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Abstract. In this paper we discuss a natural way to define barycentric coordi-
nates on general sphere-like surfaces. This leads to a theory of Bernstein-Bézier
polynomials which parallels the familiar planar case. Our constructions are

based on a study of homogeneous polynomials on trihedra in IR®. The special
case of Bernstein-Bézier polynomials on a sphere is considered in detail.

1. Introduction

Bernstein-Bézier (BB-) polynomials defined on triangles are useful tools for con-
structing piecewise functional and parametric surfaces defined over triangulated
planar domains. They play an extremely important role in CAGD (computer-aided
geometric design), data fitting and interpolation, computer vision, and elsewhere
(see e.g. the books [Farin '88, Hoschek & Lasser '93]).

In many applications we need to work on the sphere, or on sphere-like surfaces.
Researchers have been searching for a number of years for an appropriate analog
of the BB-polynomials in the spherical setting, but have been hampered by the
perceived lack of a reasonable way to define barycentric coordinates on spherical
triangles. In fact, recently, [Brown & Worsey ’92] showed that such coordinates
(satisfying a reasonable looking list of conditions) do not exist.
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The purpose of this paper is to show that despite the results in [Brown &
Worsey '92], there is in fact a simple and natural way to define barycentric coordi-
nates on spherical triangles, and that they can be used to define associated spaces
of BB-polynomials which exhibit most of the important properties of the classical
BB-polynomials on planar triangulations.

The key to our construction of barycentric coordinates for general sphere-like
surfaces is to omit the usual requirement that they form a partition of unity. It turns
out that the associated BB-polynomials can be interpreted as particular trivariate

BB-polynomials which are homogeneous.

The methods discussed in this paper have immediate applications to a variety of
important practical problems involving interpolation and data fitting of a function
defined on a sphere or sphere-like surface. Indeed, because of the close analogy with
standard Bernstein-Bézier techniques, virtually all of the classical methods based
on BB-polynomials on planar triangulations can be carried over to the spherical
setting. We give a detailed treatment of several of these methods in a separate
paper [Alfeld et al ’95¢]. Our spherical Bernstein-Bézier methods could also be of
interest in the design of surfaces (especially closed surfaces), although some of the

geometric properties of planar Bernstein-Bézier methods do not carry over.

The spherical BB-polynomials constructed here can also be used to define
spaces of splines (see Remark 1 in Sect. 7) whose domains are triangulations of the
sphere. We discuss these spline spaces in detail in [Alfeld et al "95b].

The paper is organized as follows. In Sect. 2 we introduce trihedral coordinates
in R* which will later be restricted to spheres or sphere-like surfaces. In Sect. 3
we study associated homogeneous BB-polynomials, and show that they have the
same properties as in the standard Bernstein-Bézier theory. Among other things,
we discuss the de Casteljau algorithm, subdivision, and necessary and sufficient
conditions for smoothly joining two such polynomials across a plane through the
origin. The reason for developing this homogeneous theory is that it provides a
useful framework for developing a Bernstein-Bézier theory on sphere-like surfaces.
This is done by restricting the trivariate polynomials to a surface; the details can
be found in Sect. 4.

The next three sections deal with the sphere as a special case of a sphere-like
surface. In Sect. 5 we discuss spherical barycentric coordinates, and develop their
properties, including several (such as rotational invariance) which are particular to
the sphere. In Sect. 6 we show that our choice of spherical barycentric coordinates
is the only one which satisfies a short list of natural properties. Spherical BB-
polynomials are treated in Sect. 7, where we also investigate associated surface
patches in IR* and discuss the problem of defining suitable control nets.

The restrictions of spherical BB-polynomials to great circles turn out to be

certain trigonometric polynomials. We give a detailed treatment of BB-polynomials



on circular arcs in [Alfeld et al '95a).

The reader who is primarily interested in the sphere may want to start reading
the paper in Sect. 5, referring back to earlier sections when needed for proofs and
more general results.

Several months after submitting this article, one of us presented the results
in Vienna, and H. Pottmann recognized that our spherical barycentric coordinates
had already been studied in 1846 by A. F. Modbius [Mobius 1846]. He derived
several interesting properties of these coordinates, including the properties which

we rediscovered in Theorems 5.2 and 5.3.

2. Trihedral Coordinates

In this section we introduce a special set of coordinates in R* which will be used
later to construct barycentric coordinates on the sphere and sphere-like surfaces.

Definition 2.1. Let V = {v,v2,v3} be a basis for R®. We call
T:={ve R? : v =0bvs + byvg + bgvy with b; > 0}
the trihedron generated by V. Each v € R® can be written in the form
v = byvy + byvy + bavs. (2.1)

We call by, by, bs the trihedral coordinates of v with respect to V.

If we choose V' = {ey, €3, €3}, where the ¢; are the usual unit coordinate vectors
in R?, then the corresponding trihedron is just the first octant, and the trihedral
coordinates of a point v € R? are the usual Cartesian coordinates.

Equation (2.1) defining the trihedral coordinates can be written as a system

of three equations for the b;’s:

vy vy v3 by v®
I N — "y 9 ¢
v vy v by | = | v¥ |, (2.2)

where v* denotes the z-coordinate of v, etc. The matrix in (2.2) is nonsingular
since vy, vg, vs form a basis for R®. Using Cramer’s rule, we immediately have

_det (v,v2,v3)
~ det (v1,v2,v3)

_det (vy,v,0v3)
~ det (vy,v2,v3)’

_det (v1,v2,0)
~ det (vy,v2,v3)’

by by bs

(2.3)

where
xr xr

vy vy U3
det (v1,vg,v3):=det | v{ v] wvi |,

-1 -1 2
vy vy U3
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and so forth. Equations (2.3) show that the b;’s are ratios of volumes of tetrahedra.

Clearly, for all o € R, bi(av) = abi(v), ¢« = 1,2,3, which implies that the
b; are homogeneous linear functions of v. Since they are also trivially linearly
independent,

span{by, by, b3} = L,
where £ is the space of trivariate linear homogeneous polynomials.
It follows immediately from Definition 2.1 that

bi(v;) = 6ij, 1,7 =1,2,3, (2.4)
and
bi(v) >0 for all v in the interior of T.
The trihedral coordinates of a point v are invariant under rotation. In fact, we can

prove even more:
Theorem 2.2. Let R be any nonsingular matrix. Then
bE(Rv) = bi(v), 1=1,2,3,
where b2 are the trihedral coordinates with respect to { Rvy, Rva, Rvs}.

Proof: Multiplying (2.1) by R, we have Rv = by Rvy + b2 Rvy + b3 Rv;. W

The next result also follows immediately from the definition of trihedral coor-
dinates.

Theorem 2.3. Let T be a trihedron generated by {vi,ve,vs}. Then the three
planes spanned by pairs of the v; divide R® into eight trihedra. The functions

by, by, b3 have constant signs on each of the eight trihedra. In particular, v € T if
and only if b; > 0,1 =1,2,3.

When the v;’s are the unit coordinate vectors, the eight regions of Theorem 2.3
become the eight octants in the ordinary Cartesian coordinate system.

3. Homogeneous Bernstein-Bézier Polynomials

In this section we will be interested in a certain subspace of the space Py of trivariate
polynomials of total degree d. The dimension of Py is (d;"?’). One way to construct
a basis for it is to start with four non-coplanar points v;, 2 = 1,...,4, and use them
to define the standard barycentric coordinates of a point v € R?:
4 4
v = Z b;v;, where Z b, = 1.
i=1 =1
Then a basis for Py is given by the classical Bernstein polynomials
ijkl

2

) e : i1J1kyl : K _
(v) = 7i!j!k!l!blb2b3b4’ i+ +k+1=d.

We recall the definition of homogeneous functions.
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Definition 3.1. A function f defined on R? is homogeneous of degree d provided
f(av) = a?f(v) for all real numbers « and all v € R®.

We are interested in the space Hy of polynomials of degree d which are homo-
geneous of degree d. The proof of the following lemma is elementary.

d+2
2

we choose vy to be the origin in the above construction of the Bernstein polynomials,
then the set

Lemma 3.2. The space Hy is an ( ) dimensional subspace of Py. Moreover, if

(Bl  i+j+k=d} (3.1)
forms a basis for Hy.

The polynomials in (3.1) play a key role in our paper. For ease of notation, it
is convenient to drop the last subscript, leading us to the following definition:
Definition 3.3. Let T be a trihedron generated by {vi,vs,vs}, and let bi(v),
b2(v), b3(v) denote the trihedral coordinates as functions of v € R?®. Given an

integer d > 0, we define the homogeneous Bernstein basis polynomials of degree d
on T to be the set of polynomials

d! o o
Biiu(v) = b (0 b0V bs(0) it k=d (3.2)

We call
p(v)i= Y eijrBii(v) (3-3)

i+j+k=d
a homogeneous Bernstein-Bézier (HBB-) polynomual of degree d.
In view of (2.4),

p(vi) = caoo, p(v2) = coao, P(v3) = cooa. (3.4)
To evaluate p at other points in R?, we may use the classical de Casteljau algorithm:

Theorem 3.4. Suppose we want to evaluate the HBB-polynomial (3.3) at a point
w with trihedral coordinates by, by, bs.

Set c?]-k =ciyr,t+)+k=d
Fori=1tod
Forie+j5j+k=d-1
[ -1 -1
Cijk = blci—l—l,j,k + bZCz‘,Hl,k + b3ci,j,k—|—1'

Then p(w) = cly,.
Proof: Let B)y,(w) = 1. Then it can be shown by induction that

Cijk = Z Citrjbs it By (W), ity +thk=d-1, (3.5)
r+s+i=I



and we have

Cgoo: Z CTSthst(w):p(w)‘ o
r+s+i=d

The following is the analog of the classical subdivision algorithm for bivariate
BB-polynomials. Its proof is exactly the same as in the planar case.

Theorem 3.5. Let {cﬁjk} be the coefficients produced by the de Casteljau algo-
rithm using trihedral coordinates by, by, by corresponding to a point w lying in T.
Then
Zi—l—j—}-k:d C(i)jkB;ijk;l(v)a ve T ={w,vs,vs},
p(v) = Zi-i—j-}-k:d C?okajk;z('U)a v e Ty ={v,w,v3},
Ei—l—j-}—k:d ijoBfljk;s('v)a v €Ty = {vi,v2,w},

where the B¢

ijkp are the Bernstein-Bézier basis functions associated with the trian-
b

glesT,, v=123.

We now establish necessary and sufficient conditions for two HBB-polynomials
to join together smoothly across a plane through the origin in the sense that the
polynomials and their usual directional derivatives as trivariate functions are con-

tinuous as we cross the plane.

Theorem 3.6. Let T and T be trihedra with vertices V = {v1,v2,v3} and V =
{v4,v2,v3}, where vy = 2?21 a;v;. Let

p(v)i= Y cijrBii(v) (3.6)

i+j+k=d

and
plv) = > B, (3.7)
i+jtk=d
where {ijk} and {E;i]k} are the Bernstein-Bézier basis functions associated with

T and T. Then p and p and all of their derivatives up to order m agree on the face

shared by T and T if and only if
Gk = Y CrjtsrteBly(va) (3-8)
r+s+i=1:

for allt =0,...,m and all j, k such that 1+ 7 + k = d.

Proof: Suppose

P(v):= Z Cijlezdjkl('U)

itj+k+i=d



and
Pw):= Y  CiuByv),
it jrkt+i=d
where
Cijkt 1= {0, otherwise and - Cijpi = {0, otherwise, (3.9)

and ijkl(v) are the usual BB-polynomials of degree d associated with the tetrahe-
dron with vertices {vy,vy,v3,0} and E;ijkl(v) are those associated with the tetra-
hedron with vertices {v4,v2,v3,0}. It is well known [de Boor '87] that these poly-
nomials join with C™ continuity if and only if

Cijr = Z Crjtsktt,1+uBrsiy(va), 1=0,...,m. (3.10)
r+s+itu=:

In view of (3.9), we can choose [ = u = 0. In this case, (3.10) holds if and only if
(3.8) holds. But P = p and P = p, and the proof is complete. W

4. Sphere-Like Surfaces

Throughout the remainder of the paper we denote the unit sphere in R* and cen-
tered at the origin by 5.

Definition 4.1. Given an infinitely differentiable positive function p defined on
the unit sphere S, we define a sphere-like surface in R® to be the set

S={ueR’:u=pvw, veS}. (4.1)

The simplest example is provided by p = 1, in which case § = 5. We require
that p be arbitrarily often differentiable in order to simplify subsequent arguments
about the smoothness of functions defined on sphere-like surfaces. Depending on the
application, it would suffice to require that p only be sufficiently often differentiable.

Definition 4.2. Let V = {vy,v9,v3} be a set of points on a sphere-like surface S
so that considered as vectors, they form a basis for R*. Then we define the surface
triangle with vertices vy, vy, and vs to be the intersection of & with the trihedron
generated by V.

A surface triangle is a piece of surface in R® with three boundary curves, each
of which is the intersection of § with a plane through the origin. For example, the
edge v3v3 is obtained by intersecting & with the plane passing through 0, vy, vs.

In the remainder of this section we discuss properties of HBB-polynomials
restricted to the surface S.
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Theorem 4.3. The polynomials {ijk}i—i—j—i—k:d restricted to S are linearly inde-
pendent.

Proof: Suppose

p(v) = Z cijkB;ijk(v) =0 forall v e S.
i+jtk=d

Then by the homogeneity of p, it must be identically zero on IR?. The result now
follows from the linear independence of the ijk’s on R®>. W

It is clear that both the de Casteljau and the subdivision algorithms developed
in Sect. 3 can be applied to HBB-polynomials restricted to §. We now consider
the question of when two polynomials on adjoining surface triangles join smoothly
across a common edge e. What we want is that for every curve ¢ crossing e obtained
by intersecting & with a plane, derivatives up to a given order m with respect to
the arc length of ¢ agree along e.

Theorem 4.4. Suppose p and p are polynomials as in (3.6) and (3.7) and let T
and T be the surface triangles obtained by intersecting the corresponding V and V
with a sphere-like surface §. Then the restrictions of p and p to S along with their
derivatives up to order m join continuously along the common edge e between the
two triangles, i.e., for every point v € e and every curve ¢ € § crossing e at v,

Dip(v) = Dlp(v),  j=0,...,m, (4.2)

if and only if (3.8) holds.

Proof: The fact that (3.8) implies (4.2) is immediate by Theorem 3.6 and the
chain rule. The converse assertion follows from the fact that any derivative of a
homogeneous function is itself homogeneous. W

5. Spherical Barycentric Coordinates

Let S be the unit sphere in IR® with center at the origin obtained by setting p = 1
in (4.1). In this case, the surface triangle generated by three unit vectors vy, vz, vs
(which span IR*) becomes the spherical triangle

T:{’U es: ’U:bl‘l}l—|—bg’02—|—bg’03, b; ZO}

It is clear that the boundary of T' consists of the three circular arcs vyv3, U203, U307 .
Each of these arcs lies on a great circle, and is thus a geodesic curve on S.



Definition 5.1. Let T be a spherical triangle with vertices vy, vq,vs, and let v be
a point on S. The (spherical) barycentric coordinates of v relative to T are the
unique real numbers by, by, by such that

vV = bl’l)l + 62’02 -+ 63’03. (51)

It is clear from (5.1) that the spherical barycentric coordinates of a point v on
the sphere S are exactly the same as the trihedral coordinates of v with respect
to the trihedron generated by {vi,ve,vs}. This implies they have the following
properties (among others):

1) At the vertices of T,

2) For all v in the interior of T, b;(v) > 0.
3) In contrast to the usual barycentric coordinates on planar triangles (which
always sum to 1),

bi(v) +ba(v) + ba(v) > 1, ifve T andv # vy vz, s

4) If the edges of a spherical triangle T' are extended to great circles, the sphere
S is divided into eight regions. The spherical barycentric coordinates by, by, b3
have constant signs on each of these eight regions.

5) If a point v lies on an edge of T', then one of its spherical barycentric coordinates
vanishes. The remaining two spherical barycentric coordinates are ratios of
sines of geodesic distances, rather than ratios of geodesic distances (see [Alfeld

et al '94c]).

6) Spherical barycentric coordinates are infinitely often differentiable functions of
v (since the determinant in the denominators of (2.3) never vanishes).

7) The spherical barycentric coordinates of a point v on the sphere relative to one
spherical triangle 7' can be computed from those relative to another spherical
triangle T' by matrix multiplication.

8) The b; are ratios of volumes of tetrahedra (cf. (2.3)). (They are not the volumes
of the spherical wedges whose top faces are spherical triangles).

9) The spherical barycentric coordinates of a point v are invariant under rotation,
i.e., they depend only on the relative positions of v and vy, v9, v3 to each other.
(This is important because the sphere S itself is rotationally invariant).

10) The span of the spherical barycentric coordinates by(v), b2 (v), b3(v) relative to
any triangle is always the three-dimensional linear space obtained by restricting
the space £ of linear homogeneous polynomials on R® to the sphere S, and
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is thus independent of the triangle. For convenience, we will use £ to denote

both of these spaces (even though they correspond to different domains).

We now show that spherical barycentric coordinates can also be expressed in
terms of certain natural angles associated with the geometry, just as in the planar
case, see [Farin '88|. Again assuming that the vertices of a triangle T are the points
in the set V' := {vy,vy,v3}, let n; denote the unit normal vectors to the planes
P; := span(V\{v;}), © = 1,2,3. The orientation of these vectors is chosen to be

consistent with the orientation of the vertices v; relative to P;, i.e.,
sgn det (vy,v2,v3) = sgn det (ny, vy, vs)
= sgn det (vy,n2,v3) = sgn det (vy,v2,n3).
For a point v € S, let the angles «;, 3;, be defined by the dot products
sina; :=v-n;, sinf; :=uv;-n,, 1 =1,2.3.

The «; represent oriented angles between the vector v and the planes P;, while
the (3; are the analogous angles between v; and the P; (see Fig. 1). For nontrivial
spherical triangles, det (v1,vq,vs) # 0, and therefore sin 3; # 0,7 =1,2,3.
Theorem 5.2. The spherical barycentric coordinates of the vector v € S with
respect to the triangle T are given by
sin a; . . .
bZ(U) == m, 1 = 17273. (52)

Proof: The proof follows immediately from (5.1) since n; = d;/||d;||, where

er vy 3 vl er 03 vl vd e
— oY Y | Y Y | Y Y
dy:=|ex vy v3|, do:=|v{ e w3|, d3:=]v] vy e
ez V5 Ui vi es v; v V5 e3
Here || - || is the usual Euclidean norm, and the e; are the unit coordinate vectors

inR>. W

Theorem 5.3. For each: = 1,2,3, let C; be the great circle passing through the
points v € S and v; € V, and let y; denote the intersection of C; with the edge of
T opposite to v;. Then the spherical barycentric coordinates of v can be computed
as s

b = snl(s(lﬁni—k’y) i=1,2,3, (5.3)
where ¢; is the signed geodesic distance (measured along C;) from y; to v, and ~;

is the signed geodesic distance from v to v; (see Fig. 1).

Proof: It suffices to consider the case : = 1. Clearly

sin &y sin vy

. v+ —
sin(61 + 1) ! sin(d; + 71

)yl-
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v
1 v,

Y2
Y3

)
Y1

Fig.1. Computing spherical barycentric coordinates by (5.2) and (5.3).

Then since y; can be written as a linear combination of v and vs (not involving

v1), (5.3) follows for e = 1. M
Figure 1 illustrates both Theorems 5.2 and 5.3.

6. Uniqueness of Spherical Barycentric Coordinates

In the planar case, barycentric coordinates relative to a triangle are linear functions.
The problem of defining barycentric coordinates relative to spherical triangles re-
duces to finding a natural generalization of linear functions for the sphere. Linear
bivariate functions exhibit the important property that they vanish along lines in
IR?. This property seems to us also appropriate for defining a spherical analog M
of the space of bivariate linear functions. Therefore, we require that

(i) M is a three dimensional space of continuous functions on the sphere,
(ii) for every great circle on S there exists a nonzero function f € M vanishing
identically along that circle,
(iii) M is rotation invariant, i.e., if R is a rotation matrix then f( - ) € M implies

f(R-)e M.

Note that the space £ spanned by the spherical barycentric coordinate functions
associated with any given spherical triangle satisfies all three requirements. We
now show that this is the only space which does so.

Theorem 6.1. The space L is the unique space of functions on S satisfying con-
ditions (i)—(iii).

Proof: Let C be a great circle on S. Suppose M satisfies (i)—(iii). Then there
exists a nonzero function f € M which vanishes identically on C'. This means that
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the dimension of the space M|¢ of functions from M restricted to C is at most two.
We now show that it is equal to two. Suppose that the dimension is equal to one.
By rotational invariance, this means that M| is the space of constant functions
on C. Since M is rotation invariant, this must be true for all great circles C', and
so M itself is the one dimensional space of constant functions. This contradicts
our assumption that the dimension of M is 3. Therefore, we conclude that the
dimension of M|¢ is precisely two for all great circles C. By Theorem 3 of [Alfeld
et al '95a], M|c must be one of the spaces

L := span{sin k6, cos k6} (6.1)

for some positive k. We next show that M cannot satisfy all three conditions
(1)—(iii) unless k = 1.

Let £ > 2 and let T be a spherical triangle with vertices vy, v, v3 which are
chosen such that each of the three angles between pairs of the vectors vy, vq,v3 is
equal to 7/k. Observe that this choice still makes it possible to place one of the
vertices, say vy, arbitrarily on S. Restricted to the edge v1v3, any nonzero function
f € M belongs to L, and thus can be represented as

florez(0) = acos(k6) + bsin(kd), a,b € R,

where 6 is a local angle variable in the plane containing the origin and vy, vs.
Moreover, note that

flooz(0 + 7 /k) = — florzz (),

and therefore
f(v1) + f(v2) = 0. (6.2)

Similarly, for the other two edges we obtain

flv2) + f(vz) =0,  f(vs)+ f(v1) = 0. (6.3)

The homogeneous system of equations (6.2)—(6.3) implies

f(v1) = f(v2) = f(vs) = 0.

However, since v; can be chosen arbitrarily, this implies that f vanishes identically
on S, which contradicts our assumption. Thus, k must equal 1, and £ is the unique
space satisfying (i)—(iil) since its restriction to C'is £;. W

It 1s instructive to discuss the geometric nature of the space £. For p € £ we
consider the surface

P = {plv)v : ve S}
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Theorem 6.2. The surface P represents a sphere passing through the origin.

Proof: As pointed out earlier, the space £ does not depend on the triangle with
respect to which the spherical barycentric coordinates are defined. Therefore, for
simplicity we will consider the quadrantal triangle T' with vertices v; = e;,1 = 1,2, 3.
A point u € R? with Cartesian coordinates uy, us, us can also be expressed in terms
of its symmetric polar coordinates r,aq,as,as. Here, r := ||u||, and a1, az, a3 are
the angles defined in Theorem 5.2. This terminology is justified by the identities
3 3

ui =rsina;, 1=1,2,3, r’:= Zu?, z:sin2 a; =1, (6.4)

] =1

=1

which are reminiscent of identities for polar coordinates in R*. Also note that by
(5.2), the barycentric coordinates by, bg, b3 of the point v := u/r with respect to T
are equal to the sines of the angles «y, as, a3, respectively. A function p € £ can

be uniquely represented as
3
p(v) = Zaibi(v), veS, e eR, =123
=1

Hence, for every point u on the surface P,

3 3
r = E a;b; = E a; sin a;.
i=1 =1

Then by (6.4), this equation can be rewritten as

3

3

2 _ . _

rt = a;rsin o; = a;u;,
i=1

=1

or as

3
Z(u? —a;u;) =0,

=1

(-5 =5 (5)

1 =1

which leads to ,

2

Thus, P indeed represents a sphere, centered at point (a1 /2, az/2, as/2) and passing
through the origin. W

Theorem 6.2 shows that spheres passing through the origin are natural analogs
of linear functions in the planar case. In fact, there is a one-to-one correspondence
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between planes in R® and spheres passing through the origin. This is easily seen
by considering the inversion centered at the origin, i.e., the map T' : R*\{0} —

R*\ {0} given by y
Tu := u € R*\{0}.

el

Any plane H in R? not passing through the origin can be described uniquely

Ty = 1 for some vector a € R®. The image of H under I is

by the equation a
the sphere P of radius ||a||/2 centered at a/2 (minus the origin). This follows

immediately from the identity

> ulu—a%ullull? + ST alu 1

- 2
ful? =gl

s
2

Conversely, the image of P under I' is H because I' = I'"!,

7. SBB-polynomials and SBB-patches
Given an HBB-polynomial

p(v) = Y cimBi(v), (7.1)

i+j+k=d

we refer to its restriction to a spherical triangle T' as a spherical Bernstein-Bézier
(SBB-) polynomial. SBB-polynomials inherit all of the properties of the HBB-
polynomials discussed in Sect. 3. In particular, we can use the de Casteljau al-
gorithm described in Theorem 3.4 to evaluate p or to subdivide it. Moreover,
Theorem 3.6 shows that two SBB-polynomials (3.6) and (3.7) defined on neighbor-
ing spherical triangles join smoothly of order m across the common edge if and only
if (3.8) holds.

Since we are now on the sphere, we can say more about the nature of HBB-
polynomials. In particular, if we restrict such a polynomial to a great circle, it
becomes a trigonometric polynomial of the geodesic distance along the circle — see
[Alfeld et al "95a].

We are now in a position to define a surface patch in R* associated with a
SBB-polynomial.

Definition 7.1. We call the surface
P :={plv)v : veT}

a spherical Bernstein-Bézier (SBB-) patch.

A number of properties of SBB-patches follow immediately from properties
of SBB-polynomials. For example, to compute points lying on the surface of an
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SBB-patch, we can use the de Casteljau algorithm. To join patches smoothly, we
only need to be sure that the corresponding SBB-polynomials join smoothly by
enforcing the conditions of Theorem 3.6.

In CAGD applications, it is convenient to use control nets to construct and
manipulate patches. Clearly, the natural way to define control points is to choose

Cijk = CijkVijk, i+y+k=d,

where v € S are the vectors corresponding to appropriate points in the spherical
triangle 7'. Moreover, in analogy with the planar case, we should choose

Vdoo = V1, Vodo = V2, Vood = U3,

where v; are the vertices of 7. The question now is how to choose the remaining
Vijk-

One choice is to take the usual Bézier sites on the planar triangle with vertices
at vy,vs and v3, and project them upward onto the unit sphere. This leads to the
points
~tvp +jog + kus
v + oz 4 ks’

i+j+k=d (7.2)

Vijk
A different choice is to take v;;; to be some point on S where
d d . .
Biji(vije) = max Bij(v),  i+j+k=d

Using these points has the advantage that moving a particular control point Cjj
has the maximal effect at v;ji.

Either of these choices could be used to provide a user with design handles
for manipulating SBB-patches. Both are natural generalizations of the planar case.

However, we note:

1) In contrast to the planar case, these choices do not lend themselves to a con-
venient geometric interpretation of C'' smoothness conditions.

2) In the planar case, if the control points all lie on a plane, then the corresponding
patch lies in this plane. We do not have an analog of this result for SBB-
patches. This is because here the analog of a plane is a surface corresponding
to a function from the space £, while on great circles the analog of the space
of linear functions is the space £; defined in (6.1), see [Alfeld et al '95a]. But,

unless d = 1, the restriction of £ to a great circle is not the space L.

We now discuss the question of when it is possible to construct an SBB-patch

which has a constant height above a spherical triangle 7'
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Theorem 7.2. Let T be a spherical triangle, and suppose that d is even. Then
there exists a unique SBB-polynomial p of degree d defined on T such that

p(v) =1, for allv e T. (7.3)
If d is odd, no such p exists.

Proof: If such a p exists, we can extend it to all of R* by homogeneity. But by
definition, any homogeneous polynomial p of degree d satisfies

p(=v) = (=1)"p(v).

This means that (7.3) cannot hold when d is odd. Now suppose d is even. Then
for v = (vy,v2,vs) on the unit sphere it is clear that the polynomial

p(v) = (vf + o +03)2, 0= (1,02, 08),

is of degree d and satisfies (7.3). The uniqueness assertion follows from the linear
independence of the Bernstein-Bézier basis polynomials. W

The fact that constants can be represented exactly by homogeneous polynomi-
als of even degree on the sphere depends critically on the geometry of the sphere.
For a general sphere-like surface it is not possible to represent constants exactly. For
the purpose of applications, it is clearly desirable to be able to represent constants
exactly. This suggests that the spaces where d is even may be more useful. How-
ever, if one wants to use a space where d is odd, this shortcoming can be remedied
by adding constants to the space, and imposing additional conditions that ensure
that if the underlying data have the same function value at all data sites, then the
interpolant or approximant is identically equal to that value. For an illustration of
this idea, see e.g. [Dyn '87].

We conclude this section by establishing the following degree-raising formula
which is a direct analog of the corresponding degree-raising formula for the planar
case, except that now (in view of Theorem 7.2), we restrict ourselves to raising the
degree by two.

Theorem 7.3. Let p be a SBB-polynomial as in (7.1). Then
p= Y, cnBup= Y anBi
i+jth=d i+jth=dt2

where

%) [i(i —1D)ci—2,jk + Briotjci—1,j—1,k
+7(7 — Deij—2.x + Brortkci—i jr—1

+ k(k — 1)Ci,j,k—2 + 5011jkci,j—1,k—1 :
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Here
sin? hy ) f sin? ho . sin? hs .
/3011 = YT 5 3 2 hy — 2, 13101 = T 5 1 2 hy — 2, and 13110 = YT 5 1 2 ha — 2,
S111 o S111 o S111 o

where h; is the arc length of the edge opposite vertex v;, 1 = 1,2, 3.

Proof: By Theorem 7.2, the constant function 1 can be written as a linear com-
bination of the spherical Bernstein basis functions {B?jk}i+j+k:2- The coeflicients
can be found by interpolating at the vertices and the midpoints of the edges of T
This leads to

1= b% + b% + b§ + Bo11b2bs + B101b1bs + B110b1bs.

To complete the proof, we simply multiply p by this expression and collect terms.

8. Remarks

Remark 1. Let A := {T;}¥ be a triangulation of the sphere (see e.g. [Schumaker
'93]). Given integers r and d, we define the space of spherical splines Sj(A) to be
the set

Sj(A):={s € C"(S) : s|r, is a SBB-polynomial of degree d on T, e =1,...,N}.

This is the direct analog of the classical polynomial splines defined on planar tri-
angulations, and clearly should have an analogous constructive theory, including
results on dimension, local bases, approximation power, etc. We discuss these mat-

ters in [Alfeld et al "95b].

Remark 2. As in the classical univariate and planar Bernstein-Bézier theory, it
is possible to give formulae for derivatives of SBB polynomials. We leave these to
our paper [Alfeld et al '95¢], where we also discuss several practical methods for
interpolating scattered data on the surface of the sphere (or a sphere-like surface).

Remark 3. As in the planar case (see [Farin '86]), using our spherical barycentric
coordinates, we can define rational spherical Bézier surfaces which can be used for
interpolation. For an application to data fitting on the sphere, see [Liu & Schumaker

'95].

Remark 4. Using the theory developed here, it is straightforward to define spher-
ical analogs of simplex splines. In fact, our spaces of SBB-polynomials are related
to certain multivariate trigonometric simplex splines defined in [Koch ’88].
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Remark 5. The spherical polynomials defined here are closely related to spherical
harmonic functions. It is well known that spherical harmonics are restrictions of
homogeneous harmonic polynomials to the unit sphere [Miller 66]. Thus, spherical
polynomials are linear combinations of spherical harmonics. In particular, spherical
barycentric coordinates are spherical harmonics of degree one.

Remark 6. Our construction of barycentric coordinates and BB-polynomials gen-
eralizes easily to spheres in higher dimension.

Remark 7. For other definitions of barycentric coordinates on the sphere, see
[Baumgardner & Frederickson '85, Brown & Worsey 92, Lawson '84]. Of these
three, only Lawson’s coordinates are similar to ours, and in fact differ only in that
they are normalized to sum to one. In all three papers, the barycentric coordinates
are required to form a partition of unity, and therefore they inevitably fail to have

many of the important properties which ours have.
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