefficients
can be uniquely computed from smoothness conditions. There are two standard
ways to use the smoothness conditions — see e.g. Lemmas 6.1 and 6.2 in [24]. We
make use of both of them below. O

For a given spline space &, there are generally many different minimal de-
termining sets M. Our aim in this paper is to design algorithms for choosing
manimal determining sets which produce stable local bases when applied to a space
S C S8Y(A). Recall that given a vertex v of A, star(v) = star'(v) is the union of
triangles sharing v, and starf(v), £ > 2, is defined recursively as the union of the
stars of the vertices in V N start=1(v).

Definition 2.2. We call a MDS for a spline space § C SY(A) a stable local MDS
provided that the corresponding dual basis B := {B¢}¢c m satisfies

supp (Bg) C start(vg) for some vertex v, (2.2)
[Belloo < K (2.3)

for all ¢ € M, where the constants ¢ and K depend only on d and the smallest
angle O in A.

Theorem 2.3. Suppose that M is a stable local minimal determining set for a
spline space § C 8Y(A). Then the dual basis B is a stable locally supported basis
for §.

Proof: Let s € §. Then for any { € M, the corresponding coefficient c¢ is the
B-coefficient of the polynomial sp := s|p, where T is a triangle containing £. But
then by the stability of the Bernstein-Bézier basis for polynomials (cf. Lemma 4.1
of [24]), we have |c¢| < Cl|s7]|so,7 < C||5]|0o, where C is a constant which depends
only on d. This establishes the left-hand side of (1.2) with the constant Ky :=1/C
which depends only on d. For the right-hand side, we note that by Lemma 3.1 of
[24], for any triangle T', the number of basis splines B¢ whose supports contain T is
bounded by a constant depending only on d and 64 (cf. the proof of Theorem 9.2
in [24]). Combining this with the boundedness of the basis functions completes the
proof. 0O

With an appropriate renorming, it can be shown that the dual splines also
provide a basis which i1s L,-stable for 1 < p < oo, see Remark 8.7.

As we shall see in Sections 3 and 4 below, one of the main problems in creating
stable local bases for various spline spaces § is to make sure that (2.3) holds for
triangulations which contain edges which are near-degenerate in the following sense.

3



Definition 2.4. Suppose T = (v,vy,v3) and T = (v,v2,v3) are two triangles
which share an edge e = (v,vy). Given 6§ > 0, we say that e is f-near-degenerate at
v provided that the smaller of the two angles between the edges (v,v1) and (v,vs)
is greater than m — 6.

In the case where the edges (v, v1) and (v, v3) are collinear, the edge e = (v, v2)
is a classical degenerate edge. It is easy to see that if A is a triangulation whose
smallest angle is at least 6, then no edge of A can be f-near-degenerate at both ends.
Moreover, in such triangulations, the number of near-degenerate edges attached to
any vertex v can only be zero, one, two, or four, and in the case of four near-
degenerate edges there are no further edges attached to v, compare Definition 2.6.

Since the Bernstein polynomials on any triangle satisfy 0 < B;ijk < 1, to
insure that (2.3) holds, it suffices to make sure that for each dual basis spline
Bg constructed in Algorithm 2.1, all of its computed coefficients satisfy |c,| < K,
where K depends only on d and the smallest angle 84 in A. As noted above, these
coefficients are typically computed using the smoothness Lemmas 6.1 and 6.2 of
[24]. Suppose T and T are two neighboring triangles as in Definition 2.4, and let
v = byvy + bava + bgv. Without going into detail (cf. [24]), we note that Lemma 6.1
is a stable process when applied to triangles whose smallest angle is bounded below
by 8. In contrast to this, the computation of Lemma 6.2 is not stable if one of
|b2|, |bs| becomes too small, i.e., if the edge ey := (v,v3) is f-near-degenerate at
either end, with § — 0. However, Lemma 6.2 certainly can be used in a stable way
if the measure of near-degeneracy of e; is controlled. The following lemma shows
that the computation of Lemma 6.2 is stable when applied to edges which are not
0 An-near-degenerate.

Lemma 2.5. Suppose the smallest angle in T and T is at least 0, and that the
smaller of the two angles between e; := (v,vy) and e3 := (v,v3) Is at most T — 6.
Then |by| > sin” 6.

Proof: Let e; := (v,v2). Then

ler]|es|sina
ba| = =~
le1]]ea] sin 64
where @ is the smaller of the two angles between e; and e3, and 6, is the angle
between the edges e; and e3. It was shown in the proof of Lemma 3.2 of [24] that
under the above hypotheses, |es|/|e2| > sinf. But then the result follows from the
fact that |sina| > sin while |sin6,| < 1. O

Definition 2.6. Suppose v is a vertex where exactly four §-near-degenerate edges
meet. Then we call v a 6-near-singular vertex.

If v 1s a near-singular vertex where all four edges are actually degenerate, then
v is a classical singular vertex formed by the intersection of two lines. It is easy to
see that if A is a triangulation whose smallest angle is at least # and v is not a
f-near-singular vertex, then there must be at least one edge attached to v which is
not f-near-degenerate at either end.



Definition 2.7. Suppose A, is a triangulation which consists of four triangles
surrounding a singular vertex v. Then we call /A, a singular cell. If v is a f-near-
singular vertex v, we call /A, a 6-near-singular cell.

We conclude this section by recalling some additional standard notation. Given
a triangle T := (v, u, w), we write ff’;k for the domain points of S}(A) which lie in
T. Given a vertex v, we define the ¢-th ring around v to be

Ry(v) := U{SdT—f,j,f—j : 0<j <land T is a triangle attached to v}, (2.4)

and the ¢-th disk around v to be

4
Dy(v) := | Ru(v). (2.5)
v=0
For any triangle T" attached to v, let
RI(v):= Re(v)N T, D} (v) := Dy(v)NT. (2.6)

§3. A stable MDS on a near-singular cell

As afirst step towards constructing stable local minimal determining sets for general
spline spaces, in this section we examine the superspline space

ST (Ay) ={s € Sj(A,): s€CH(v)}, (3.1)
where
1
M:r+r+ J (3.2)
2

and A\, is a near-singular cell. Our aim is to construct a stable MDS for S;’”‘(Av)

on Dy (v).
Suppose vy, ..., vy are the boundary vertices of A, in counterclockwise order,

where v5 = v1. Let T; := (v,v;,vi41), for ¢ = 1,...,4. For p+1 < ¢ < 2r, we
introduce some simplified notation for certain domain points on the ring R¢(v). Let
=gl 1<j<
Qpj "= Sd—t0—rtj-1,r—j+10 + =T SN0

T, ) .
905 = Ea b tmrinptj—1—ni—ji1s L ST < e (3.3)

i . ¢T; :
dy ;= fd—z,z—r+2n4+]‘—1,r—2m—j+17 l<y<r—=2n¢+1,

where

ne:=2r+1—4. (3.4)
Note that ny > 1l and r — 2n,+1 > 1.
It is not difficult to describe a stable MDS for S;*(A,) on Dy(v) for p+1 <

k < 2r if v 1s actually singular.



Theorem 3.1. Suppose A\, is a singular cell. For each { = u+1,...,2r, let

4
Mv,f = {a%,lv s 7a},n4} U U{gz,lv s 7gz,n4}7
=1
i | (3.5)
Oy,e = U{dz,p e 7dz,r—2n4—|—1}'
=1
Then for each k = p, ..., 2r,
k
Te:=D(v) U | [Mue U Oy (3.6)
{=p+1

is a stable MDS for the space S;"(A,) on Di(v).

Proof: We proceed by induction on k. The result is clear for £ = pu. Suppose we
set the coeflicients c¢ of s € Sy*(A,) for £ € T'y. Then by the inductive hypothesis,
all coefficients in Dy_q(v) are uniquely determined by c¢, £ € I'r—y C I'y. We then
compute the coefficients on ring Ri(v) using the standard smoothness conditions
as in Lemma 6.1 of [24]. Namely, we first use the coefficients in Ty N R} (v)
and Di_1(v) to compute the coeflicients in R;?(v) \ I'x. This last set includes in
particular {a%’l, cee a%’m }, so that we can proceed in the same way and successively
compute the coefficients in R*(v) \ Tx, R{*(v)\ Tx and R}'(v) \ Ts. Note that
here we have not used a portion of the smoothness conditions across the edge e; :=
(v,v1) which involve the coefficients ¢, for £ € {a}’l, e ,a}’w}. Nevertheless, these
conditions must be satisfied since the number of free parameters c¢, £ € T'y \ ['x—q,
used in the above computation on ring Ri(v), is equal to

dmS)H(A,) —dim SF (Ay) = 4(k —r) + ng

(cf. Theorem 2.2 of [31]). Thus, we are able to compute all coefficients c¢, £ €
Dy(v)\ Tk, by applying Lemma 6.1 of [24] several times. By that lemma, the maxi-
mum of the computed coeflicients is bounded by a constant K times the maximum
of the set coefficients, where K depends only on d and the smallest angle in A,. O

For later use in building stable local minimal determining sets for general spline
spaces, it is critical that the stable MDS in Theorem 3.1 contains the sets O, . We
now extend this result to #-near-singular cells with § > 0. In Sect. 5 we construct
stable minimal determining sets for supersplines on general cells (which include the
near-singular cells considered here). The construction there is simpler, but does
not guarantee that the resulting MDS contains the needed sets O, .

Theorem 3.2. Suppose A\, is a cell associated with a @-near-singular vertex v,
and let O, ¢ be the sets in (3.5). Then for each i+ 1 < { < 2r, there exists a set
of domain points

4

My C A= U {{aé,]‘ 721 U {gé,j 721 .

=1



such that for each k = p,...,2r,
k
Tp:=D(v)u | [MucUO,] (3.7)
{=p+1

is a stable MDS for the space 8" (A,) on Di(v).

Proof: Since Theorem 3.1 covers the case where A, is a singular cell, we may
assume that A, is a near-singular cell but not a singular cell. We proceed by
induction on k. The statement of the theorem holds for k£ = p since I', = Dzl(v)
is trivially a stable MDS for §;*(A,) on D,(v).

Fix p4+ 1 < k < 2r, and suppose that T'y_; is a stable MDS for S;*(A,)
on Di_1(v). To construct 'y which is a stable MDS for S;*(A,) on Di(v), we
need to supplement I',_; with an appropriate subset of the domain points on the
ring Ri(v). Using the fact that v is not a singular vertex, it is easy to see that
the number of edges attached to v with different slopes is at least three. Then
Theorem 2.2 of [31] implies

m = dm S (Ay) — dim SH (A,) = 4(k — 7). (3.8)

Thus, to get a minimal determining set T'y for S7*(A,) on Di(v), we need to add
to I'y—1 exactly m points on the ring Ry(v).

To simplify the discussion of how to choose these m points, we first reduce the
problem to one of considering splines whose coefficients are zero for all points in the
disk Dg—1(v). Given s € §;"(Ay), let Ti—1s be the spline in Sj(A,) constructed
in Lemma 3.4 below such that for each triangle attached to v, gr := Tp_1s|r
interpolates the derivatives up to order k—1 of s| at v. Note that since s € C*(v),
Tik—1s is also in C*(v). Then the spline § := s — Tp_1s € S;*(A,) has all zero
coefficients in Dy_1(v). Computing its coefficients on the ring Rj(v) will stably
and uniquely determine the coefficients of s on Ry(v), since by Lemma 3.4 the size
of the coefficients of 7} _1s on this ring 1s bounded by the size of the coefficients of
sin Dg_q(v).

We now focus on the set A, U O, of domain points at T q: j» and d’
lying on ring Ri(v). Clearly, if we are given values for the coefficients of 3 1n
Ay k. U Oy i, then the remaining coefficients of § corresponding to domain points
on Ri(v)\ (Ayk U Oy k) can be computed directly and stably from smoothness
conditions using Lemma 6.1 of [24].

Suppose vy, ..., vy are the boundary vertices of A, in counterclockwise order,
and let e; := (v,v;) and T; := (v,vi,vi41) for ¢ = 1,...,4, where for convenience
we identify v;44 with v; for all 2. In addition, suppose the barycentric coordinates
of v;_y with respect to the triangle 7; are given by

Vi—1 = TiVi41 + Siv + 0,

for 2 = 1,2, 3,4. Note that ¢; = 0 if and only if the edge e; is degenerate at v. Since
v is assumed not to be a singular vertex, at least one t; is nonzero.
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Let z = (z1,...,z4r+4) be the B-coefficients of § corresponding to the domain
points

4
U{ak,la"-7ak,nagk,17"-7gk,n7 ks k,r—2n—|—1}'
=1

Here we are writing n := ny = 2r+1—k for ease of notation. Since the coefficients of
§ corresponding to domain points in Di_1(v) are zero, the smoothness conditions of
order r —n+1,...,r across the interior edges of /A, which connect the components
of z to each other can be written in the form

Hz=0, (3.9)
where
HY H{ H{ —I
. ~I He HI HY
= g d ’
—I HY H! H!
g d
~I H¢ H! H;
T;ﬂ—n—l—l
r—n—+2 r—n+2\ r—nm4+1,
r; (r—n—|—1_ [} ti
H;l — I
r—1 r—1 r—n+1,n—2
T U (r—n—l—l, 7 tz
r T r—1,. . T r—n+1,;n—1
T (r—l)ri ti (r—n—l—l)ri tz
r—n+1\, r—mg . r—n-+1 r—2n+1,n
< r—n )ri ti oo (r—2n—|—1)ri tl
ng = )
T r—nin T r—2n+1,2n—1
(r—n) T tl T (r—2n—|—1)ri tl
r—n+1\ r—2n,;n+1 r—n+1\ 6 4r—n r—n-+1
()i e (YTt t;
d . _
Hi T : . . 3
r r—2n,2n r\ . r—1 r
(r—Zn) T tl U (1)r’ti tl

and [ is the n X n identity matrix. We call a column of H a d-column when it passes
through one of the matrices H. We define a-columns and g-columns similarly.
The matrix H has 4n rows and 4(r+1) columns where n < r+1. We claim that
it has full rank 4n. Indeed, the number of independent solutions 4(r+ 1) —rank(H)
of the homogeneous system (3.9) must be equal to m, which implies rank(H) = 4n.
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This means that there is a choice of 4n indices 1 < 17 < -+ < 14, < 4r + 4 such

that the determinant of the corresponding square submatrix H (i1, -, %4, ) is not
zero. Moreover, it follows from Lemma 3.3 below that we can choose 21,245
such that no column of H(i1, -, 4y ) is a d-column.

We are ready to describe the set M, ;. Denote by ¥ the set of indices of all
a- and g-columns of H, and let {s7, -}, } C T be such that

|det H(i,...,t4,)] = max _|det H(i1,...,04n)| (3.10)
11 4eeylan €D
We take M, 1 to be the set of domain points in A, which correspond to the
columns with indices in the set ¥\ {47, --,1;,}. Then M, ; U O, is the set of
domain points on Ry(v) which correspond to the columns of H with indices in the
set J*i={1,...,4r +4}\ {¢F, -, 05, }
Now assuming that the coefficients {z;};cj» of § corresponding to points in
M, rUO, i have been set, we may compute the remaining coefficients corresponding
to points in A, U Oy & from the non-singular system

Zg*
3]

H(it,.ia0) | 0 | == 5HG),
= i€
l4n

where H(j) is the j-th column of H. Using Cramer’s rule and taking account of
(3.10) and Lemma 3.3, we conclude that

Z'EJ* |Z]||detH(ZT7 . 7ii—17j7ii+17' . 712n)| -
15+ s%n 7
forv =1,...,4n, where K is a constant depending only on d and the smallest angle
in A,. This shows that the computation of z;»,...,z» is stable. O

We conclude this section with two lemmas which were used in the proof of The-
orem 3.2. The first result concerns determinants formed from 4n X 4n submatrices

of H. Let
(r;ﬁjz_1> (rr—_;z—:—ll)

(r—rn) e (r—21;1—|—1.)
A simple computation shows that

1
1!

where C' is a positive constant depending only on r and n. It is well-known that this
determinant is nonzero for all choices of n, and thus the matrix R is nonsingular.
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Lemma 3.3. Let H(iy,...,i4n) be adnx4n submatrix of H containing a nontrivial
d-column. Then there exists another submatrix H(ji,...,jan) with one less d-
column such that

|det H(il, P ,i4n)| § C |det H(jl, Ce 7j4n)|7 (311)

where C' > 0 is a constant depending only on d and the smallest angle of A\,.

Proof: Suppose H(iy,...,%4,) includes a nontrivial d-column ¢, = (r+1)(z — 1) +
2n 4+ j with 1 <7 <4 and 1< j <r—2n+ 1. Note that the column is nontrivial
if and only if the corresponding ¢; is nonzero. For any 1 < j <r —2n+ 1, it is not
difficult to see that

n ) J+n—«k
CHUES SE U G A}

k=1

(7]

where the numbers z;' are determined from the nonsingular linear system

R| : |= : . (3.12)
J/’E;/] (r—Zntl—l—j)

Since the k-th column of Hl-g corresponds to the (r +1)(¢ — 1) +n + s-th column of
H. this implies that

n ‘ £ JH+n—=k
det H(iy, ... ian) = »_ al/ (—) det H,,

P
k=1 t

where
H,{ = H(il,...,ip_l,(r—l—l)(i—1)—|—n—|—/£,z'p+1,...,i4n).
Thus, ‘
|det H(i1,...,04n)| < Kql|t;|? max |det Hy|, (3.13)

where Ky depends only on d and 8a. The result follows since |t;| < Ky where Ko
is a constant depending only on 6. (In fact, |t;| is quite small since we assume
that v is near-singular.) O

The following lemma was used in the proof of Theorem 3.2 above, and will also
be useful in Sect. 7 below.

Lemma 3.4. Let A, be a cell, and let 0 < r < k < d be integers. Given a spline
s € §§(Ay), let Tp_1s be such that for each triangle T attached to v,

Tk—18|7 := the unique polynomial of degree k — 1 which matches

the derivatives of s|p at v up to order k — 1.
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Then Ty_1s € S;_,(Ay) C Sj(A,). Moreover, if

where Bg are the Bernstein polynomials of degree d associated with a triangle T
then Eg = cg for all £ € DI |(v), and

max |ég|§K max |cg|, (3.14)
€€Rg(v) €€Dg_1(v)

where K is a constant depending only on d.

Proof: Comparing cross derivatives of neighboring pieces of 7j_1 s, it 1s easy to see
that it satisfies C" smoothness conditions across the interior edges of A, and thus
is a spline in S§§_;(A,) C SJ(A). Now fix a triangle T := (v, v;, vi41) in A,. Then
by the well-known connection between derivatives and coefficients of a polynomial
written in Bernstein-Bézier form, it follows that ég = cg for all ¢ € DI | (v).
Finally, to establish (3.14), we observe that since 7;_1s is a polynomial of degree
k — 1, its k-th derivatives are identically zero, and thus for all v =0,...  k,
k—
0= Dzi—vai+z—v7-k—18|T(v)
d! = AN it
_ _1\k—d1i—g2 5T
B (d_k)l Z Z ( >< 2 )( 1) ' 2cd—j1—j2,j1:j2'

J1=0 72=0 J1
It follows that

d! v k—v o
AT k—jy —jo AT
o« E _1)k—ii—d2 o
Cd—k,v,k—v (d k)l <]1> ( j2 >( ) Cd—j1 —j2,51,j2°

T 0<j1<y, 0<ja<k—w
J1+ig<k-1

which immediately implies (3.14). O

§4. Stable local bases for S;*(A)

Our ultimate aim is to give stable local bases for the general superspline spaces (1.1)
defined on arbitrary triangulations A of a polygonal set Q2. However, in order to
illustrate the construction in a somewhat simpler setting, in this section we consider
the superspline space

SPHA):={seSy(A): se C#(v) for all v e V},

for d > 3r 4 2, where p is defined in (3.2). This is the special case of (1.1) with
pv = p for all v € V. The analogous construction for general superspline spaces
requires further analysis of cells (see Sect. 5), and is given in Section 6.
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In order to describe a minimal determining set for S;*(A) which leads to a

stable local basis, we need some additional notation. Given a triangle T' := (u, v, w),
let f:‘gk be the domain points of SY(A) which lie in 7. Let

C’T::{fi:gk: i>r g >r k>rh
Associated with the vertex u, let

D;{(u) = {.fgk 1> d— /J}
[5]i—1

AT(u) = U U{fg_2r+i—1,r—j,r—i+j+1}’

i=1 j=0

with similar definitions for the other two vertices of T'. Associated with the edge
e := (u,v), we define

FT(e) = {f?;k k< r}

[5]i—1
G%(e) = U U{‘fg—Zr—l—i—l,r—}-l—l—j,r—i—j}

i=1 =0

5li-1 (41)
G%(e) = {5?+1+j,d—2r+i—1,r—i—j}

1=1 3=0

with similar definitions for the other two edges of 7. Note that the definitions of
GT(e) and GL(e) depend on the orientation of the edge e. Namely, if € := (v, u),
then GT(e) = GL(€) and GL(e) = GE(é).

Let Vg and Vg be the sets of vertices of /A which are singular and §a-near-
singular, respectively.

Theorem 4.1. Let M be the following set of domain points:
1) for each triangle T, include the set C7T,

2) for each edge e, include the set ET(¢), where T is some triangle sharing e,

3) for each edge of a triangle T such that e lies on the boundary of €2, include the
sets G (e) and Gk(e),

4) for each vertex v € V, include Dg(v) for some triangle T attached to v,

5) suppose the vertex v ¢ Vng is connected to vy,...,v, in counterclockwise
order. Let T; := (v,v;,viy1) and set Ty := T, = (v,vy,,v1) if v is an interior
vertex. Let 1 < iy < .- <4 < n be such that e;; is Oa-near-degenerate at

either end, where e; :== (v,v;) forv =1,...,n. Let J, := {t1,...,1x}. Then
a) include G:Lpi(ei) for all1 € J,,
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b) include ATi(v) for all 1 <i < n — 1 such that i € J,,

¢) include AT»(v) if v is an interior vertex,

6) for each vertex v € Vg, include the sets My y41,..., My 2, constructed in
Theorem 3.1,

7) for each v € Vns \ Vg include the sets My y41,..., My 2, constructed in
Theorem 3.2.

Then M is a stable local minimal determining set for Sy (A).

Proof: We claim that M is well-defined. In particular, as observed above, if
v & Vns, there is always at least one edge attached to v which is not near-degenerate
at either end. In the numbering of the edges in step 5) above, we can choose this
edge to be (v, v,), and the construction insures that for each interior vertex v € Vg
and edge e; := (v, v;) attached to it, if v; € Vg, then I' includes exactly one of the
two sets ATi(v) or Gfi(ei).

To see that M is a MDS for §;*(A), we now show that for each { € M,
we can construct a unique dual basis spline Be. Suppose we set the coeflicient
corresponding to £ equal to 1, and all other coefficients associated with n € M to
zero. We now show that this uniquely determines all other coefficients of Be.

First, for all vertices v of A, we use the coefficients in item 4) and Lemma 6.1 of
[24] to uniquely compute all coefficients associated with points in the disks D, (v).
Next we compute coeflicients on the rings R, 41(v) for all v. First we do the
vertices v which are not in Vygs. Next we use Theorem 3.1 for each vertex v € Vg,
and Theorem 3.2 for each vertex in Vs \ Vs. To do this, we need the coefficients
corresponding to the sets O, ,4+1, but these will all have been set or computed at this
point. Then we repeat this process one ring at a time until we have completed all
of the rings up to Ry,(v) for all v. Note that in doing these rings, all computations
are done one arc at a time, where an arc consists of points on a ring which lie at
a distance up to r on either side of an edge attached to v. As in [24], we process
arcs in a counterclockwise direction around v. These computations are based on
the smoothness conditions of Lemma 6.1 of [24], or (only if the corresponding edge
is not f-near-degenerate) those of Lemma 6.2 of [24].

At this point all coefficients of s will have been computed except possibly some
points which fall into sets of the form

E"(¢)\ [Dar(u) U Dr(w)].

where e = (u,v) is an interior edge. These coefficients can be computed from the
associated coefficients in the neighboring triangle (which will have been set) using
smoothness conditions as in Lemma 6.1 of [24].

We claim that this construction gives dual basis splines whose coefficients sat-
isfy (2.3) with a constant K which depends only on d and the smallest angle in A.
This follows since the computations in Lemma 6.1 of [24] are always stable, and
since we only apply Lemma 6.2 of [24] to edges which are not 6a-near-degenerate,
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those computations are also stable, see the discussion proceeding Lemma 2.5 above.
The computations in the rings R,41(v),..., Rz,(v) for a singular or near-singular
vertex v are stable by Theorems 3.1 and 3.2.

Finally, we claim that for each { € M, the support of the dual spline B is at
most star®(ve ) for some vertex ve. The argument is a modified version of the proof
of Theorem 9.1 in [24]. We divide the discussion into cases.

Case 1: Suppose £ € CT. Then clearly the support of Bg is T.

Case 2: Suppose £ € ET(e)\ [Dzr(v) U Dzr(u)], where e = (v, u) is a boundary
edge of A. Then the support of B is just the triangle T

Case 3: Suppose £ € ET(e) \ [Dzr(v) U Dgr(u)], where e = (v,u) is an interior

edge shared by T' and a neighboring triangle T'. Then the support of B¢ is T'U T.

Case 4: Suppose £ € M N Dy,.(v) with v € Vys. In addition, suppose that
£ & D,(u;), where uy,...,us are the vertices on the boundary of star(v). In this
case, we claim that the support of B is at most star®(v). Let e = (u,w) where u
is one of the u; and w is a vertex on the boundary of star?(v). Note that since no
edge can be fa-near-degenerate at both ends, u ¢ Vyg. Let My := M\ {{}. Then
all coefficients of B¢ associated with domain points in M are set to zero and ¢ is
set to 1. After applying the smoothness conditions to compute unset coeflficients of
Bg, we will get several additional nonzero coefficients in D,(v). Moreover, since
2r-disks around neighboring vertices overlap whenever d < 4r 4 1, in this case it
is also possible to get nonzero coefficients in Dy, (u) \ D,(u), which in turn could
propagate to Dyy(w) \ D,(w), and possibly even further. We now show that this

does not happen. Let T := (u,w, z3) and T := (z1,w,u) be the two triangles which

share the edge e. Note that M, contains one of ET(e) or ET(e). There are three
cases.

a) e is not near-degenerate at either end. Then M, contains the set AT (w), and
since coefficients in Dy,(w) are computed in counter-clockwise order, nonzero
coefficients in Dy, () do not propagate to nonzero coeflicients in Da,(w) which
lie outside of star?(v).

b) e is near-degenerate at one end and w ¢ Vys. Then My contains both G:Lp(e)

and GL(e) = GT(¢), where é = (w,u). Lemma 8.2 in [24] then implies that
there is no propagation along e into Dy,.(w).

¢) w € Vng. In this case My contains the set G:Lr(e) and one of the sets E7(e)

or ET(e). In addition, it also contains sufficient points so that the C* super-
smoothness at the vertices implies that all coefficients associated with domain
points in D, (u) and D,(w) are zero. But then it is easy to see that all coeffi-
cients in the O, ¢ sets appearing in Theorems 3.1 and 3.2 are zero. Since all of
the sets M, ¢ appearing in those theorems are also in M, we again conclude
that there is no propagation along e into Da,(w).
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Case 5: Suppose £ € M N Dy (v) with v € Vg and that £ does not fit Case 4.
Then we claim that the support of By is at most star®(v). Let u be a vertex on the
boundary of star(v). There are two cases.

a) u € Vns. Then Case 4 applied to u shows that there is no propagation beyond
star?(u), and thus none beyond star®(v).

b) v € Vns. Then the argument of Case 4 shows that there is no propagation
beyond star?(v).

This completes the proof. 0O

§5. A stable basis for §;”*(A,) on a cell A,

Before constructing stable local bases for §j(A) and for general superspline spaces,
we need to examine the superspline space §;7*(A,) with r < p, < p on an arbitrary
cell A,. Suppose that v is a vertex which is connected to the vertices vy, ..., v, in
counterclockwise order, and let v,41 = vy. Let

AU = {T = <U,Ui,vi—|—1>7 ’L:]_,,n}

form a triangulation of the set

Q, = O T;.

=1

In this case A, is called an interior cell. We now construct a stable basis for
St (Dy).

Let e be the number of edges attached to v with different slopes. Then by
Theorem 2.2 of [31],

m = dimSH (A,) = (pv2+2> . Ku—;+1> B (Pv —2r+1>] ro, (51)

where
pn—r

o= Z (r+74+1—yge)t. (5.2)

J=po—r+1
Suppose {;}¢; are the domain points associated with the cell A,. It is easy
to see that )
-1
nc:nK”Q )—I—Qﬂ—l}—l—l:n{%}—l—l. (5.3)

Given s € S (Ay), we denote the B-coefficient associated with ; by ¢; for ¢ =
1,...,n.. Associated with each interior edge of A, there are u — j + 1 smoothness
conditions to insure C7 continuity across that edge, 7 =1,...,r,and p—r —k+1
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smoothness conditions to insure C'’* continuity at v, k = 1,...,p, — r. This gives

a total of . . .
. prly  fp—rt po—T+
(U5 ) () ()]

2 —r+1 po—1r+1
:nr{i}—l—n
2 2

smoothness conditions to insure that s lies in S;’p”(Av). Note that ny, < n.. These
conditions can be written in matrix form

Ac =0, (5.5)

where ¢ = (¢1,...,¢,,)7, and A is an appropriate n, X n, matrix.
In general, the system (5.5) includes some redundant smoothness conditions,
and so n, :=rank(A) < ns. Indeed, since dimS;’p”(Av) = ne — n., it follows that

N N

(5.4)

(5.6)
B {Q'LL_T—I_l}—I—l— pv+2 tn po—r+1 .,
- 2 2 '
This implies that the number of redundant equations in (5.5) is
v+ 2
Nyped 1= <'0 2—|- > —1+o0. (5.7)

Without loss of generality, we may assume that redundant equations have been
dropped, and that (5.5) is written in the equivalent form

[Al AQ] Cc = 0,

where Ay is an n, X m matrix and A, is an n, X n, matrix. We may also assume that
the columns of A (and the corresponding components of ¢) have been numbered
so that the determinant of 45 has the maximal absolute value over all n, X n,
subdeterminants of A.

Algorithm 5.1. For each: = 1,...,m, let s; be the spline in §**(/,) with B-

coefficients ¢ = (c1,...,¢,,)7 chosen so that ¢; = 1, ¢; = 0 for j = 1,...,m with
J # 1, and ¢pma1, ..., Cn, are determined from the linear system
Cm+1
IS I TG (58)
Cn

c

where Ay (1) is the i-th column of the matrix A;.

The splines {s;}, are clearly linearly independent since
Ajsi = 0; 5, 7=1,...,m, (5.9)

where A; is the linear functional which picks off the j-th B-coefficient. It follows
that they form a basis for S;’p”(Av). We now show that their construction is a
stable process, i.e., for each ¢, all of the coeflicients of s; are uniformly bounded.
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Theorem 5.2. Suppose s; is one of the basis splines constructed by Algorithm 5.1.
Then its B-coefficients satisfy

le;] <1, j=1,... n (5.10)

Proof: Fix 1 <: < m, and let ¢ = (¢1,...,¢n,) be the vector of coeflicients of s;
as computed from Algorithm 5.1. Then (5.10) clearly holds for j = 1,...,m. Let
m + 1 < j < n.. Then by Cramer’s rule,

. det(fig)

T Jet(4y)

where A, is the matrix obtained from A, by replacing the j-th column by —A; (7).
But then |¢;| < 1 follows by the choice of 4;. O

Note that this is a constructive algorithm for building dual basis splines. In-
deed, if we take M, to be the set of domain points corresponding to the m coef-
ficients ¢y, ..., ¢, which are set (as opposed to calculated) in Algorithm 5.1, then
obviously M, is a minimal determining set for S;’p”(Av).

A completely analogous algorithm can be used to create stable dual basis
splines for §#*(A,) in the case where A, is a boundary cell.

§6. A stable basis for S;”(A)

In this section we combine the constructions of the two previous sections to create
stable local bases for the spaces of supersplines S§;”(A) defined in (1.1) for all
d > 3r 4 2. As in [23], we assume that

ky + ky < d for each pair of neighboring vertices v,u € V,
where
kv = maX{pv,,u}, vE V?
with 4 as in (3.2).
Given a triangle T = (u, v, w), let
cT.=cT\ [DkTu (u)U DkTv (v) U DkTw (w)].
Associated with u, let .
Al (u) := AT () \ Dy (u),
with similar definitions for the other two vertices of T'. Associated with the edge
e := (u,v), we define
G(e) = GL(e)\ DY, (u
GR(e) == GR(e)\ Di, (v
ET(e):=ET

)
);
(e)\ [Di, (u) U D, (v)],
with similar definitions for the other edges of 7.
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Theorem 6.1. Let M be the following set of domain points:
1) for each triangle T, include the set cT,

2) for each edge e, include the set ET(e), where T is some triangle sharing e,
3) for each edge of a triangle T such that e lies on the boundary of 2, include the
sets GT(e) and G(e),
4) for each vertex v €V,
a) include the set DZU (v) for some triangle attached to v if p, > u,

b) include the domain points in D,(v) corresponding to the stable minimal
determining set M, of Section 5 for SpP*(A,) if p, < p,

5) suppose the vertex v ¢ Vg is connected to vy,...,v, in counterclockwise
order. Let T; := (v,v;,viy1) and set Ty := T, = (v,vy,,v1) if v is an interior
vertex. Let 1 < iy < --- <14} < n be such that e;; is Oa-near-degenerate at

either end, where e; :== (v,v;) forv =1,...,n. Let J, := {t1,...,1x}. Then
a) include é’%’(el) for all1 € J,,
b) include ATi(v) for all 1 <i <n —1 such that ¢ & J,,

¢) include AT»(v) if v is an interior vertex,

6) for each vertex v € Vg, include the sets My i, +1,..., My 2, constructed in
Theorem 3.1,

7) for each v € Vng \ Vg include the sets My i, +1,..., My 2r constructed in
Theorem 3.2.

Then M is a stable local minimal determining set for Sy*(A).

Proof: It is straightforward to check that M is a determining set for S;”(A).
To see that M is a minimal determining set, we construct splines B € SJ(A)
corresponding to each £ € M. The support properties of these basis splines are the
same as in Theorem 4.1, and the boundedness of their coefficients follows by the
same argument as before. 0O

§7. Stability and local linear independence

We recall (cf. [10,15,18,19,20]) that a set B = {B,},ecz of basis splines for a spline
space § is called locally linearly independent (LLI) provided that for every T € A,
the splines {B,},ex, are linearly independent on T', where

Sp:={v: T Csupp B,}. (7.1)

Since the classical univariate B-splines are both stable and locally linearly inde-
pendent (cf. Theorems 4.18 and 4.41 in [30]), it seems natural to expect that there
also exist bases for bivariate spline spaces which possess both of these properties
simultaneously. Here we have constructed stable local bases for the spline spaces
S7(A) and their superspline subspaces, while star-supported LLI bases for the same
spaces were recently constructed in [18]. But these bases are different, and in fact
we have the following surprising result.

18



Theorem 7.1. Given r > 1 and d > 3r + 2, there is no construction which will
lead to bases for Sj(A) on general triangulations which are simultaneously stable
and locally linearly independent.

Proof: Suppose B := {B,},er is a stable LLI basis for SJ(A) on a triangula-
tion which contains an interior near-singular vertex v. Suppose v is connected to
v1,02,v3,v4 in counterclockwise order. For each 1 < ¢ < 4, let ¢; := (v,v;}, and
T; := (v,v;,vi41). Let

Vi—1 = TiVi+1 + s;v + 105,
and suppose that none of the e; is degenerate at v, i.e., t; # 0. For convenience,
we define «;, 3;,7i, pti to be the linear functionals picking off B-coefficients corre-

. . . T T; T; T;
sponding to the domain points gd—2r,r,r75d—2r,r—1,r—|—175d—2r,r—|—1,r—175d—2r—1,r,r—|—17
respectively.
For each 1 < j < 4, we claim that there is a unique spline S; € §J(A) whose
only nonzero coefficients are

a;jSji=1, 7;Sji=—r;/(rt;), vi+1S;:=ri1/(rtjza),
Bi—1Si=r"19S5,  BiSi= 117 S,

r—

- 1. 4.0, G 1 4 .
frj—15j = 1rris5yiSy, Sy =iy 8417415

It can be verified directly that S; satisfies all C" smoothness conditions, and thus
belongs to S7(A). It is also easy to see that

supp S = T4 UT; UTjqq,

and by a property of LLI bases (see [10,20]),

Si=> B, (7.2)
I/EI]‘
where I; :=={v: supp B, CT;_1 UT; UTj41} for j =1,2,3,4. We now define

~

S = T;Sl + 52 + T?)_TS?, + (T3T4)_r54.

Using the fact that ryryrgry = 1, it is easy to check that all of the coefficients of S
are zero except for

~
b

arS =1y, aS:=1, azS:=r;", asS:=(rsry)".

This immediately implies )
[Sllo0 < K,

where K3 depends only on d and 6a.
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In view of (7.2), we can write

S = Z a,B,.

veEl1 Ul UlgUl,

By the assumption that the basis B is stable, we have
lalloo < KIS0 < K3 /K,

where K is the constant in (1.2).

For each v, let B, =B, — Tyr—1B,, where Ty, 1B, € §5,._1(A,) C Sj(A,) is
the spline constructed in Lemma 3.4 which interpolates the derivatives of B, at v
up to order 2r — 1. Then the B-coefficients of B, corresponding to domain points
in the disk Dy,_1(v) are zero. Moreover, since the basis B is stable, it follows from
Lemma 3.4 that the B-coefficients of B, corresponding to domain points on the
ring Ry, (v) are bounded in absolute value by a constant K, depending only on d
and GA.

Since all of the derivatives of S up to order 2r — 1 at v are zero, Tzr—lg =0,

and we have (on A,)
5- Y awh.

veliUl,UlgUly

Since the support of B, is a subset of the support of B, (on Ay,), it follows that
as B, # 0 only if v lies in the set

I = {v: supp B, =Th1 UTy, UT3s}.

This implies
1= ayS = Z a, asB, < #I2||a||oomax |agB |,
V€I2

Now clearly #fg < 3<d;2), and hence there exists vy € I such that
|OzQB,,O| > I&’5 > 0,

where K5 depends only on d and 6a.
Now consider the following C'™ smoothness condition across the edge es:

r—1

>, r— >, r r—
alBuo = T§a2Bu0 + 11y 1t2’Y2Bu0 + Z (r _ 1)’“2 A k+1772 kBVm
k=1

Where N2,k 1s the linear functional which picks off the B-coefficient corresponding

.fd 2kt r—k—1 for k=1,...,r — 1. Since ole,,O = 0, this implies
r—1 k
~ 1 r IX5
Bl/ - Bl/ > 9
o 0|+T;(r_k_1) Bl 2 | 72| 2
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which is unbounded as t3 — 0. On the other hand, since the B-coefficients 725’,,0,
ng,ké,,o, k=1,...,r — 1, correspond to domain points on the ring Ra,(v), they
cannot exceed K, in absolute value, which leads to a contradiction and completes
the proof. O

Note that the above proof also applies to the superspline spaces S;”(A) when-
ever p, < 2r for some near-singular vertex v. On the other hand, if d > 4r + 1 and
pv > 2r for all vertices, then the basis constructed in [23] is both stable and LLI.

§8. Remarks

Remark 8.1. It is well known [5-8,22,23] that the dimension of spline spaces
and superspline spaces (when p, < 2r) generally depends on the exact geometry
of the triangulation, and in particular may change as certain near-singular vertices
become singular. Thus, it may seem surprising that it is possible to construct stable
bases even though the dimension is not stable. This fact was realized already in [1]
for S3(A\,), where /\, is a near-singular cell. The spaces considered in [11] are also
examples where stable bases were constructed even though the dimensions were not
stable.

Remark 8.2. For d > 3r + 2, algorithms for constructing star-supported bases for
SJ(A) were presented in [22], and for general superspline subspaces in [23]. The
constructions there produce stable bases for r = 0, and for d > 4r + 1, p, > 2r for
r > 0. However, they are not generally stable if p, < 2r, since some of the basis
functions do not remain bounded for sequences of triangulations containing vertices
which become singular, even if the smallest angle in the triangulations is bounded
away from zero. If p, < p, then many other sequences of triangulations lead to
unbounded basis functions when two edges attached to the same vertex become
collinear.

Remark 8.3. Stable bases were constructed in [11] for the superspline space
S7H(A), and in [24] for a certain special subspace & of §;¥(A), as a first step
in constructing quasi-interpolation operators with optimal approximation order.
Note that these constructions differ from our algorithm for S;*(A) described in
Section 4. Compared to the construction in [11], our basis splines have substantially
smaller supports in general (see also Remark 8.10). For the space &S the algorithm
in [24] produces basis splines with similar small supports, but does not appear to

extend to the full spaces S7(A) and S;*(A).

Remark 8.4. Well-known finite element results, see e.g. [32], imply that the
classical superspline subspaces of SJ(A) have stable local bases. In [17] we have
recently extended this construction to the full spline spaces SJ(A) with d > 5. The
construction there uses nodal functionals (point evaluation of certain derivatives).
Here we have used the linear functionals A¢ which pick off the coefficients of the
Bernstein-Bézier form.
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Remark 8.5. No constructions of stable bases for spline spaces with d < 3r +2 are
known for general triangulations. However, it is possible to construct stable bases
for some values of d < 3r + 2 for classes of splines defined on special triangulations
using macro-element techniques. These include Clough-Tocher and Powell-Sabin
refinements, for example. See [25,26].

Remark 8.6. For multiresolution applications, it is important to work with se-
quences of triangulations which are nested. In such cases, the corresponding spline
spaces S§7(A) are also nested, but in general the various superspline subspaces are
not. (See the discussion of this “super-spline effect” in [14,27].)

Remark 8.7. Following the proof of Theorem 2.3 (see also the proof of Theorem 9.2
in [24]), it is not hard to establish

Theorem 8.8. Suppose M is a stable local MDS for a spline space §, and let
{Be¢}ecam be the corresponding dual basis splines. Given 1 < p < oo, let B ) :=

Agl/pBg, where A denotes the area of the support of Be. Then {B¢ p}eca is an
L,-stable basis for S, i.e., there exist constants Ky and K, depending only on d
and O such that

Killel, < I Y ceBesllna < Kafel, (8.1)
£eM

for all choices of the coefficient vector ¢ = (¢¢)eecm.

Remark 8.9. The definitions of near-degenerate edges and near-singular vertices
given here are not exactly the same as in [24], but are essentially equivalent.

Remark 8.10. Our construction guarantees that the supports of the basis splines
are at most star3(v) for some vertex v in general. In some cases the supports can be
made smaller. An explicit construction of stable star-supported bases for C'! splines
can be found in [17]. A careful examination of the construction here shows that for
r = 2, we also get star-supported stable bases. Moreover, the same holds for general
r > 2 provided d > 3r+ [(r+1)/2] 41, since in this case Dy,(u)ND,(w) = 0 for any
two vertices u,w connected by an edge. For d = 3r + [(r + 1)/2] we can construct
star?-supported stable bases. Indeed, using the fact that Da,_i(u) N D,(w) = 0,
we simply modify Theorem 3.2 to choose M, 2, = {a%m,g%r’l,gg’r’l,gér’l} where
it is assumed without loss of generality that ey is the “best edge” attached to the
near-singular vertex v in the sense that ey is #-near-degenerate with the greatest 6
among all edges attached to v.

Remark 8.11. The proofs of Theorems 3.2 and 5.2 are based on Cramer’s rule.
This idea of choosing a submatrix with the greatest determinant was used already
in [11].

Remark 8.12. The fact that stability and local linear independence are mutually
exclusive for spline spaces SJ(A) with r > 1 was first established for r = 1 in [17].
The proof was based on nodal determining sets. Here we have used the Bernstein-
Bézier form to establish the same result for general r > 1.
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Remark 8.13. Our construction of a stable local basis can be easily adapted to the
spaces of splines and supersplines on a triangulation on the sphere or a sphere-like
surface introduced in [2]. Indeed, since we are using exclusively Bernstein-Bézier
techniques, our construction and the entire argument can be carried over in the
same way as was done in [3] for the standard local bases of S;”(A).

10.

11.

12.

13.

14.
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