On the Approximation Power of Splines
on Triangulated Quadrangulations
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Abstract. We study the approximation properties of the bivariate spline
spaces S3,.($) of smoothness r and degree 3r defined on triangulations ¢ which
are obtained from arbitrary nondegenerate convex quadrangulations by adding
the diagonals of each quadrilateral.
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§1. Introduction

Suppose ¢ is a nondegenerate convex quadrangulation of a polygonal domain
in IR? (see Sect. 6 for details on quadrangulations and techniques for constructing
them). Let ¢ be the triangulation obtained by inserting the diagonals of each
quadrilateral of ). The purpose of this paper is to study the spline spaces

Sa(9) :==A{s € C"(Q) : s|r € Pa, VT € &},

for d = 3r, where P; denotes the space of polynomials of total degree at most d.

Bivariate spline spaces defined over general triangulations have been heavily
studied in the literature, and have proven to be useful in a variety of applications
including data fitting and the numerical solution of boundary-value problems. The
special case of triangulated quadrangulations has received less attention, but there
have been several recent papers, see Remark 7.1. There are several reasons why
the spaces S3,.(¢$) are of particular interest:

1) As we shall show, the spaces S5,.(¢) possess full approximation power. This
is in contrast to spaces of splines Sj(A) based on general triangulations A,
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where full approximation power can only be guaranteed for d > 3r + 2, see [3],
and is known to fail for certain triangulations when d < 3r + 2, see [4].

2) For r = 1,2, the spaces S5.(¢) have smaller dimensions than the triangle-
based spline spaces which are typically used in practice for these choices of
smoothness, see Remark 7.2. This implies reduced complexity in applications.

3) The spaces S%,.(¢) are nested with respect to dyadic refinement, see Sect. 6.
This allows the construction of a multi-resolution analysis and of hierarchical
multilevel bases which are useful in applications, see e.g. [15].

4) As shown in Sect. 6, quadrangulations can also be refined locally which is of
particular importance for numerical solution of boundary-value problems.

The paper is organized as follows. In the following section we introduce some
notation and state several lemmas needed later. In Sections 3 and 4 we analyze
properties of S5.(¢) for the cases r odd and r even, respectively. Section 5 is
devoted to the proof of the following theorem which is the main result of the paper:

Theorem 1.1. Fixr > 1 and 0 < m < 3r. There exists a linear quasi-interpolation
operator Q,, mapping L;() into S%.(¢) such that if f is in the Sobolev space
W) with 1 < p < oo, then

IDEDE(F ~ Qull, o < C 16" [ fla p (L)

for all0 < a+ 3 < m. Here |$| is the maximum of the diameters of the triangles in
$. IfQ is convex, then the constant C depends only on r and the smallest angle 0
in §. If Q is nonconvex, C' also depends on the minimum exterior angle between
any two boundary edges of ).

We prove this theorem by constructing stable bases for certain super-spline
subspaces of S%,.(¢). To conclude the paper, in Sect. 6 we discuss quadrangulations
and their construction, and present several remarks in Sect. 7.

§2. Preliminaries

The spaces W;”H(Q) appearing in Theorem 1.1 are the usual Sobolev spaces
equipped with the norms

( /m+1 1/p
(zwfz,p,g) Ci<pen

k=0
m+1

Z |f|k,OO,Qa p = OO,
k=0

1 llms1,p,0 = S

\
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with

4 1/p
Y IDDyfIE | . t<p<oo
[ flepo=1q \vtu=k
S IDEDLfl p=co.
\ v+u=k

When r < m, the spline @,,f in Theorem 1.1 does not belong to W;"“(Q). In
this case, the norm on the left-hand side of (1.1) must be modified. If p = oo, we
maximize over all triangles, and if 1 < p < 0o, we sum over all triangles of €2 to get

IDZDY(f = Quf)lly o= D I1IDSDY(f = QuA, .-
Tz‘G@

In the finite-element literature these are called mesh-dependent norms.
Our proof of Theorem 1.1 is based on recent results [14] on quasi-interpolation
operators of the form

N
Qmf = _(Aeamf)de, (2.1)

gel

where {¢; }¢er is a set of locally supported splines and ¢ ,,, are linear functionals
defined on L(Q).

To state the result of [14] needed here, we recall that given a vertex v in a
triangulation, the star of v is the union of all triangles which share the vertex v.
The star of order £ is defined recursively as starf(v) := {UT : T shares a vertex
with some T € star~1(v)}.

Theorem 2.1. [14] Fix 0 < m < d. Suppose I' is some finite index set, and let
{¢¢}eer be a set of splines in S(A) such that
H1) there exists an integer £ such that for each £, the support of ¢ is contained
in star(ve) for some vertex ve € /\;
H2) K :=maxe [|¢ll,, o < 00;
H3) K> := maxr #(X71) < oo, where ¥ := {{ : T C o(¢¢)} and o(de)
denotes the support of ¢¢.

Suppose in addition that there exists a set of linear functionals {\¢ m }¢er defined
on L1(Q2) with the property that for all { € T', there is a triangle T; contained in
the support of ¢¢ with

K;
Ae.m f| < mﬂf pTe forall f € Ly(2) when1 <p < oo (2.2)
T
and
Ae,mf| < K3l flloo,o for all f € Loo(2) when p = oo (2.3)
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for some constant K3. Finally, suppose that the corresponding quasi-interpolation
operator (2.1) reproduces polynomials in the sense that

QmP =P forall PeP,,. (2.4)

Then there exists a constant C' depending only on r, the constants K1, ..., K3, and
the smallest angle 04 of the triangulation such that if f € W tH(€2), then

IDEDE(S ~ Qum)l, o < CIAI™ Pl 0 (2:5)

forall 0 < a+pf<mandalll<p<cc.

We establish Theorem 1.1 by examining the super-spline subspace
S3P () == {s € 5,($) : s € P (v), v €V}, (2.6)
where p := {p(v)}yey with

(3r—1)/2, r odd,
p(v) =4q (3r—2)/2, reven and v ¢ V3,
3r/2, r even and v € V3.

Here V is the set of all vertices of , and V3 is the subset of vertices which are shared
by exactly three quadrilaterals. We write s € C¥(v) to mean that the derivatives
up to order v of the polynomial pieces sy := s|p on the triangles T sharing the
vertex v all have the same values at v.

To construct the functions ¢; and functionals A;,, needed to define (2.1),
following [14] we make use of the well-known Bézier representation for splines. In
particular, if s € S9($) and T := (v1,v2,v3) is a triangle in §, s can be written in
the form

S‘T(xay) = Z CZ;kB%k(may)7
i+j+k=d
where ij .. are the usual Bernstein polynomials of degree d associated with 7. As
usual we associate the coefficients cg;.k with the domain points

ik
gg;.k:(w1+ﬁ;+ %) itjtk=d (2.7)

Recall that the distance of a domain point éz;k from the verter vy of T' is d — ¢, and

that its distance from the edge (vg,vs) is ¢, with similar definitions for the other
vertices and edges of T'. Given an integer ;1 > 0 and a vertex v,

Du(v) = {€: d(&,v) < i}

is called the disk of radius p around v.



For each triangle T € ¢, let Dr be the set of domain points in 7', and let
Dy = U{Dr: T € $}, where repeated points (along common edges) are included
just once. The set D@ is just the set of Bézier sites for the Bézier net of a spline

in S9(¢). For each point & € ”D@, let ¢ be the functional defined on S9(4) such
that for any spline s € S9($), y¢s is the Bézier coefficient of s associated with the
domain point £. Given a subspace S of S9(4), we recall that a subset I' of D@
with the property

(’ygs =0 forall £ € F) implies s=0 (2.8)

is called a determining set for S.

To apply Theorem 2.1 to the super-spline space S3.°($), following [14] we need
to construct a minimal determining set I' for this space and an associated set of
splines B := {¢¢ }¢er with the dual property

TnPe = O, allp e T. (2.9)

Then dim 85°($) = #I' and B is a basis for it. We need to choose I' so that
the corresponding set of basis functions {¢¢}eer possess properties H1)-H3) of
Theorem 2.1.

§3. A Minimal Determining Set for S;”($) for r odd

Throughout this section we assume that r is odd. We need some additional notation.
Let p = (3r —1)/2, and suppose T = {(w, v1,vs) is a triangle in §. Define

HT (w) = {¢€ € Dy : dist(&,v1) > 2r, dist(§,v2) > 2r};
BT (w) := {ﬁg_i_ﬂJ :7=0,...,2(i—p+2)+1 and
i=p+2,...,2r—1};

Df(vl) := {¢& € Dr : dist(§,v1) < p};
’D:‘f(fuz) := {¢& € Dr : dist(§,v2) < p};
ET(e) := {€ € Dr : dist(¢,e) < T}\(’DZ(’U;{) U D;‘f(vg)).

(3.1)

These sets do not include all points of Dr. They are disjoint subsets of D except
for HT (w) and £T (e) which intersect in one point.

For r = 7, Fig. 1 shows the sets in (3.1) associated with the four triangles
making up a single quadrilateral and sharing a vertex w. The points in the sets
HT (w) are marked with diamonds, points in BT (w) with boxes, points in DT (v;)
with circles, and points in £7(e) with crosses.

Let Vi be the set of vertices of ¢ which lie at the intersections of diagonals of
quadrilaterals.



Fig. 1. The Domain Points (3.1) for » = 7 and p = 10.

Theorem 3.1. Suppose r is odd, and let I' be the following subset of 'D@:

1) for each vertex v € {, pick a triangle T € § with vertex at v and choose all
points in the set DI (v),

2) for each edge e not attached to a vertex in Vy, include the set £7(e), where
T is a triangle sharing the edge e. If e is a boundary edge, there is only one
such triangle, while if it is an interior edge, we can work with either of the two
triangles sharing it,

3) for each w € Vy and for each i = 1,...,4, choose all of the points in BT (w),
where T; = (w, v;, v; 1) are the triangles with vertex at w,

4) for each w € Vi, pick a triangle T = (w,v,u) € ¢ with vertex at w and choose
all of the points in the set H” (w) except for the domain points &, ., €3, 0 o,

T é-T
r,2r,00 $7,0,27"
Then T' is a minimal determining set for S3¥($), and there exist a set of splines

{¢¢}eer which satisfy (2.9) and thus are a basis for 85°($). These splines satisfy
properties H1)-H3) of Theorem 2.1.

Proof: The fact that I' is a determining set can be verified in the usual way. Indeed,
assuming all of the coefficients associated with domain points in I' are zero, we can
show that all coefficients corresponding to & ¢ I' are also zero using smoothness
conditions. To show this for ¢ in the disk D,(v) of radius p around a vertex v,
we can apply the smoothness conditions directly, see e.g. Lemma 6.1 in [14]. For £
lying in a set of the form £7 (e), we can again use the smoothness conditions. Next,
for ¢ in a set of the form HT (w) with w € Vi, we use Lemma 3.2 below. Finally,
for all remaining £ ¢ T', we use Lemma, 6.2 in [14].

6



Following [14], we now show that I" is a minimal determining set by construct-
ing a dual basis satisfying (2.9). Given { € T', we construct ¢ € S3°(¢) by
choosing the coefficient corresponding to £ to be 1 while setting the coefficients
corresponding to all other n € I' to zero. We then use the above mentioned lemmas
to show that all remaining coefficients corresponding to points in ’D$ are uniquely
defined and are bounded by a constant K depending only on r and 9@ (cf. the
proof of Lemma 6.1 in [14]). It follows that H2) of Theorem 2.1 holds. We now
show that H1) holds with £ = 2 by identifying the support sets o(¢¢) of the ¢e.
There are five cases depending on where ¢ lies.

Case 1: Suppose that £ € D:‘f(v) for a vertex v € V. In this case it is easy to see
that the coeflicients of ¢, are nonzero only for { which lie in one of the quadrilaterals
that share the vertex v. Thus, o(¢¢) is the union of these quadrilaterals.

Case 2: Suppose that £ € £T(e) for some boundary edge of ¢. Then the coefficients
of ¢¢ are nonzero only for { which lie in the quadrilateral ¢ containing e. It follows
that this quadrilateral is the support set of ¢¢.

Case 3: Suppose that £ € £7(e) for some interior edge of ¢ shared by two quadri-
laterals ¢ and ¢’. Then the coefficients of ¢¢ are nonzero only for ¢ which lie in
either ¢ or ¢’. Thus the support of ¢¢ is ¢ U ¢'.

Case 4: Suppose ¢ € BT (w) for some w € Vi, where T = (w, v1,v2) is one of the
triangles of a quadrilateral ¢ with center vertex w (cf. Fig. 1). Then it is easy to
see that the coefficients of ¢¢ are nonzero only if £ lies in one of the two triangles
T = (w,v1,v2) or T = (w,vy4,v1). We conclude that the support of ¢ is g.

Case 5: Suppose ¢ € HT (w) for some w € Vi, where ¢ is a quadrilateral ¢ with cen-
ter vertex w (cf. Fig. 1). In this case the only coefficients of ¢¢ which are nonzero
are associated with domain points which lie in one of the four sets HTi(w) sur-
rounding w. The fact that these nonzero coefficients are well-defined and uniformly
bounded by a constant K depending only on r and 0$ follows from Lemma 3.2
below. Again the support of ¢¢ is g.

It remains to verify that the ¢;’s satisfy H3) of Theorem 2.1. Given a triangle
T contained in a quadrilateral ¢, we examine the set X7 :={{: T C o(¢¢)}. In
view of its support properties, ¢¢ can only be nonzero at a point of T"if £ is in a
quadrilateral which shares a vertex with ¢q. The number of such quadrilaterals is

clearly bounded by a constant C' depending only on r and the smallest angle 0@ of

3r+2

4. Since there are 4 triangles per quadrilateral and at most ( 9

per triangle, we conclude that

) domain points

This completes the proof of the theorem. 0O

The following lemma was used in the above proof. Let ¢ be a quadrilateral
with center w associated with four vertices v;, # = 1,...,4 as shown in Fig. 1. Let
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T; := (w,v;,v;41) for i =1,...,4, and set

4

H=JH"(w).

=1

Lemma 3.2. Suppose s € S5,.(A,), where A, is the triangulation consisting of
the four triangles {T;}+_, making up q. Then the coefficients of s associated with
domain points in ‘H are uniquely determined by those associated with the domain
points

7. T T T T. T T T
H:=H"U {67',2;",7" 67‘3‘,1" frﬁ“,r} \ {é.r,127",0’ 637"1,0,07 é57",}),27"}'

Proof: Suppose we are given the coefficients of s for ¢ € H. We claim that
all other coefficients of s corresponding to points in H can be computed from
the C" smoothness conditions, see Lemma 6.2 in [14]. This can be done in the
following order: compute the coefficients corresponding to the points 53; 500 ij 0,215
and as many coefficients of s on Ty and T4 as possible; compute the coefficient
corresponding to 53: 0,2-; compute the coefficient corresponding to 552;17070; compute
the remaining coefficients corresponding to domain points in 75, T3, Ty. Since w is
a singular vertex (i.e., the intersection of two straight lines), no incompatibilities
arise. 0O

§4. A Minimal Determining set for S;”(¢$) for r even

Throughout this section we assume that r is even. Suppose T = (w,v1,v2) is a
triangle in ¢ and that e := (w1, v2). Choosing p = (3r — 2)/2, we again make use
of the sets H” (w), D} (v1), and D (vs), defined in (3.1). However, we now replace
the sets BT (w) and €7 (e) by

BT (w) := {f?r{;—i—j,i,j :7=0,...,2(i — p+2) and
i=p+2,...,2r—1} (4.1)
ET(e) := {€ € Dy : dist(€, €) < TI\(DL,1 (v1) UDE, ; (v2)).

As in the odd case, these are disjoint subsets of Dy except for HT (w) and E7 (e)
which intersect in one point.

For r = 6, Fig. 2 shows the sets HT (w), BT (w), DI(v1), DI(vy), and ET (e)
associated with the four triangles making up a single quadrilateral. The points in
the sets HT (w) are marked with diamonds, points in BT (w) with boxes, points in
D:—’;(vi) with circles, and points in gT(e) with crosses.

As in the odd case, in order to apply Theorem 2.1, we need to construct a
minimal determining set I' and an associated set of splines B := {¢¢ }¢cr with the
dual property (2.9).



Fig. 2. The Domain Points (4.1) for r = 6 and p = 8.

Theorem 4.1. Suppose r is even, and let I be the following subset of D@:

1) for each vertex v € {, pick a triangle T € ¢ with vertex at v and choose all
points in DI (v),

2) for each edge e not attached to a vertex in V., include the set gT(e), where T
is a triangle which shares the edge e. If e is a boundary edge, there is only one
such triangle, while if it is an interior edge, we can work with either of the two
triangles sharing it,

3) for each w € Vy and for each i = 1,...,4, choose all of the points in BT: (w),
where T; = (w,v;,v;11) are the triangles with vertex at w,

4) for each w € Vi, pick a triangle T = (w,v,u) € ¢ with vertex at w and choose

all of the points in the set HT (w) except for domain points §Z:m, fg;«,o,o; 53:%0,

T
7,0,2717

5) choose the center domain point on each edge of {,

6) for each boundary vertex v € { choose the domain points listed in Lemma 4.2
below,

7) for each interior vertex v € { where exactly three quadrilaterals meet, choose
the domain points listed in Lemma 4.3 below,

8) for each interior vertex v € <) where more than three quadrilaterals meet,
choose the domain points listed in Lemma 4.4 below. Then I' is a minimal
determining set for S3*($), and there exist a set of splines {¢¢}eer which
satisfy (2.9) and thus are a basis for S3*($). These splines satisfy properties
H1)-H3) of Theorem 2.1.

Proof: The proof is very similar to that of Theorem 3.1, and is based on the same
lemmas mentioned there plus Lemmas 4.2, 4.3, and 4.4 below. Using these lemmas,
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it is easy to check that I' is a determining set. Then we can show that it is a min-
imal determining set by constructing a dual basis satisfying (2.9) and hypotheses
H1)-H3). Given £ € T', we construct ¢¢ as before by setting the coeflicient corre-
sponding to £ to 1, and the coefficients corresponding to all other n € T" to 0. As
in Theorem 3.1, the ¢, have supports on a single quadrilateral, on two neighboring
quadrilaterals, or on the collection of quadrilaterals which share a vertex v € V. O

In the remainder of this section we present three lemmas which are needed for
the proof of Theorem 4.1. Given a spline s in S} (star(v)), we call 'y, C D,,41(v) a
minimal determining set for s on D,1(v) provided we can arbitrarily choose the
coefficients of s for £ € 'y, and then uniquely solve for all other coefficients of s
corresponding to & in D41 (v).

Given a vertex v € <), we say that v has index n if there are n quadrilaterals
attached to v. In this case we label the vertices on the boundary of star(v) as

V1, W1, Vg, Wa, -+, Wy—1, Up, Wn, Vpt1 i counterclockwise order, where we identify
Upt1 = 1 if v is an interior vertex. We denote the triangles of ¢ which share the
vertex v by T; = (v,v;, w;) and T} = (v, w4, viy1), ¢ = 1,---,n.

The first lemma is a rephrasing of Lemma 3.1 of [10].

Lemma 4.2. Let r be even, and set y = (3r — 2)/2. Suppose v is a boundary
vertex of § of index n, and let I, consist of the domain points
1) &5, i+jt+k=dwithi>d—p—1,

T; - -
2) §alp1jpr1go forj=0,...,p—randi=2,---,n
T . ,
3) §alp1jpr1g forj=0,...,p—randi=1---,n.
Then T, is a minimal determining set for any s € Sy*(star(v)) on D, 41(v).
Our next two lemmas deal with interior vertices of ¢.

Lemma 4.3. Let r be even, and set 1 = (3r —2)/2. Suppose v is an interior vertex
of & with index n = 3. If Zwyvvz > 180°, let ', consist of the following set of
domain points:

1) 57]’k i+j+k=dwithi>d—p,
T; :
2) €% e i=1,23
T .
3) é_diu_LM_{_l_j,j; J= 17"'7/1’_ 1.
If Zwyvvg < 180°, replace Ty by Ty in 1), and replace 3) by
T! .
3/) gdi,u,—l,j,u-i-l—j’ jg=1,---,pu—1.
Then T, forms a minimal determining set for any s € Sy*** (star(v)) withd > p+1
on D, 41(v).

Proof: We consider only the case where Zw;,vv3 > 180° as the other case is similar.

On D, 1(v) the smoothness conditions for s € Sy***(star(v)) are the same as those

u+1 u+3

for s € S\ (star(v)) = P,y1. This space has dimension D := (*3?), and since T,

10



contains exactly D points, to show that I';, is a minimal determining set it suffices to
show that it is a determining set. Suppose the coefficients of s € P, ;1 corresponding
to domain points in items 1), 3), and 2)(i = 1) are set to zero. Then assuming s is
written in Bernstein-Bézier form relative to the triangle 77 = (v, vy, wy), it follows
that s = alB(’fj’lN—l—az B(’)‘,}')',L 11- Now the coefficients corresponding to domain points
in the remaining part of 2) are zero if and only if s(vy) = s(vz) =0, i.e.,

(i i) (2)-(0)
it 6+ ) \aa) =\o)
where (by, by, b3) and (51, 52, 53) are the barycentric coordinates of vy and v3 relative

to the triangle (v,v1,w:), respectively. By the geometry, by < 0, b3 > 1, by < 0,
and bz < 0, which implies that the determinant of the above linear system satisfies

|det\ = |b353‘”(b253 — 521)3) 2 ‘b353|”b253 7é 0,
and we conclude that a; = a3 = 0. This completes the proof. O

Lemma 4.4. Let r be even and set u = (3r — 2)/2 and £ = r/2. Suppose that v
is an interior vertex of { of index n > 4 with /vivvs < 180°. Let I', consist of the
domain points

D&, ivjtk=dwithi>d—p-1,
2) € 11y =0, f—1landi=3,...,n,
3) fgz,u,—l,,u,—kl—j,j’ jZO,“‘,K—laﬂdi:?),"',‘n—l,

T .
4) gdiu—l,,u.—i—l—j,j’ J= 07"'7T_ 2.
Then I, forms a minimal determining set for any s € S8y* (star(v)) withd > p+1,

on Dy 1(v).

Proof: Since on D, 41(v) the smoothness conditions for s € S;*(star(v)) are the
same as those for s € S)¥, (star(v)), it suffices to consider s in the latter space. By
Lemma 3.2 of [10], this space has dimension D := (*}?)+2n[(**27") = (**17")]+0,
with o = Z;::J_rfﬂ(r +j+1—je)y, where e is the number of edges in ¢ with
different slopes attached to v. Since e > 4 and p = 3£ — 1, it is easy to check that
o =0 and thus D = ("‘;2) + 2¢n. Since I', contains exactly D points, to show that
I', is a minimal determining set it suffices to show that it is a determining set.
Suppose the coefficients of s € S,¥'; (star(v)) corresponding to domain points
in T',, are set to zero. By the C" smoothness conditions, the only possible nonzero

coefficients of s are those corresponding to the domain points

¢TIz i=0—1.....0
d—p—tpti—jg I =ET L

T: .
fdip‘_lajﬂl"‘l_j’ j — ].,...’E‘l‘]_.
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and

T .
fdiu‘_lajaﬂ_i'l_j’ '7 :e_ 1’-."0
T! .
idiu—l,u+1—j,j’ j = 1’...’£+1,
We number the coefficients corresponding to the first set as aj,...,a,41 and those
corresponding to the second set as by,...,by41.

Suppose now that vg = f1v3 + V1wa, Vg = Pav1 + Yowi, and wy = azv + Bzwy +
~v3v2. Then by the smoothness conditions, the coefficients a; and b; satisfy

J

7\ gi- .
Me+i = Z (k)ﬂ{ k'Yfaé—j-l-kv j=1,...0+1,
k=0
Y (4.2)
— D\ gi—k K .
- Z k Bi "mGe—jyk, J=L+2,...,2
k=0
J j .
bers =) (k)ﬁ%_ e jin, =1, 041,
k=0
e, (4.3)
0= Z (2>ﬂ%_k7§ae—j+k, J=L4+2,...,2L,
k=0
(4.4)

20—1
ager1 = B3 bapy1

where for convenience we have set ag = bg = a_1 = b_; = 0.
Setting zp = ,Bf_kq/{“ak, we can write the last £ 4+ 1 equations of (4.2) as

agp = EE: (ﬁ) Tk (4.5)

k=1
V4
£+1
2041 =’}’12< )xk (4-6)
— k+1
)
{+v+1
0_;<k+y+1)mk, v=1,---,£—1. (4.7)

Now using the fact that (”Zl) = (Z) + (kfl), combining equations in (4.7), we can
convert those equations to the triangular system

{—v+1
L+2
kzzl <k+u+1>x’“’ =Rt
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Solving these equations for zs, ..., zy in terms of z; gives

L+ k
Tk = (_1)k+1 (Z i 1) Z1, k=2 ...¢ (4.8)

Substituting these formulae into (4.5) and (4.6), we see that
Lt L+
_ Z k+1 _ 41
Aoy = (k) (—1) (€+ 1).73‘1 = (—1) K.Tl

k=1

and
£+1 L+k
2041 =M Z (k " 1) 1)F+! (E + 1)331 = (—1)*'mz,

In terms of 31, v1, and aq,

age = (—1) 16y ay, azes1 = (=118 .
Similarly, we get

boe = (=1)FB b1, baer = (1) 85 M3ha.

Inserting these formulae in (4.4), we get the linear system

f_1'71a1 = /3:36132_1’)’251 + 2ﬂ§£_173ﬂ§_1 3

4—1_2 261612
1 Y101 = By "3b1.

The determinant of this linear system is
0—1 pl—1 p2£—1 71 Y2
— det
A fy P52 de { 1 Bs+ 272’)’3}
—B1 85 By T 2212y + Bar — 72)-

It follows from the geometry and the hypothesis Zvivvg < 180° that g; < 0 and
v; > 0. Moreover, the fact that

Prvz = vz — 71W2
= vz — m1(a3v + Bzwy + y3v2)
= (1 —7173)(B2v1 + Yow1) — Y103V — Y1 B3w1
= —m1a3v + Ba(1 — y173)v1 + (v2 — 7183 — 117273) W1
implies
Y2 — Y183 — 717273 < 0.
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This shows that
D > By B B3 T mve e ys > 0,

and it follows that a; = b; = 0. Now formulae (4.5) and (4.8) imply that ay = by, =
0 for all k=1,---,2/+ 1, and the proof is complete. O

It should be noted that the above proof cannot be used to establish Lemma 4.4
for n = 3 since we cannot insure the hypothesis Zv;vv3 < 180°, and thus we cannot
conclude that the determinant D in the proof is bounded away from zero. We
should also point out that although all three of the above lemmas deal with solving
homogeneous equations (in order to show that certain sets are determining sets),
in constructing the basis splines ¢¢ in the proof of Theorem 4.1, we have to solve
nonhomogeneous systems with the same matrices. However, in all three lemmas,
the systems are not only nonsingular, but the determinants are in fact bounded
away from zero by a constant depending only on r and the smallest angle 0@ in

the quadrangulation ¢ (cf. the arguments in [14]).

§5. Proof of Theorem 1.1

We are now in a position to apply Theorem 2.1 to establish our main theorem using
a quasi-interpolant @, of the form (2.1). Let {¢¢}cer be the locally supported
basis functions for S3”($) constructed in the previous sections for  odd and even,
respectively. We have already shown that these basis functions satisfy hypotheseses
H1)-H3) of Theorem 2.1.

To define @,,,, we now introduce corresponding linear functionals. Given ¢ € T,
let T¢ be a triangle in which ¢ lies. Then for any function f € L;(12), we define

)‘ﬁamf = 7§(Fm,BT£ f)’

where F, g, [ is the averaged Taylor polynomial associated with f (cf. [14]) and

the largest disk Br, contained in T¢. Here 7 is the functional defined on Sj(¢)
such that for any spline s € S9(4), y¢s is the Bézier coefficient of s associated with
the domain point &.

Clearly, A¢ . is a linear functional, and the value of A¢ ., f depends only on
values of f on the triangle T;. It was shown in [14] that there exists a constant K3
depending only on r and 0@ such that

i.e., hypothesis H4) of Theorem 2.1 is satisfied.

To check H5), we have to show that @, reproduces polynomials of degree m.
Suppose T is a triangle in ¢, and suppose f € P,,. Then for each £ € T, by
Lemma 4.4 in [14], Fm,BTgf = f on T¢. But then the A¢ ., f are just the Bézier
coefficients of f for all £ € I'. Since I' is a determining set, we conclude that all of
the coeflicients of @, f agree with those of f, and hence Q,,,f = f. When m = 3r,
Q3 not only reproduces Ps,., but also all splines s € S3.°($).

We have now verified that () satisfies all of the hypotheses of Theorem 2.1, and
our main result Theorem 1.1 follows immediately.
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§6. Quadrangulations

For the sake of completeness, we begin with a precise definition of a quadrangula-
tion. A collection { := {g;} of quadrilaterals is said to be a quadrangulation of a
connected polygonal domain Q in IR? provided that

2) the intersection of any two quadrilaterals is either empty, a single point, or a
common edge,

3) for any two quadrilaterals ¢1, ¢,,, there is a sequence of quadrilaterals ¢y, ..., ¢,
in ¢ such that each pair ¢;, ¢;+1 share exactly one edge with each other.

We call { convez if all quadrilaterals are convex, and we call it nondegenerate if
none of the quadrilaterals is a triangle.

Given any collection V := {v;}_; and a polygonal domain {2 whose boundary
vertices are v;,,...,v;, and which contains all of the points of V, there are many
triangulations A of € such that the vertices of all of the triangles lie in the set
V. The situation is somewhat different for quadrangulations. Indeed, it is easy
to see that () admits a quadrangulation if and only if the number of vertices n
on the boundary of €2 is even. Some algorithms for constructing quadrangulations
associated with a given set of vertices have been discussed in [5], although they
are not guaranteed to produce nondegenerate convex quadrangulations, even if )
is convex. We now present two simple methods for creating nondegenerate convex
quadrangulations based on subdividing a given triangulation.

Method 1. Suppose A is a triangulation of a polygon 2. Then subdivide each
triangle T € A by connecting its centroid to the midpoints of its edges with straight
lines.

Clearly this method produces a nondegenerate quadrangulation <) of €} consisting
of convex quadrilaterals. A typical example is shown in Fig. 3. Each quadrilateral
has one vertex at a centroid of a triangle T' € /A, one vertex at a vertex of T', and
two vertices at midpoints of edges of T'.

Method 2. Suppose A is a triangulation of a polygon ). Then

1) Subdivide each triangle T € A by connecting its incenter to its three vertices
with straight lines.

2) Remove all interior edges of A.
3) Modify the remaining boundary triangles as follows:

a) Suppose v is a boundary vertex of A with at least two triangles attached.
For each interior edge e = (v,v') of A\, let Ty and Ty be the two triangles
sharing e, and let wy and wo be their incenters. Remove the line segments
(v,w1) and (v, ws2) and choose 0 < a < 1/2 so that if we connect both
wy and wy to v, := v + a(v’ — v), the quadrilateral with vertices at
Vo, W1,V , wo is convex. Next connect v, to v and connect the incenters
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Fig. 3. Use of Method 1 to construct a quadrangulation from a triangulation.

Fig. 4. Use of Method 2 to construct a quadrangulation from a triangulation.

of the two boundary triangles with vertex at v to the midpoints of their
boundary edges.

b) Suppose v is a boundary vertex of /A with only one triangle T attached.
Then remove the line segment (v, w), where w is the incenter of T.

Fig. 4 shows an example of the use of Method 2 to convert a given triangulation
to a quadrangulation. If ¢ is a quadrangulation created in this way, then the asso-
ciated triangulation ¢ obtained by inserting the diagonals into each quadrilateral
turns out to be the standard 12-triangle Powell-Sabin subtriangulation of /A based
on incenters and midpoints of edges.

It is clear that a nondegenerate convex quadrangulation can be dyadically
refined by connecting the midpoints of the four edges of each quadrilateral to the
intersection of its two diagonals. Fig. 5 shows a quadrangulation and the result of
one level of refinement. If ¢’ is a dyadic refinement of ¢, then the spline space
S7($) is contained in the spline space S7(4'). This leads to hierarchical multilevel
bases for the spline spaces associated with refined triangulated quadrangulations,
see e.g. [15].
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oy

Fig. 5. A quadrangulation and its dyadic refinement.

Fig. 6. A quadrangulation and its local refinement at the reentrant corner.

Fig. 7. Two steps of refinement at the reentrant corner and along a crack.

Finally, we note that a nondegenerate convex quadrangulation can also be
refined locally, cf. Figs. 6 and 7. Local refinement is absolutely essential in solving
boundary value problems since in most applications, solutions of boundary value
problems have singularities arising from reentrant corners and cracks in the domain
Q. Local refinement allows the effective approximation of such solutions.
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§7. Remarks

Remark 7.1. Spline spaces defined on triangulated quadrangulations have been
studied in several papers. In particular, finite elements in S3(4) were constructed
in [9] and [16]. The approximation properties of S3(4) in the usual Ly norm
was studied in [6], while the approximation properties in Lo, and its application
in scattered data interpolation were considered in [12]. In [13], we studied the
approximation properties of S2(4) in the L., norm. Finite elements spanning a
certain subspace of S%,.(4) for odd integer r and S5, ,(4) for even integer r were
also constructed recently in [11], where L., approximation results can also be found.

Remark 7.2. It is interesting to compare the dimensions of spline spaces based on
triangulated quadrangulations and those based on standard triangulations. Sup-
pose we are given a set of points in R? which admit a nondegenerate convex quad-
rangulation { with no holes. Let V; and Vp be the number of interior and boundary
vertices of the quadrangulation . Suppose A is a triangulation based on the same
interior and boundary vertices. We denote the corresponding Clough-Tocher and
Powell-Sabin refinements of A by Aecr and Apg, respectively. Assuming A con-
tains NV triangles, then Ag7 has 3N triangles, ¢ has 2N triangles, and Apg has
6N triangles. It is known that

dim (8}%(A)) = 6(Vr + V) + 3V 4+ 2V — 3
dim (S3(Acr)) = 3(Vi 4+ V) +3Vy +2Vp — 3
dim (S5(4)) =3(Vr + VB) +2Vr + 3Vp/2 — 2
dim (S3(Aps)) = 3(Vr + Vp).

Based on these figures, we believe that Si(¢) is the best choice for applications since
S:?(A) and S3(Acr) both have significantly larger dimensions, while S3(Aps)
has many more triangles (and a lower approximation order). Similarly, we believe
S2(4) is a better choice for applications than S3(A), S3(Acr), or S2(Aps) — see
the dimension formulae and remarks in [12,13].

Remark 7.3. By changing the way in which the linear functionals A¢ ,, are de-

fined, we can create an alternative quasi-interpolant Qm defined on C(£2) which
interpolates at the vertices of ¢. We have the following variant of Theorem 1.1.

Theorem 7.4. Fix integers r > 1 and m, where 2/p —1 < m < 3r if p > 1 and
2 < m < 3r if p= 1. Then there exists a linear operator Q,, mapping C(Q) into
S%,.($) such that me('u) = f(v) for all vertices v € §. Moreover, Q.. has full
approximation power in the sense that for any f in the Sobolev space W;’”l(Q)
with 1 < p < o0,

IDEDE(F ~ Qb o < C 16" | flusrpe (7.1)
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for all 0 < a+ B < m. If Q) is convex, then the constant C depends only on r and
the smallest angle 04 in 4. If §) is nonconvex, C also depends on the minimum
exterior angle between any two boundary edges of ().

Proof: We use the functions ¢¢ constructed in the previous two sections to con-
struct Qm just as in (2.1), but replace A;,, by linear functionals S\i,m which are
based on an interpolating polynomial instead of the averaged Taylor polynomial.
Given a triangle T in ¢, let Iz ,,, be the interpolation operator mapping a function
f defined on T to the unique polynomial of degree m which interpolates f at the
domain points &, all i +j +k = m. For each £ € T, let Ty be the triangle
containing £. Then for f € C(2), we define

5‘§,mf = 7§(IT§,mf)-

Here, 7¢ is the functional on S9(4) defined in Sect. 2 which picks off the Bézier
coefficient associated with the domain point §. With these linear functionals, it is
not hard to see that @), reproduces polynomials of degree m. Moreover, using the
fact that the minimal determining sets I' constructed above always contain all of
the domain points located at vertices of ¢, it is also clear that @,, interpolates at
those vertices.

To establish the approximation power, we observe that [A¢ mf| < C||f||oo,7,,
where C' is a constant only dependent on r. Now the Sobolev embedding theorem
asserts that if 1 < p < oo,

Ky
1Mleeir < 575 (1]

pT T |T‘m+1|f‘m+1,p,T> .

for some constant K4 depending only on r. This shows that for m > 2/p — 1 if
p>1andform>2ifp=1,

~ K3 m
et < 15 (Wfllpr, + 191 Flnsrpre)
Te

Now using the fact that the interpolation operator Ir,, has full (local) approxi-
mation power, the rest of the proof proceeds in exactly the same way as before.
O
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