Shape-preserving Knot Removal
Larry L. Schumaker t and Sonya S. Stanley i
Dedicated to John Gregory

Abstract. Starting with a shape-preserving C'! quadratic spline, we show how
knots can be removed to produce a new spline which is within a specified tolerance
of the original one, and which has the same shape properties. We give specific
algorithms and some numerical examples, and also show how the method can
be used to compute approximate best free-knot splines. Finally, we discuss how
to handle noisy data, and develop an analogous knot removal algorithm for a
monotonicity preserving surface method.

Keywords. Shape-preserving spline, knot removal, monotone surfaces

§1. Introduction

The idea of removing knots from a spline function in order to produce a good approxi-
mation with fewer parameters has been discussed in a number of recent papers [Lyche &
Mgrken ’87a, 87h, 88, Arge et al 90, Lyche ’92]. See also the book [Goldman & Lyche
'93]. Starting with a given B-spline expansion f, these authors construct another B-spline
expansion ¢ with fewer knots which differs from f by less than some given tolerance.
The method in [Lyche & Mgrken '87a, '87h, '88, Lyche '92] uses a discrete least squares
approximation process to construct ¢, and to decide which knots should be removed.

In many practical applications, it is important to construct a spline whose shape
accurately models the shape of the input data. In [Arge et al '90], the authors extended the
knot removal method to enforce constraints such as positivity, monotonicity, and convexity.
Their method requires repeated solutions of quadratic minimization problems with linear
constraints.

In the first part of this paper we consider knot removal based on the shape-preserving
C'! quadratic interpolating splines discussed in [McAllister & Roulier '81, Schumaker ’83,
DeVore & Yan ’86]. We believe this approach has several advantages:

1) shape-preservation is built into the algorithm,

2) in contrast to B-spline based methods, our algorithm is completely local,

i Department of Mathematics, Vanderbilt University, Nashville, TN 37240,
s@mars.cas.vanderbilt.edu. Supported by the National Science Foundation under grant
DMS-9208413.

I Department of Mathematics, Vanderbilt University, Nashville, TN 37240,
sstanley@math.vanderbilt.edu.

3) the error is measured in terms of norms on the functions themselves rather than
equivalent coefficient norms,

4) our algorithm is more efficient since it does not require solving optimization problems.

The details of our method are developed in Sections 2,3 and 4, while numerical examples
can be found in Section 5. In Section 6 we discuss how to use our knot removal algorithm
to find good knots for approximating given functions by splines. In Section 7 we show how
knot removal can also be used in the fitting of noisy data.

In [Lyche & Mgrken '87a] an algorithm was developed for removing knot (lines) from
tensor-product B-spline surfaces. The algorithm is not designed to preserve the shape of
the resulting surfaces. In the second part of this paper (Sections 8 and 9), we suggest a
different approach to constructing approximations to surfaces based on certain C! cubic
interpolating splines developed in [Han & Schumaker '95] for fitting monotone surfaces.
When applied to monotone data, this approach allows knot line removal while preserving
the monotonicity of the resulting surfaces. We conclude the paper with a collection of
remarks.

§2. Removing Knots from a C'' Quadratic Spline

Suppose that S1(A) denotes the space of C'! continuous quadratic splines defined on an
interval [a,b] with knots a =7 < 75 < --- < 7y = b. In this section we describe an algo-
rithm for removing knots from a quadratic C'' interpolating spline s without perturbing
the spline more than a given tolerance. At each step, we replace a pair of neighboring
knots with one new one, so that at each step we get a new spline with one less quadratic
polynomial piece. This requires that we calculate new coefficients for two quadratic seg-
ments. We now describe this process in more detail. The method is based on the following
lemma of [Schumaker’83].

Lemma 2.1. Let [ty,t2] be a fixed interval, and let £ lie in its interior. Suppose z; and
s; are prescribed for i = 1,2. Then there exists a C' quadratic spline g defined on [t,t,]
with one knot at £ such that

Proof: Let
A+ Bi(t —t1)+ Ci(t —t1)?, if 1 <t <§,

90t) = {Al +Bi(t =+ Ci(t = €F, if (<t<th,

where
Al =21, B1 = 81, 01:(5—81)/201 (22)
Al :Al —I—Bla—I—C'1a2, él :g, C~’1 :(82 —g)/Qﬂ, (23)
2(zg — 21) — (as1 + Bs2)

W
Il

(tZ_tl) 3 a:‘f_tlv ﬁ:tZ_‘f (24)

It is easy to see (cf. [Schumaker’83]) that ¢ satisfies the desired interpolation conditions.
|

To apply this lemma to a spline s € S3(A), we choose t; = 7, z1 = s(1j), s1 = s'(7;),
and ty = Tjy3, 22 = s(7j43), and sy = s'(7j43). Then clearly

) _ g(t), te [TjaTj+3]7
5;(t) = {s(t), otherwise

is a C'' quadratic spline in 8;(A;), where A; is obtained from A by replacing 741 and
Tj+2 by the single knot €.

The interval J; = [7;,7;43] can be any of the intervals [ry, 4], ..., [Tn—3,7n]. To
decide which one to use, we assign a weight to each of the J; which measures the difference
between the initial spline s and the spline s; which would arise if we replaced the knots
Tj+1 and 742 by a single knot, i.e.,

w; = ||s — s, j=1,...N —3.

Then if we choose v such that w, = min{w;}, the new spline § = s, will be the one which
differs the least from s.

This process can be repeated recursively. The following algorithm starts with an initial
spline (9, and computes a sequence of splines, each with one fewer knot. It stops when the
difference between the next approximation s(*) and the initial spline s(°) becomes larger
than a prescribed tolerance.

Algorithm 2.2. Let tol > 0, and let s°) be a given C' quadratic spline on an interval
la, b] with knots 70— 7,0=1,...,N. Let k = 1.
(k)

;k) = ||s® — sgk)H, where s, is the spline
obtained from s'*=1) by removing the knots T](kzl), T](_If_;l) from the interval J](k_l) =

[T;k_l), T](_Ir_gl)] and replacing them by one new knot f;k) in J](k_l),

1) for j = 1,...,N — k — 2, compute w

2) find v such that w, = min{w;k)},
3) if w, > tol
stop
else
sk .= sgk)
k=k+1
return to 1).

endif

Discussion: The spline s(*) has knots

Ti(k_l), 1=1,...,v,
Z(k) 51@)7 P4,
Y i—vg2, Nk

The norm used in 1) can be any of the usual discrete norms. The examples presented in
Sect. 5 below are based on the discrete uniform norm, which is calculated by finding the
maximum value on a fine mesh of equally spaced points in [a, b]. In calculating the weight

w;k) in step 1), for & > 1 it suffices to look only at points in the subinterval [T](k_l), T;_If_;l)]

since sgk) differs from s(*=1) only in this interval. Moreover, for k& > 1 the only weights

that have to be calculated are w;k) fory=v—2,....v+ 1 since

(k) wgk_l), 1=1,...,v—3,
=v+2,....N —k—3.

This algorithm will work with any choice of fgk) in the intervals J](-k_l), but they have to be

chosen carefully if we want to preserve the shape of the initial spline s(%). We discuss how
to do this in Section 4 below. In implementing this algorithm, we have found it convenient
to simply maintain a list of which knots remain in the model, rather than shifting and
renumbering all of the knot and coefficient information. W

§3. Computing an Initial Spline

Suppose we are given data {(¢;,z;)}"_;. To apply Algorithm 2.2, we first need to construct
an initial fit using C'! quadratic splines. Since we are interested in shape, it is natural to
use the shape-preserving method discussed in [McAllister & Roulier ’81, Schumaker ’83,
DeVore & Yan '86]. Since we need the notation later, we give a brief review, based on the
general treatment in [Schumaker '83].

Applying Lemma 2.1 to each subinterval [t;,t;41] of [t1,%,] produces a spline

() {Ai—l—Bi(t—ti)—l—Ci(t—ti)Z, if ¢ §t<€i,
S = ~ ~ -
Ai+ Bi(t = &)+ Ci(t = &), if &<t <ty

having knots
{tl <§1 < 19 <§2 Lty <<t <§n—1 <tn}.

It was first shown in [McAllister & Roulier '81] that with appropriate choices of the
£i € (ti,tiy1) and the slopes s; = s'(¢;), splines of this type are capable of preserving
monotonicity and convexity properties of the data {(¢;,2;)}7;. We now state some rele-
vant results.

Definition 3.1. Let 1 <:<n —1, and let

5; = Zitl T A (3.2)
tig1 — 1

We say that the data for the interval I; = [t;,t;41]| are M-consistent provided that one of
the following holds:

l) S = Si41 = 61 = 0,‘
2) 6; # 0 and si, Sit1,0; < 0;
3) 6; # 0 and s;, 8i41,6; > 0.

It is easy to see that if for some interval I; the data are not M-consistent, then the
spline s cannot be monotone on that interval. We want to construct a spline s as in
(3.1) which is monotone on all intervals I; where M-consistency holds. It was shown in
[Schumaker '83] that, in general, for a given interval I;, having M-consistent data is not
enough to insure that the the spline s is monotone on [;. To insure monotonicity, it may
also be necessary to enforce a condition on the relationship between the size of the slopes
s; and s;41 and the location of the point &;.

Lemma 3.2. Foreachi=1,...,n—1, let J; = (t;,tiy+1), and define
(ti, l] N Ji, if 6;, 84,841 > 0 and s; > s;41

[Eiytign) N Ty if 64, 80,841 > 0 and i < 8i41

M = .
IV = [fi,tH_l)ﬂJi, if 6;, 84,841 < 0 and s; > s;41
(ti, 71‘] N Ji, if 6;, 84,841 < 0 and s; < 5441
Ji, otherwise.

where B
Ei = ti + (tig1 — 1)(20; — siq1) /(55 — Sig1).

Suppose that the data are M-consistent on the interval I; = [t;,t;1+1]. Then the spline s
defined in (3.1) is monotone on I; if and only if ¢; is chosen in IM.

Proof: The condition that ¢; € IM is equivalent to conditions (2.7) and (2.8) of Lemma
2.5 in [Schumaker ’83]. It was shown there that those conditions are equivalent to s being
monotone on I; when the data are M-consistent on 7;. W

Concerning convexity and concavity, we have the following analog of Definition 3.1:
Definition 3.3. We say that the data for the interval I; = [t;,t;41] are C-consistent
provided that one of the following holds:

1) s; = siy1 = 6;;
2) (sig1 — 6i)(si —6;) <.

If s;41 — 6; and s; — 6; have the same sign and at least one of them is nonzero, then
clearly s must have an inflection point in [¢;,¢;41]. Thus, if the data are not C-consistent
for an interval I;, there cannot exist s which is convex or concave on that interval.

As with monotonicity, we want to construct a spline (3.1) which is convex or concave
on intervals where the data are C-consistent. In case 1) of Definition 3.3, this is easy,

5

since then we can choose s to be the linear polynomial joining the data points (¢;,z;) and
(tit1,zi+1). The following lemma shows what happens for other values of the slopes s;
and s;41.

Lemma 3.4. Foreachi:=1,...,n—1, let
(ti,{i] N Ji, if (Si—l—l — 51)(81 — 51) <0 and |8i+1 — 5l| < |3i — 5l|

IC = [giati—l—l) N]Z‘, if (Si—l—l — (51)(81 — (51) < 0 and |Si_|_1 — (SZ| > |3i — (Sl|

7

™ otherwise,

where J; = (t;,tiy1), and
ti =ti + 2(tip1r —) (sit1 —)/ (Six1 — i)
fi =tigr + 2(Fir — 1)(si — 8i)/(sig1 — s4).

Suppose that the data are C-consistent on the interval I; = [t;,t;+1]. Then the spline s
defined in (3.1) is

convex on I;, when s; < Sjy1,
concave on I, when s; > Siy1,
linear on I, when s; = sj41 = 0;,

if and only if £; is chosen in the interval I€. Moreover, if I; is an interval where the data
are M-consistent, then choosing &; € I€ guarantees that s is monotone on I;.

Proof: The condition ¢ € IC is equivalent to the conditions given in Lemma 2.7 of

[Schumaker ’83]. W

The above lemmas leave considerable freedom for choosing slopes {s;}" ; such that
the resulting spline s exhibits desirable shape properties (cf. the discussion in [Schumaker
’83]). Two explicit methods have been proposed in the literature.

Lemma 3.5. For:=2,....n—1, let

0, ifd;—16; <0
§; = { (3.3)
hi, otherwise,
where 05 5
hi = =L 3.4
8 + diz1’ (34)
and 6; is as in (3.2). Fort =1 and 1 = n, set
0, 1f61(261 - 82) S 0
S1 = (35)

261 — 89, otherwise,

6

07 if 6n—1(26n—1 - Sn—l) S 0
Sp = (3.6)

26n—1 — Sn—1, otherwise.

Let & € IE fori =1,...,n — 1. Then the spline s in (3.1) is co-monotone and co-convex
in the following sense:

1) if the data are M-consistent on I;, then s is monotone on I;;

2) if by < bgy1 < -++ < 6y and the data are C-consistent on Iy, ..., I,_1, then s is convex
on [tg, tm];
3) if &g > bgy1 > -+ > b6 and the data are C-consistent on Iy,...,I,_1, then s is

concave on [ty ty].

Proof: The first result of this type is due to [McAllister & Roulier '81]. In the generality
stated here, see [Schumaker '83, DeVore & Yan ’86]. W

The quantity h; appearing in (3.4) is the harmonic mean of 6;_; and é;. It has also
been used in [Butland '80] to assign slopes for a shape-preserving interpolation scheme
based on C'! cubic curves.

The McAllister & Roulier method described in Lemma 3.5 produces a spline which
approximates a smooth function f with approximation order O(h?), measured in the uni-
form norm on [ty,t,], where h is the maximum spacing between the ¢;’s. In [DeVore & Yan
'86], the authors presented two alternative methods with superior approximation proper-
ties. We describe their second method which provides order O(h?*) approximation on the
entire interval [t1,t,] (with a minor reduction in the shape-preserving properties).

Lemma 3.6. For:=2,....n—1, let
5 11[.61 =0 and 6i_16i+1 2 0

0
0, 1'1[.61‘_1 =0 and 6i_26i Z 0

hi, if 6;_16; > 0 and mln(dl/él,dl+1/61) > 2
d

8; = (3.7)
iy otherwise,
where 6; and h; are defined as in Lemma 3.5, and where
d; = (51‘_1Ati + (SiAti_l)/(Ati_l + Atl) (38)
and
At; =tipq — ti. (3.9)
For: =1 and 1 = n, set
S1 = 261 — S92, (310)
Spn = 26n_1 — Sp—1- (311)

7

Let & € IE fori = 1,...,n — 1. Then the spline s defined in (3.1) is co-monotone and
co-conver in the following sense:
1) if the data are M-consistent on I;, then s is monotone on I; except
a) if 6;_16; < 0, then s may change direction on one of the two intervals I;_y or I,
b) if & =0, s may change direction on I,

¢) if 6,—1 = 0, s may change direction on on I _y,

2) if by < bgy1 < -++ < 6y and the data are C-consistent on Iy, ..., I,_1, then s is convex
on [tg,tm],
3) if 6y > bgy1 > -+ > 6m and the data are C-consistent on Iy, ..., I,_1, then s is

concave on [tg, ty].

Proof: The proof is a minor modification of the proof of Lemma 2 in [DeVore & Yan ’86].
|

The reason for the difference in shape properties of the methods of Lemma 3.5 and
Lemma 3.6 is that the DeVore & Yan formula (3.7) assigns zero slopes less often. When
si—1 and s;4+1 have opposite signs, we expect a change in the monotonicity of the spline
to occur on the interval [t;_q1,t;41]. If s;—1 and s;41 have opposite signs, the McAllister
& Roulier formula (3.3) assigns zero slope at t;, forcing the change in monotonicity of s
on [t;_1,tiy1] to occur at t;. The DeVore & Yan formula does not make this zero slope
assignment at t;, and therefore does not unnecessarily force the change in monotonicity
to occur at t;. It follows that, as stated in la), s may change direction on either I;_; or
I if 6;_16; < 0. If 64 = 0 the McAllister & Roulier formula (3.5) forces the spline to be
identically zero on the interval I1 by assigning zero slopes at s; and s3. The DeVore & Yan
formula (3.10) does not place such a restriction on the slopes s; and sy, and 1b) follows.
le) follows similarly.

We conclude this section with an explicit algorithm for constructing an initial spline
s satisfying s(t;) = z;, t = 1,...,n and preserving shape.

Algorithm 3.7.
Fori:=1,...,n—1
1) compute s; using formula (3.7),
2) choose &; to be the midpoint of the interval IC,

3) compute the coefficients of s|| using the formulae in Lemma 2.1.

titiy1]

Discussion: This algorithm produces a C'! quadratic spline with knots
{<m< o <mvf={t<&i<t<& <ty < <thog <ot < tal.

If the data are C-consistent for I;, then s is convex on I;. If the data are not C-consistent
for I;, then I¢ = IM and if the data are M-consistent for I;, then s is monotone on
I;. If the data are neither M-consistent nor C-consistent for I;, then IZM = (t;,tiy1) and
¢; is chosen to be the midpoint of this interval. As mentioned in Lemma 3.4, IS C IM.
Therefore, if the data are both M-consistent and C-consistent, choosing &; € I¢ guarantees
that s is both monotone and convex on I;. W

§4. Preserving Shape in Algorithm 2.2

We are now in a position to suggest how to choose the new knot .f;k) needed in step 1) of
Algorithm 2.2:

1) if the interval J](k_l) = [T](k_l),rj(f_gl)] does not contain any inflection points of the

(k—1) (k—1)

initial spline 59 and the data at T and ij_g
be the midpoint of the associated convexity interval,

are C-consistent, choose f;k) to

otherwise

2) choose f;k) to be the midpoint of the associated monotonicity interval.

In carrying out Algorithm 2.2, it can happen that after a number of steps, an interval

J](k_l) does not contain any inflection points of the initial spline s(%), but the data at

T](k_l) and T](_Ir_gl) are no longer C-consistent. The reason this can happen is that the
lengths of the subintervals J](k_l) tend to increase with k, so that eventually the slope

(k—1) (k—1)
values at 7; and 7, 4
that interval. Thus, with the above choice of .f;k), the spline s*) may not be convex on

(k-1)
7

may not be consistent with monotonicity and/or convexity on

even though the initial spline s(°) was. In practice this rarely happens.

We have tested Algorithm 2.2 using this knot selection scheme on a variety of problems,
and have found that it has excellent shape-preserving properties. Some examples are
presented in the following section.

If desired, we can exercise even more control over shape by altering the way in which

weights are assigned in step 1) of Algorithm 2.2. For example, if J](k_l) does not contain

(k—1) (k—1)

any inflection points of the initial spline s(%), but the data at T; and 7,15

C-consistent, then we could set w;k) = oo. This insures that if the initial spline was

convex on J](k_l), then the new spline s¥) will also be. We have also tested this variant
of the algorithm, and found that it produces fits which have about the same shape as the
algorithm without the additional control, but it removes considerably fewer knots.

Since we are working with C'! piecewise quadratic polynomials, it is easy to see that
inflection points can only occur at knots. Thus, another way to control shape is to insist
that at every step the inflection points remain in the same places. To do this, in examining
the interval J](k_l), if either one of the points T](kfl) or T](_]f_;l) was an inflection point of
s(9 then we set wgk) = oo. We have also tested this variant of our algorithm, but it
removes considerably fewer knots with only a minor improvement in shape. Indeed, the
algorithm described above does an excellent job of keeping inflection points near their
original locations, see Table 3.

We would like to emphasize that in Algorithm 2.2, the values of the slopes at all of the
original knots remaining in the current spline approximation s¥) have not been changed

from their original values. When a new knot is introduced, the slope associated with it

are not

is computed from formula (2.4). Now if in examining J](k_l), the slopes at its endpoints

751 and T](_Ir_gl) are not consistent with the shape of s(°) on that interval, we could

adjust the slopes at these endpoints. This would require constructing new spline pieces

9

on the intervals [T;fgl), T](k_l)] and [T](_Ir_gl), T](_If_;l)]. We also tested this more complicated
algorithm, but found that it does not perform significantly different from the algorithm

described above.

§5. Numerical Examples

A FORTRAN implementation of Algorithm 2.2 was used to test the algorithm on several
examples.

Example 5.1. The function f(x) = \/r was sampled on a set D of 500 equally spaced
points on the interval [0,1] to produce a set of data. The C' quadratic interpolating
spline has 999 knots. Table 1 gives the number of interior knots remaining after applying
Algorithm 2.2 for several values of the tolerance. It also shows the maximal error on the
discrete set D.

Figure 1. The splines with 999 knots (solid) and after removing 993 of them (dotted).

tolerance error # knots
0.0001 .0000540 23
0.001 .000985 10
0.01 .0087 4
0.1 .044 3

Table 1. Number of interior knots vs. tolerance for Example 5.1.

10

Fig. 1 shows the initial spline fit with 999 knots, and the spline corresponding to
tolerance 0.01, where 993 knots have been removed. This example shows that even with
a relatively small tolerance such as .0001, a large number of knots (976 out of 999) can
be removed from the initial spline. Of course, we expect fewer knots to be needed as we
increase the tolerance, but it is interesting to observe that for this example, each time the
tolerance was increased by a factor of 10, approximately one-half of the remaining knots
were removed.

Example 5.2. The function f(z) = % sin bz was sampled on a set D of 500 equally spaced
points on the interval [0, 5] to produce a set of data. The C'' quadratic spline interpolating
this data set has 999 knots. Table 2 gives the number of interior knots remaining after
applying Algorithm 2.2 for several values of the tolerance. It also shows the maximal error
on the discrete set D.

tolerance error # knots
0.0001 .000097 134
0.001 .00093 67
0.01 .008 32
0.1 .084 14
0.5 222 11

Table 2. Number of interior knots vs. tolerance for Example 5.2.

999 knots 13 knots
4158408 0.4155353
1.187382 1.193565
1.838683 1.857244
2.479965 2.341548
3.111226 3.141577
3.752507 3.734161
4.383777 4.326746

Table 3. The inflection points of the splines in Figure 2.

The function in this example is considerably more complicated in shape than the one
in Example 5.1. As before, each time we increased the tolerance by a factor of 10, we could
remove approximately one-half of the remaining knots. Fig. 2 shows that even with a small
number of remaining knots, our method does an excellent job of fitting the function while
preserving the shape. For comparison, the inflection points for the splines in Figure 2 are
given in Table 3.

11

=
\

\ Q
\ /\
0 . . N\ . \ .
1 2 3\/4 “\/
/4 A S -
4
4
Y
<

Figure 2. The splines with 999 knots (solid) and after removing 986 of them (dotted).

§6. Choosing Good Knots for Best Approximating Splines

One of the classical problems of spline approximation is the following: given a function f
on an interval [a,b] and an integer k, find a polynomial spline s of degree d with &k knots
in the interval [a, b] such that s is a best approximation of f in some norm. We shall focus
on the uniform norm (which in practice is measured on some discrete subset of [a, b]), and
on the space of splines of degree 2.

This problem is called the free knot spline approximation problem. For theoretical
results on it, see [Niirnberger ’89] and references therein. Since this is a nonlinear approx-
imation problem, it is not possible to find an exact solution computationally. In practice,
we can proceed as follows:

12

1) choose some reasonable set of knots;

2) find the best approximation on that set (which can be done with a variant of the
Remez algorithm, see [Niirnberger & Sommer '83, Niirnberger '89]);

3) adjust the knots and repeat.

In this section we explore the use of our shape-preserving knot removal algorithm as
a way to find “good” knots. We proceed as follows:

1) sample f on some discrete subset of [a,b]. In practice we use 500 to 1000 equally
spaced points;

2) construct a C'' quadratic shape-preserving interpolant;

3) apply our knot removal algorithm with a series of larger and larger tolerances until
the desired number of knots remain.

We now compare this approach with two other methods currently available in the
literature:

1) Segment approzimation. Here one approximates f by a space of piecewise polynomials
(without any smoothness conditions) with k free knots. For theoretical results, and
algorithms, see [Niirnberger & Sommer ‘83, Niirnberger "89] and [Wolters "93].

2) deBoor’s newnot algorithm [de Boor '78].

To compare the three knot selection methods, we compute the best C'! quadratic
spline approximations to two typical functions. This is done for knot sets obtained by
each of the three methods described above. For each example, we compute the maximum
norms on 2000 equally spaced points in the domain of the function.

Our results are shown in Tables 4 and 5. In these tables, the columns labeled BSeg,
BNN. and BSP give the errors of the best spline approximations based on the knots pro-
duced by segment approximation, newnot, and our shape-preserving method, respectively.
The spline Remez algorithm of [Niirnberger & Sommer "83] (which was graciously provided
to us by the authors) was used to compute best C'' quadratic spline approximations in
all three of these columns. For comparison purposes, in the column labeled Seg we give
the error corresponding to the segment approximation itself (i.e., the approximation is a
piecewise quadratic which may not even be continuous). We are grateful to H. Wolters for
providing these numbers. In addition, in the column labeled SP, we give the error for our
shape-preserving spline fit. It is, of course, always worse than the other splines, but as the
examples show, it is often quite good.

Our first example deals with the function f(z) = 1/z on [0.00001,1]. Here we have
chosen the left end point of the domain to be slightly larger than 0 because Wolters’
segment approximation algorithm was not able to work on [0,1]. The results are shown in
Table 4. The symbol NC means that our implementation of the spline Remez algorithm
did not converge. In computing our shape-preserving spline, we began with an initial set
of 2000 knots, where the first 1000 were equally spaced in the interval [.00001, .1], and the
remaining are equally spaced in the interval [.1,1]. We used these initial knots in order to
provide choices of knots which are close to zero.

For both segment approximation (Seg) and our shape-preserving method (SP), the
error is monotone decreasing as the number of knots increases. We also note that the

13

knots Seg BSeg BNN BSP SP
1 .0164 .0193 .0319 .0422 2913
2 .00644 .00867 .0153 .0198 1138
3 .00313 .00448 .00969 .01244 .0329
4 .00174 .00256 .00706 .00661 .0286
5 .00108 NC .00561 .00316 .00854
6 .000690 NC .0047 .00207 .00472
7 .000473 .000716 .00406 .00173 .00234
8 .000366 .000513 .00376 .00173 .00218
9 .000249 NC .00354 NC .00202

Table 4. Comparison of knot selection methods for f(z) = /.

errors for segment approximation (Seg) are always smaller than those of the best spline
approximations based on the same knots (BSeg). Moreover, the errors for BSP are always
smaller than those for SP, as they should be. As the table shows, BSP is better than BNN
most of the time.

It is also worth noting that for this example, the error for our shape-preserving spline
is less than 7 times as large as that of the best spline approximation based on the corre-
sponding knots (the column SP is less than 7 times larger than BSP). This means that often
we may be satisfied with our shape-preserving fit, and can save the work of calculating the
best approximating spline.

Our second example deals with the classic Runge function f(z) = 1/(1+2?) on [-5, 5].
The results are shown in Table 5. As before, NC stands for no convergence in the spline
Remez algorithm. Here NK means that we were not able to find a tolerance to produce
the corresponding number of knots (by adjusting the tolerance we always got either one
more or one less knot than desired). The shape-preserving splines were calculated starting
with an initial set of 500 equally spaced knots.

For this example, the knots produced by segment approximation are generally supe-
rior, and those produced by newnot were second best, although the difference was not too
large. For all three of the knot selection methods, it is possible for the error to increase
as the number of knots is increased. Thus for example, in the column BSeg, the best
spline approximation with 12 knots is better than that with 13 knots (remember, these are
not the optimal knots, but are those produced by the segment approximation algorithm).
Similarly, the error increases in column BNN in going from 14 to 15 knots.

§7. Fitting Noisy Data

In many applications, we want to fit an unknown function based on noisy measurements.
In such cases, it does not make sense to construct an interpolating spline. The knot removal
strategy of Algorithm 2.2 can still be applied in this situation, provided we have a good
way to construct a C'' quadratic spline to use as an initial fit. We can proceed as follows:

1) construct a preliminary spline fit g to the noisy data;

14

knots Seg BSeg BNN BSP SP
4 .00486 0135 0135 .0160 0778
5 .00485 .0258 .0332 .0149 .0749
6 .00286 .00832 .0126 NK NK
7 .00223 .00705 .00894 0129 .0502
8 .00123 .00330 .00351 .00504 .0210
9 .00118 .00339 .00398 NC .0198
10 .000693 NC .00244 .00384 .0139
11 .000557 .00156 .00222 .00253 .0137
12 .000463 .00123 .00115 .00249 .00853
13 .000433 .00135 .00161 .00192 .00802
14 .000251 NC .000786 .00190 .00695
15 .000240 .000671 .000902 .00190 .00401
16 .000213 .000567 NC .00127 .00361
17 .000197 .000532 .000622 NC .00205
18 .000136 NC .000306 .00127 .00174
19 .000135 NC .000449 .000795 .00117

Table 5. A comparison of knot selection methods for f(z) = 1/(1 + ?).

2) sample this spline on a fine mesh of equally spaced points and construct the corre-
sponding shape-preserving C'! quadratic interpolant s;
3) remove knots from s.

We suggest using penalized least squares for step 1). Suppose y; = f(z;) + €, ¢ =

1,...,n, are measurements on some unknown function f with measurement errors {e;},
1 =1,...,n. To compute an approximation to f, we seek ¢ in the form
ge() =) ¢iBi(x), (7.1)

=1

where B; are the usual cubic B-splines associated with some knot vector (usually equally
spaced). To find an acceptable approximation, we must choose a suitable vector of coeffi-
cients.

The classical least squares method involves the minimization of

1 n
E(c) =~ lgelx:) — yil’
=1
over all choices of coefficient vectors c. For some data fitting problems, this results in fitting
functions that are not sufficiently smooth. The idea of penalized least squares [Golitschek
& Schumaker '90] is to construct a good fit to the data by choosing the coefficient vector

to minimize a combination of measures of goodness of fit and smoothness. We can take

15

the usual ¢ norm for the measure of goodness of fit. The smoothness of a function ¢ on
an interval [a, b] can be measured by

Now given A > 0, we seek to minimize

pr(e) = M(g)+ = 3 lo(ei) - wil?

over our spline space. The first term of pa(c) is called the penalty term, and A is called
the smoothing parameter.

For splines g. expressed in the form (7.1) the energy term can be written as J(ge) =
¢’ Ec, where

b
Eij:/ D™B;(t)D™B;(t)dt, i,j=1,....k.

The efficient computation of E is discussed in [Golitschek & Schumaker '90]. Now our
objective function has the form

1 n
=Ac"EBe+ =) [gelwi) — i)
palc) = Ac C+ni:1[9($) yil

The following result can be found in [Golitschek & Schumaker ’90].

Theorem 7.1. Let the n x k observation matrix B with entries B;; = Bj(z;), 1 =1, ..
g =1,...,k, be given and assume the matrix B is such that

'7n7

det[Bj(xi,)]5fl,j:1 #0, where {xiv}ﬁzl CA{zitiz
For any A > 0 there exists a unique vector ¢(\) minimizing px(c). It is the unique solution

of the system
(BB +n\E)c()\) = BTy, (7.2)

where y = (Y1, ..., Yn) " .

In practice, one has to select the smoothing parameter A. The standard approach is
to use generalized cross validation (see the discussion in [Golitschek & Schumaker '90]).
For the use of Monte-Carlo methods for finding A, see [Girard '89].

Figure 3 illustrates the use of penalized least squares to fit noisy data. First we created
a set of noisy data by adding random numbers in the interval [-.7,.7] to the values of the
function f(z) = %Sin S5z at 200 equally spaced points in [0,5]. Next we computed a cubic
penalized least squares spline fit (m = 2) to the noisy data using 9 equally spaced interior
knots and A = 0.001. We sampled this cubic spline at 200 equally spaced points to create
a quadratic C'! shape-preserving spline, and then applied our knot removal algorithm with
tolerance .05. The resulting spline (which has 19 interior knots) is shown in Fig. 3.

16

Figure 3. Noisy data and its corresponding spline fit.

§8. Knot Removal for Bivariate Functions

In this and the following section, we discuss monotonicity preserving knot removal for
bivariate functions. First we need to define what we mean by monotone data.

Definition 8.1. Let D = {(z;,y:,2)}Y, C R® be a finite data set. D is a monotone
increasing data set provided that z; > z; for all points (z;,y;) and (x;,y;) such that
rj > z; and y; > y;.

A monotone decreasing data set is defined similarly. In this paper we will direct our
attention to the case of monotone increasing data sets since the monotone decreasing case
is similar.

Our method is based on an interpolation method of [Han & Schumaker ’95] which
produces a monotone surface given monotone increasing data on a grid. Suppose H is a
rectangular grid defined by {z;}7*,, {yj};ﬁl, and suppose {zij}?ii?]yzl are corresponding
real numbers. We suppose this data is monotone in the sense of Definition 8.1. Now

27 Sty SRR £

at each of the grid points, and let A be the triangulation obtained from the grid by drawing
in both diagonals in each subrectangle H;; = [z, zi41] X [y;,y;+1] of H. This subdivision
of H;; is called the Sibson split of H;;.

It was shown in [Han & Schumaker '95] that there exists a unique spline s in the space
S of cubic C! splines on A whose normal derivatives along the edges are linear instead of

suppose we are given

17

quadratic which satisfies

s(xivy) = zij, sa(@ivy)) = 27, sy(wisyy) = 2] (8.1)

for:=1,...,nz and y = 1,...,ny.
Now, as in the univariate case, even though the data set is monotone, the above
interpolating spline will not be monotone for arbitrary choices of the gradients. The

following theorem from [Han & Schumaker '95] gives sufficient conditions on the gradients
for s to be monotone in the sense that

s(Z,9) 2 s(z,y),

whenever T > x, § > y.

Theorem 8.2. Suppose we are given data as in (8.1) such that

x x x x x x
23+ 241, < 5(zit1,5 — #ij)/ 2k, Zi i1 T 2 1 < 5(zik1 41 — 2ig+1) /2R3,

)
1] — ~1,7+1 24t ,7+1 t] T e ,7+1 ¥ he 17 “1,5+1 ’
)))

x x
Zit1,j+1 S Zig1,
2hY

; 3 6 J y y
+ min I (Zz—l—l,]-l-l - Zz—|—1;])7 h7(21+1,]+1 - Zz—l—l,]) - he maX[2i+1,iji+1,j+1])
(3 (3 (3

where h¥ = (z;41 — x;) and h! = (yj41 — y;). Suppose that similar conditions hold for
the y partial derivatives. Then the spline s;; which interpolates as in (8.1) is monotone on

Hi]‘.

Based on this theorem, the following two-step procedure is presented in [Han & Schu-
maker '95] for choosing the gradients {2{; };25;"/_ | and {2}, }}2}"/_; so that the interpolating
surface s is monotone increasing:

1) choose some initial set of nonnegative {zfj}?ii?]yzl and {zfj}?ii?]yzl using quadrature
rules based on local polynomials;
2) adjust these values so that the eight inequalities of Theorem 8.2 are satisfied for each

subrectangle.

Step 2 involves several sweeps of the grid to force the conditions of Theorem 8.2 to be
satisfied.

Once we have a monotone surface which interpolates the gridded data points, we
remove knot lines from the underlying grid in such a way that the surface is not perturbed
more than the given tolerance, and so that the monotonicity of the surface is also preserved.
This proceeds as follows:

18

Algorithm 8.3. Let s(?) be a spline constructed as above which interpolates the data
{zi}i23 5 {ij}?fi"f—p and {2, 12"y, at {(zi,y)HEL Sy Let tol > 0:

1) let an_ny{T 1= 17 = {y]}] 1’ 0 = {Zl]}?zxi?]yzp ZXO = {Zf]}?:rizy:l? and Zyo =
{Zz]}l—l =17
= ’]_

2) form wx® and wy?®, vectors of weights (see the discussion) of the knots in x° and y°,
respectively;

3) 1= 0;
4) do while |x'| > 4 and |y!| > 4, with either |x!| > 4, |y}| > 4, or both, and min{wx! U
wy'} < tol
a) form x1T1 = x! — % and y't! = y' — §, where X' C x! and §; C y' are chosen
according to the strategy given in the discussion below,

b) form zi*1, zx*t1 and zy'*! by properly adjusting z!, zx!, and zy’,

¢) construct the surface slit1),

d) find wx'*t! and wyit?
e) =1+ 1.

Discussion: Each interior knot of {z;}"*, and {y] Y, s Welghted to reflect its impor-
tance, and in doing this we create two vect01s of Welghts wx? and wy?. The weights in

wx? are calculated by temporarily removing one interior knot zj from {z;}7%,, building

(0)

the surface sz’ without the knot line created by zj, and setting wz} = |00 — 3375@0) |. We

use the discrete uniform norm calculated by finding the maximum value of |s(®) — (0)|
on a fine mesh of grid points in H. We do the same for each interior knot of {y] , to
form the vector of weights wy®. This process is also used to form wx' and wy'.
Calculating the weight of each knot is computationally more expensive in the bivariate
case than in the univariate case because each time a knot line is removed from the un-
derlying grid, the monotone surface interpolating the remaining gridded data points must
be constructed. Therefore, to reduce the number of computations, we suggest removing
several knots at a time. Whlle |xi| > 4 and |y!| > 4, with either |x!| > 4, |y! | >4, or both,
and min{wx' Uwy'} < tol, we first try to Temove every other knot from x! Wlth We1ght
less than tol/2, and every other knot from y' with weight less than tol/2. This insures that
no two adjacent knots will be removed. We construct the interpolating surface with the
remaining information and if the resulting error is less than the tolerance we go back to the
beginning of step 4) and try to remove more knots. If the error is greater than or equal to
the tolerance, we try removing every fourth knot, every eighth knot, and so on, with weight
less than tol/2. When there are fewer than three knots in either sequence with weights
less than tol/2, we use tol instead of tol/2 in the knot removal decision. We can usually
remove a few more knots using this criterion at this point in the algorithm. Experiments
show that we need to be selective about which knots are removed in the beginning of the
knot removal process in order for us to be able to remove as many knots as possible.
When the surface is reconstructed following the removal of one or more knot lines, the
values for the gradients are not recomputed before the sweeps of the grid are administered.

19

As in the univariate case, we prefer to use the original position and gradient values as often
as possible. W

§9. Numerical Examples for Surfaces

A FORTRAN implementation of Algorithm 8.3 was used to test the algorithm on several
examples.

Example 9.1. The function

T) VYt > 06
f(xvy):{eajp((\/m—o.tm)’ if /22 +y? >

0, otherwise,

was sampled at 31 x 31 equally spaced grid points on the rectangle [0, 3] x [0, 3] to produce
a set of data. Table 6 gives the number of knots remaining after applying Algorithm 8.3
for several values of the tolerance.

tolerance # knots in x # knots in y
0.0001 31 31
0.001 25 25
0.01 11 11
0.1 4 4

Table 6. Number of knots vs. tolerance for Example 9.1.

Example 9.2. The function f(z,y) = 2* + y* was sampled at 31 x 31 equally spaced grid
points on the rectangle [0, 3] x [0, 3] to produce a set of data. Table 6 gives the number of
knots remaining after applying Algorithm 8.3 for several values of the tolerance.

tolerance # knots in x # knots in y
0.0001 29 15
0.001 17 17
0.01 11 8
0.1 8 8

Table 7. Number of knots vs. tolerance for Example 9.2.

20

10. Remarks

Remark 1. Algorithm 2.2 removes one knot at a time, but it is also possible to remove a
group of knots at a time. When removing knots in groups, we suggest an approach similar
to that in Algorithm 8.3, which is to insure that a group of knots to be removed contain
no adjacent knots.

Remark 2. The order in which the knots are removed from an initial spline affects both
the number and locations of the final knots. To get a fit with the smallest possible number
of knots, it may be necessary to sometimes remove knots which do not have the smallest
weights. To find the best path would then require conducting some kind of combinatorial
search. Simulated annealing could possibly be applied.

Remark 3. Our bivariate shape-preserving knot removal method can also be applied to
noisy data. Just as in the univariate case, this can be done by first approximating the noisy
data with a tensor-product B-spline surface (for example, by penalized least squares), and
then sampling that surface to create values to be used to construct an initial interpolating
surface. For details on how to do tensor-product penalized least squares, see [Weyrich '92].

Remark 4. Our bivariate knot removal algorithm can also be regarded as a way to select
good knots for a tensor-product spline approximation of a bivariate function. In this case,
however, we have to be satisfied with the shape-preserving approximation itself, since there
is no known algorithm for computing best tensor-product spline approximations (in the
uniform norm).

References

Arge, E., M. Daehlen, T. Lyche, and K. Mgrken (1990), Constrained spline approximation
of functions and data based on constrained knot removal, in Algorithms for Approxi-

mation II, M. G. Cox and J. C. Mason (eds.), Chapman & Hall (London), 4-20.
deBoor, C. (1978), A Practical Guide to Splines, Springer-Verlag, New York.

Butland, J. (1980), A method of interpolating reasonable-shaped curves through any data,
Proc. Computer Graphics 80, Online Publications Ltd., Middlesex, UK, 409-422.

DeVore, R., and Z. Yan (1986), Error analysis for piecewise quadratic curve fitting algo-
rithms, Comput. Aided Geom. Design 3, 205-215.

Girard, D. (1989), A fast ‘Monte-Carlo cross-validation’ procedure for large least squares
problems with noisy data, Numer. Math. 56, 1-23.

Goldman, R., and T. Lyche, eds. (1993), Knot Insertion and Deletion Algorithms for B-
spline Curves and Surfaces, STAM (Philadelphia).

von Golitschek, M., and L. Schumaker (1990), Data fitting by penalized least squares, in
Algorithms for Approximation II, M. G. Cox and J. C. Mason (eds.), Chapman &
Hall (London), 210-227.

Han, L., and L. Schumaker (1995), Fitting monotone surfaces to scattered data using C'
piecewise cubics, STAM J. Numer. Anal., to appear.

21

Lyche, T. (1992), Knot removal for spline curves and surfaces, in Approximation Theory
VII, E. W. Cheney, C. Chui, and L. Schumaker (eds.), Academic Press (New York),
1-21.

Lyche, T., and K. Mgrken (1987a), Knot removal for parametric B-spline curves and sur-
faces, Comput. Aided Geom. Design 4, 217-230.

Lyche, T., and K. Mgrken (1987b), A discrete approach to knot removal and degree re-
duction algorithms for splines, in Algorithms for Approximation II, M. G. Cox and J.

C. Mason (eds.), Chapman & Hall (London), 67-82.

Lyche, T., and K. Mgrken (1988), A data reduction strategy for splines, IMA J. Numer.
Anal. 8, 185-208.

McAllister, D. F., and J. A. Roulier (1981), An algorithm for computing a shape-preserving
osculatory quadratic spline, ACM Trans. Math. Software 7, 331-347.

Niirnberger, G. (1989), Approximation by Spline Functions, Springer-Verlag, Berlin.

Niirnberger, G., and M. Sommer (1983), A Remez Type Algorithm for Spline Functions,
Numer. Math. 41, 117-146.

Niirnberger, G., M. Sommer and H. Strauss (1986), An algorithm for segment approxima-
tion, Numer. Math. 48, 463-477.

Schumaker, L. (1983), On shape-preserving quadratic spline interpolation, STAM J. Numer.
Anal. 20, 854-864.

Weyrich, N. (1992), Bivariate spline approximation by penalized least squares, in Mathe-
matical Methods in Computer Aided Geometric Design II, T. Lyche and L. Schumaker
(eds.), Academic Press (New York), 607-614.

Wolters, H. (1993), A method for computing best segment approximations, Arizona State
University, TR 93-001.

22

