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Stable Local Nodal Bases for C1
Bivariate Polynomial Splines

Oleg Davydov and Larry L. Schumaker

Abstract. We give a stable construction of local nodal bases for spaces

of C! bivariate polynomial splines of degree d > 5 defined on arbitrary tri-
angulations. The bases given here differ from recently constructed locally
linearly independent bases, and in fact we show that stability and local
linear independence cannot be achieved simultaneously.

§1. Introduction

Given a regular triangulation A, let
SH(A):={s € CY(Q) : s|p € Py for all triangles T € A},

where Py is the space of polynomials of degree d, and €2 is the union of the
triangles in A. In this paper we focus on the case r =1 and d > 5. The main
result of the paper is a construction of a basis B := {B;}*_; for S}(A) with
the following properties:

P1) The basis B is local in the sense that for each 1 < i < n, the support of
B; is contained in star(v;) (see the end of this section) for some vertex v;,

P2) The set B is stable in the sense that there exist constants K; and Ks
dependent only on the smallest angle 6 in A such that

n
Killelloo < 1Y eiBillo < Kallclloo (1)stebs
i=1
for all choices of the coefficient vector ¢ = (cq, ..., cy).

Bases for S}(A) satisfying property P1 were constructed in [14] using nodal
techniques, but they fail to satisfy property P2 for triangulations with near
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singular vertices or near degenerate edges, even if the smallest angle in the
triangulation is controlled.

For convenience, we recall the definitions of some of the terminology used
above. Suppose v is a vertex of a triangulation which is connected to vy, v, v3
in counter-clockwise order. Then the edge e := (v,v2) is said to be near-
degenerate at v (degenerate at v) provided that the edges (v,v;) and (v, vs)
are near-collinear (collinear). The vertex v is called near-singular (singular)
if there are exactly four near-degenerate (degenerate) edges attached to it.
Given a vertex v of A, star(v) is the set of triangles sharing v, and star®(v) is
defined recursively as the union of the stars of the vertices of start~1(v).

§2. Nodal determining sets and nodal bases

Suppose s is a spline in SJ(A), and that v is a point in . In this paper
we are interested in certain linear functionals defined on S}(A) in terms of
values and derivatives of s at points v in 2. Such functionals are called nodal
functionals. There are three types of nodal functionals of interest here:
1) the value s(v),
2) the directional derivative DI's(v), where w is a given vector and m is a
positive integer,
3) the mixed derivative Dyt Di'?s(v) at a vertex v of A, where w; and w,
are two noncollinear vectors which point into a common triangle 7" of A.

nodat Definition 1. A collection M := {\;}?_; of nodal functionals is called a
minimal nodal determining set for Si(A) provided they form a basis for the
dual space (S3(A))*. If M is such a set, then there exist unique splines
B:={B;}_, in S}(A) such that

AiBj == 6ija Z,j == 1, ey T (2)dua1
We call B a nodal basis for Si(A).

In this paper we will concentrate on nodal functionals which involve
derivatives D, along edges e := (v1,v2) of the triangulation A, or perpen-
dicular to such edges. Denoting the Cartesian coordinates of a point v by
(v®,vY), we see that the derivative along the edge e is given by

(v§ — v¥)Das(v) + (v — v7)Dys(v)
V5 i)+ (0] )2

while the derivative perpendicular to the edge e is given by

(vg = v7) Dy3(v) — (v5 — 1) Dys(v)

V(g —vf)? + (vf —of)?

D.s(v) :=

D, s(v) :=

Note that

D<U1,U2)S(/U) = _D(UQ,U1)8('U)7 D<U1,U2>¢S(’U) = _D(vg,v1)¢8(v)'
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§3. Smoothness conditions between polynomial pieces

It is well-known how to describe smoothness between polynomials defined on
adjoining triangles in terms of the Bernstein-Bézier coefficients of the two
polynomials. Here we need similar conditions in terms of nodal information.
Suppose T = (v1,v3,v3) and T = (vy, vy, U3) are two adjacent triangles with a
common edge e = (v1,v2). We set 01 = Lvzv1v2, B2 = Lv3vav1, 0, = /30109,
0> = /D3v9v1. Suppose

0 0
v < vy < - < Vg

(3)

1 1
v <077 < -, < g

are given points lying in the interior of the edge e.

nsmooth Lemma 2. Let p,p be polynomials of degree d > 5 defined on adjoining

triangles T and T as above. Then p and p join together with smoothness C*
across the edge e := (vy,vy) if and only if the difference g = p — p satisfies

g(vz) = Deg(’Ui) = Delg(vi) = ng(vz) = Oa ; 1= ]-7 2a (4)ns"
g(,v.e,O) =0, =1, y & — 9,
1 (5)nsm1
Doig(vy™) =0, i=1,...,d—4,

and

6-1D(2v1 ,v2)p(vl) = &1D<U1 ,UZ)D(Ul,Us)p(vl) + JlD(Ul ,W)D(vl,ﬁs)ﬁ(vl)ﬂ

A ~ - (6)nsm2
G2D7,, 5y P(V2) = 52D 4, 0,) D vy 0)P(V2) + 02D 05 0, D 53 D(02)

where o; = sinb;, &; := sin;, 6; := sin(6; + éi), 1=1,2.

Proof: We follow the method of proof of the main result in [14]. Concerning
necessity, we first observe that if p and p join with C! continuity across e,
then

g(v) = Dyg(v) =0, for all v € e, (7)ns

where w is any unit vector noncollinear with the edge e. This implies (5)
and the conditions on g, D.g and D,. g in (4). The conditions on the second
derivatives are easily obtained by differentiating the identities (7) along the
edge e and using the fact that

Qv

&1D<U1,’U2>p(vl) == ].D(U]_,’Ug)p(vl) —l_ O-ID(v]_ ,ﬁg)p(v1)7
&2D<U2,’U1>p(v2) == &2D(U2,U3)p(v2) —l_ 0-2D<1)2 ,ﬁg)p(v2)'
To prove sufficiency, suppose that p and p satisfy (4)—(6). Then the

univariate polynomial g|. is of degree at most d and satisfies d + 1 homoge-
neous Hermite interpolation conditions on e. Therefore g(v) = 0 for v € e.
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This shows that p and p join continuously. We now consider the cross-
derivative ¢ := D,1g|. which is a univariate polynomial of degree at most
d—1. By (4)-(5), ¢ has d—2 zeros vy, v%", ..., v§f4, v9 on e. Moreover, by (6),
D.q(v1) = D.g(vz) = 0, as is easy to check by expressing D.D,.p(v1) as a lin-
ear combination of D2p(v1) and DgDy, 4,)p(v1) and expressing DeD,1p(v1)
in terms of D?p(vy) and DD, 3,)P(v1), and similarly for vy. Therefore,
g = 0, and we have shown that p and p join with C'-smoothness. O

For a different set of nodal smoothness conditions, see [5].

§4. Construction of a stable local nodal basis for S}(A)

In this section we begin by defining a spanning set AMa of nodal functionals
for (S;(A))*. Then we choose an appropriate linearly independent subset
M which forms a basis for (S;(A))*. This will involve analysing the linear
dependencies between elements of Na (i.e., the smoothness conditions). The
corresponding nodal basis determined by the duality conditions (2) will be the
desired stable local basis for S;(A). Given a triangle T := (v1,ve,v3), let

. . ke
Uijk::ZU1+JILC)l2+ US, ’L-{-j-}—k:d

Given an edge e of A, let v; 0 and vy ! be the points defined in (3). We define

cT :={)\g;-ks=s(v£k): it+tjt+k=d, 2<i,jk},
Ele):={ N =s(wf’): i=1,...,d—5}
U{Xts = le|Dois(oft): i=1,...,d—4},

where |e| denotes the length of e.

Given a vertex v in A\, suppose the vertices connected to v are vq,...,v, in
counterclockwise order (with v; a boundary vertex if v lies on the boundary),
and let T = (v, v;,vi41), e; = (v,v;), 0; = Leje;y1, where if v is an interior
vertex, we identify vsi, = vy, €p1n, = €4. Denote by |star (v)| the area of
star (v). Let

Di(v) = {Aj;s = [star (v)\iHDiDis(v) :0<i+j<1}

Ra(v) :== {5 = %btar (v)[?D2 s(v): i=1,...,n}

sin 6; sin 6, _

U{AY ;s = sy Istar (v)[?De, De,,,s(v) : i=1,...,n}

sin 6;

if v is an interior vertex, and

Ra(v) := {)\f,ps = mbtaf (v)|2D§is(v) ci=2,...,n—1}
U {A} s = [star (v)]?D2 s(v): i=1,n}

U{A ms = L_|star (v)|>De,De,,,5(v): i=1,...,n—1}

sin 6;
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if v is a boundary vertex. Let

Na= ] c"u ] €@ u ] [DPi(v) URs(v)].

TeAN eeEN vEA
The Markov inequality implies that for all s € S3(A) and all A € Na,
IAs| < K||8]|oos (8)stan2

for some constant depending only on d and the smallest angle 6 in A.
~oeia Lemma 3. The set N is a spanning set for (S;(A))*. Moreover, the only
linear dependencies between elements of Na are given by

Y+ AL g = Sin(0; + 6i-1) AL, (9)1smoo

1—1l,m
for every vertex v and every interior edge e; attached to v.

Proof: Let s € S;(A). If As = 0 for all A € N, then on each triangle T € A
there are exactly (‘%’2) homogeneous Hermite interpolation conditions on s,
and it is easy to see that they force s to be zero. It follows that Na is a
spanning set for (S}(A))*. The second statement follows immediately from

Lemma 2. O

a1 Algorithm 4. (Construction of a stable local nodal basis for S}(A).) Let
{Bi}}_, be the set of splines determined by the duality conditions (2) corre-
sponding to the following set M := {\;}I; of nodal functionals:

1) For each triangle T, choose the (d;i) nodal functionals )\z;.k in CT.

2) For each edge e = (v1,vy), choose the 2d — 9 nodal functionals A\{"° and
AT in E(e).

3) For each vertex v, choose the three nodal functionals A}; in D1(v).

4) For each vertex v, choose the following nodal functionals in Rq(v):

a) one of the functionals A} ,, corresponding to the first mixed derivative
at v, and

b) all functionals Ajp corresponding to the pure second derivatives at
v, with one exception: if v is a nonsingular interior vertex, the func-
tional A} , is omitted, where 1o is chosen such that

‘ Sin(GZO + 9i0_1)| 2 |Sin(07, —I_ 07,—]_)‘7 fOI‘ a]l '[, - 1, ceey n. (10)maxang1e

nbasis L heorem 5. The set M of Algorithm 4 is a minimal nodal determining set
for 8;(A\), and the nodal basis {B, ..., By} for S;(A) defined in (2) is local
and stable, i.e., it satisfies both conditions P1 and P2.

Proof: The fact that M is a basis for (§3(A))* follows easily from Lemma 3.
To construct a typical basis spline B;, we set \;B; = 6;; for alli =1,...,n.
Then the remaining nodal values ABj, A € Na \ M are computed from the
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smoothness conditions (9). It is easy to see that the support of the resulting
spline is at most the star of a vertex. This shows that P1 is satisfied.

It remains to show that the B; form a stable basis. This follows from (8)
by a standard argument [12], provided we can show that

IBjllo <K, 1<j<n, (11)p2e

where K is a constant depending only on d and the smallest angle 6 in A.
This clearly holds if

IABj| < K, forall A€ Na,

for a similar constant K. By construction, |AB;| < 1 for all A € M. Since
Na\M cC U, Rz(v), let us take an arbitrary vertex v of A and notice that
if A € Ra(v), then AB; can be nonzero only if the corresponding A; lies in
Ra(v). Therefore, it will be sufficient to show that |AB;| < K for all j such
that A; € Ra(v) and all A € Ry(v) \ M. We distinguish four cases.

Case 1: (v is a boundary vertex.) In this case, Ra(v) \ M = {A},, :
i=1,...,n—1,i#141}, where A} .m 1s the functional included in M in step
4a) of Algorithm 4. Without loss of generality we assume that ¢ = 1. For
any s € S;(A), (9) implies

v v v
9.mS = —ALmS+ 02X5,8

v v
3 mS — Al m O-QAz’ps + 0'3)\37178

v _ n+z 1
n—l,ms - ( 3+ E : ,pS

where we set

g; = sin(ei + 07;_1).

If we take s to be the basis spline B; corresponding to a A; € Ra(v), then
all but one of the values on the right-hand side of the expression for A7, B;
vanishes, and thus

N B <|\Bj|l=1, i=2...,n—1,
1,m ] 77

which proves the assertion.

Case 2: (v is an interior vertex with n # 4.) In this case, Ra(v) \ M =
N i=1,. ,n,z;ézl}u{)\mp} For A},.s, i =1,...,n, i # i1, the
same calculatlon as in Case 1 applies: we start from )\'Ll m s and calculate Aj s
consecutively counterclockwise until A? _; s, and then also clockwise until
A} m$- For AY s, we have by (9),

10,M

AU = ()\U S + AZO 1 ms) (12)1ambda

20 7p t0,Mm
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Therefore, our claim will be established if we show that
|O-Z_01| - |Sin_1(9i0 “I‘ 97:0_]_)| S K3 if n 7é 4, (13)sigma

where K3 is a constant dependent only on #a. This is obvious for n = 3.
Assuming n > 5, we have |6, + 62 + 03 + 04 — 27| > . Hence,

|9i0 +9i0—1 —71" Z max{wl +92 —7l'|, |93+04 —7T|} Z 9&/2,

and (13) follows.

Case 3: (v is a singular vertex.) In this case, Ro(v)\ M = {A},, : i =2,3,4}
(where we assume for simplicity that ¢; = 1). Since o7 = --- = 04 = 0 for a
singular vertex, (9) now reduces to

A s+ A s =0, i=1234.
Therefore, .

Mms = (1) s, 0=2,3,4,
and the assertion follows.

Case 4: (v is a nonsingular interior vertex with n = 4.) We proceed as in
Case 2, but calculate A} s differently. At first glance it may seem that (10)
does not guarantee stablhty since |o;,| may be arbitrary small (in the case
of near-singularity), while A} s is to be computed from (12). However, the
complete system of equatlons ( ) for Ra(v) is

TN pS = A S+ A1 ms, 1=1,2,3,4.

Taking the sum with alternating signs, we get

and hence

o]
Xf 8l < D0 A8l < 1

i#ig |0.10 |

for every s = B;, with A; € Ra(v). This completes the proof of (11), and the
theorem has been established. O

§5. Stability vs. LLI

We recall (cf. [2,4,6,8,9]) that a set B of basis splines in S}(A) is called locally
linearly independent (LLI) provided that for every T' € A, the splines {B; : i €
Y.r} are linearly independent on T', where

Yr:={i: T Csupp B;}. (14)sigma

A star-supported LLI nodal basis was constructed for S}(A) in [4]. We now
establish the following surprising result.
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nostablez Theorem 6. For d > 5, it is impossible to construct a basis for S}(/\) which
satisfies both conditions P2 and (14) simultaneously.

Proof: Suppose {By,..., By} is alocally linearly independent basis for S} (A)
on a triangulation A which contains an interior near-singular vertex. Suppose
v is connected to vy, ...,vs in counterclockwise order, and let e; be the edge
(v,v;), T; the triangle (v;,v;11,v), and 6; the angle between e; and e;y;.
Suppose that none of e; is degenerate at v. For each 1 < j <4, let s; be the
unique spline in §}(A) such that

)‘;'},msj = 6ij7 ?’7.7 = 17 2a 37 4a

As; =0, for all A € Na \ Ra2(v)
Clearly,

supps; = T;_1 UT; UT 1,
and we can write (see [2,9])
8; = Z cszi,
i€l

where I; := {i: supp B; C supp s;}. We now consider the spline

§=—81+82—83+84=— Z Cgl]Bz’ + Z C?]Bi - Z CE’]BZ- + Z c£4]Bi

el 1elsy i€ls 1€ly
= E a'sz
1€l UI,Ulz3Uly

Using the smoothness conditions (9), it is easy to see that
A8 =0, AY.8=(-1), i=1,2,3,4,
A8 =0, for all A € Na \ Ra(v).
and thus ||§||cc < K4, where K4 depends only on d. If the basis { B, ..., By}

satisfies P2, we get
lalloo < K1 I8llco < Ka/Kn.

Moreover, since A3, B; # 0 only if T3 UT> U T3 C supp B;, we have

1=Xy,,8 =) aiXy,,B; < #Ijallco max |y, Bil,
icl, '
with Ip := {i : supp B; = T1 UT, U T3}. Clearly, #I, < 3(*1?), and hence
there exists 19 € Is such that
‘)‘g,mBio| > K5 >0,
where K5 depends only on §a. However, A\, B;, = 0, so that by (9) we have

1 Ks
Bil—=—_—  ~ |\ B |>__ 5
P ZO‘ ‘ sin(01 + 92)| ‘ 2,m ZO‘ o | sin(91 + 92)' ’
which is unbounded as 6y + 3 — w. In view of the Markov inequality, it
follows that ||B;,||cc is unbounded. But then the basis {Bi,..., By} cannot

be stable. O

R
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§6. Remarks

Remark 1. Stable local bases are important for both theoretical and practical
purposes. For example, it can be shown (see [12]) that if a spline space has
such a basis, then it has full approximation power. Applications where stable
bases are useful include data fitting and the numerical solution of boundary-
value problems.

Remark 2. For d > 5, stable local bases for certain superspline subspaces of
Si(A), can be constructed using classical finite elements, see [15]. However,
it is also important to have such bases for the full spaces S}(A), since in
contrast to supersplines, they are nested, i.e., S;(A1) C S;(A2) whenever
Qg is a refinement of Aq. This is important for multiresolution applications,
see [3,13].

Remark 3. Algorithm 4 is a modification of the algorithm used in [14] to
construct a star-supported basis for S3(A). The only change is in the choice
of nodal functionals in step 4b) where iy was taken to be any index such that
e;, 1s nondegenerate at v. To get stability, we have to choose 7y more carefully.
The basis constructed in Algorithm 4 is not locally linearly independent. To
get an LLI basis, step 4) has to be modified in a different way, see [4].

Remark 4. Star-supported bases were constructed for general spline spaces
S5(A) for d > 4r+1in [1], and for d > 3r+2in [10,11]. The constructions were
based on Bernstein-Bézier techniques, and are not stable for triangulations
that contain near-degenerate edges and/or near-singular vertices.

Remark 5. In [7] we use Bernstein-Bézier techniques to construct stable local
bases for general spline spaces S;(A) and their superspline subspaces for all
d > 3r + 2. In a related work [6], we also used Bernstein-Bézier techniques
to construct locally-linearly indepependent bases for the same range of spline
spaces and superspline spaces. For more on LLI spaces, including applications
to almost interpolation, see [2,4,6,8,9].

Remark 6. Following the arguments in [7], it is easy to show that a natural
renorming of our stable bases is L,-stable for all p € [1, o0].

Acknowledgments. The second author was supported in part by the Na-
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