Smooth Macro-Elements Based

on Powell-Sabin Triangle Splits

Peter Alfeld V) and Larry L. Schumaker ?

Abstract. Macro-elements of smoothness C” on Powell-Sabin triangle splits
are constructed for all » > 0. These new elements are improvements on el-
ements constructed in [10] in that certain unneeded degrees of freedom have
been removed.

§1. Introduction

A bivariate macro-element defined on a triangle T' consists of a finite dimensional
linear space S defined on 7', and a set A of linear functionals forming a basis for
the dual of S.

It is common to choose the space S to be a space of polynomials or a space of
piecewise polynomials defined on some subtriangulation of 7. The members of A,
called degrees of freedom, are usually taken to be point evaluations of derivatives.

A macro-element defines a local interpolation scheme. In particular, if f is
a sufficiently smooth function, then we can define the corresponding interpolant
as the unique function s € S such that As = Af for all A € A. We say that a
macro-element has smoothness C” provided that if the element is used to construct
an interpolating function locally on each triangle of a triangulation A, then the
resulting piecewise function is C" continuous globally.

The first C" macro-elements were constructed using polynomials of degree
4r 4+ 1, see Remark 6.1. To get macro-elements using lower degree polynomials, it
is necessary to split the triangle. Here we focus on the case where T is split into six
subtriangles as follows. Suppose the vertices of T' are V := {v1, v9,v3}, that vp is
a point inside of T, and that W := {wy,wy, w3} are points on the edges (v;, v;11).
Then the corresponding Powell-Sabin split Tpg of T consists of the six triangles

T[Z] = <’UT,’UZ',’LU,L'>, T[Z] = <’UT, w;, 'Ui+1>; = 1, 2, 3, (1.1)
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Fig. 1. The Powell-Sabin split.

where we identify v4 = vy, see Fig. 1. Let &€ be the set of edges (vp, w;) for i = 1,2, 3.

The classical Powell-Sabin macro element [12] is based on the triangulation
Tps and the 9-dimensional space of C! quadratic splines on Tpg. The 9 degrees of
freedom are chosen to be the values and gradients at the three vertices of T'.

Several authors have created smoother versions of this classical quadratic PS-
element, see [5,10,13-16] and references therein. C” elements based on the PS-split
and using polynomials of the lowest possible degree were constructed recently in
[10] based on the superspline spaces

S;P ¥ (Tpg) :== {s € C"(T) : s is a piecewise polynomial of degree d on Tpg,
s € CP(v) for allv € V, s € CH(v) for all v € W,

and s is C* across all edges in £}

(1.2)
for appropriate values of p and p depending on r. As usual, C*(v) means that all
polynomials on triangles sharing the vertex v have common derivatives up to order
p at that vertex. Note that (1.2) is a superspline space with additional continuity
across certain interior edges.

The purpose of this paper is to show how the elements of [10] can be improved
by reducing the number of degrees of freedom, resulting in macro-elements on the
PS-split which can be parametrized in terms of point-evaluations of derivatives at
the vertices and certain cross-boundary derivatives only.

The paper is organized as follows. In Sect. 2 we introduce some notation, and
in Sect. 3 we review the theory of minimal determining sets for spline spaces. In
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Sect. 4 we state and prove the main result of the paper. In Sect. 5 we illustrate the
result with some examples, and in Sect. 6 we translate our results to nodal form.
in Sect. 7 we discuss the use of our elements for Hermite Interpolation. The paper
concludes with remarks in Sect. 8.

§2. Preliminaries

Our starting point is [10], and we closely follow the notation used there and in
the papers [1-11]. Given a triangle T := (uj, us, u3) and an integer d, we use the
Bernstein-Bézier representation
T pd
p= Z CijrBijr
i+j+k=d
for polynomials of degree d. Here B;ijk are the Bernstein polynomials of degree d
associated with T' defined by
d! o
Biu(w) = e #rh, ititk=d, (2.1)
where (v, 3,7) are the barycentric coordinates of the point v € IR? in terms of the
triangle T'.
As usual, we denote the associated domain points by

é_;];k — (’LU1+]1;2+ 'U/3)’ Z+J+k:d

We will work with rings and disks of domain points defined by
T T .

R, (u1) :={&jr s i=d—n},

Dy (w1) = {€f: i>d—n},
with similar definitions at the other vertices of T'. In the sequel we shall frequently
say that a coefficient is on a ring or in a disk when what we really mean is that its
associated domain point is in that location.

Suppose that T := (u1, ug, ug) and T := (u4, ug, u2) are two adjoining triangles

which share the edge e := (ug,u3). Let p and p be two polynomials of degree d

with B-coefficients c;j; and ¢;;i relative to T' and T', respectively. Then it is well
known that p and p join with C" continuity across the edge e if and only if

6n,'m—'n,d—'m = Z ci,j—}-d—m,k—i—m—nB%k(uél)a (2-2)
i+j7+k=n
for m =n,...,d and n = 0,...,r. Here B}, are the Bernstein polynomials of

degree n on the triangle 7.

Assuming that the coefficients of p are known and that p joins p with C”
continuity, the smoothness conditions (2.2) can be used to compute the coefficients
Cn,m—n,d—m Of p for 0 < m < r. They can also be used in situations where some
of the coefficients of both p and p are known and others are unknown. We need
the following lemma which shows how this works for computing coefficients on the

ring R (u3) U RL (us), assuming that an appropriate set of smoothness conditions
across the edge e are satisfied.



Lemma 2.1. [2] Suppose T and T are as above, and that all coefficients cijk and
Cijk, of the polynomials p and p are known except for

Cv ‘= Cy,d—m,m—v> V:€+17'-'aQ7

(2.3)

Cy 1= 5u,m—u,d—ma v=£L+1,...,q,

for some ¢, m,q,q with 0 < q,q, —1 < ¢ <gq,q, and ¢+ ¢—p < m < d. Then these
coefficients are uniquely determined by the smoothness conditions

6n,m—'n,,d—rn = Z Ci,j+d—m,k+m—nB?jk;(u4)7 £+1 <n< q-+ q — £ (24)
i+j3+k=n

§3. Minimal determining sets

Let Sg(A) be the space of continuous splines of degree d on a triangulation A, and
let Dg A be the union of the sets of domain points associated with each triangle
of A. Then it is well known that each spline in 8Y(A) is uniquely determined by
its set of B-coefficients {c¢}¢ep, - In particular, the coefficients of the polynomial
s|r are precisely {c¢}eepy anT-

In this paper we are interested in subspaces S of S9(A) which satisfy additional
smoothness conditions, including smoothness conditions across edges, smoothness
conditions at vertices, and certain special individual smoothness conditions. Sup-
pose that T := (u1,us, u3z) and T := (ug4, us, us) are two adjoining triangles which
share the edge e := (us,us). Let c;jx and ¢;x be the coefficients of the B-
representations of s and sz, respectively. Then for any n <m < d, let

= n
Tm,e$ = Cnym—n,d—m — E ci,j—l—d—m,k—}-m—nBijk(uéL)a (31)
i+j+k=n

where BJ, are the Bernstein polynomials of degree n on the triangle T'. In terms
of these linear functionals, the conditions (2.2) for C" smoothness across the edge
e can be restated as

T s=0, n<m<d, 0<n<r.

If s is a spline in S9(A) which satisfies additional smoothness conditions, then
clearly we cannot independently choose all of its coefficients {c¢}¢ep, o We recall
that a determining set for a spline space S C S9(A) is a subset M of the set of
domain points Dg A such that if s € S and cc = 0 for all { € M, then ¢ = 0 for all
£ € Dy, ie,s=0. The set M is called a minimal determining set (MDS) for S if
there is no smaller determining set. It is known that M is a MDS for § if and only
if every spline s € S is uniquely determined by its set of B-coefficients {c¢ }¢c -
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A MDS M is called stable provided that for each 6 > 0 there exist positive con-
stants K; and K5 depending only on 6 such that K1 ||c||eo < [|$||cc < Ka2||¢||o0, when-
ever A is a triangulation whose smallest angle exceeds 6. Here ||c|| := maxgeaq |cel,
and ||s||oo is the maximum of |s(z)| over the union of the triangles of A.

We conclude this section with some additional notation. If v is a vertex of A,
the rings R, (v) and disks D,,(v) are defined to be the unions of the rings RL (v)

and disks DI (v), respectively, taken over all triangles T attached to v.

§4. The main result

We begin by defining certain spline spaces defined on the PS split. Let gg,p *(Tps)
be the space of supersplines defined in (1.2). For ease of notation, in the remainder
of the paper we will write

T’l”r:l,l = 1§l§3,

(4.1)

T,':,L.‘,’ (Ul 7UT) ’
where 7, . are the linear functionals defined in (3.1).

Definition 4.1. Given r > 0, let k be such that 8k < r < 8k+7. Let p, u,d,p,q,n
be the associated integers defined in Table 1, and let S,(Tpg) be the subspace of
all splines s € S8y”*(Tpg) such that

; ; ; . 27 —1, r even
r+1 _ T+ __r+ _ I
To4 18 = Tp4j,28 = Tpij3s =0, l<uis { 25 —2, r odd, (4.2)
for 1 < j <p, and
s =0, 1<i<n-—2j,
THs=0, 1<i<n-—2j-1,
T a5 =0, 1<i<n—2j—2, (4.3)
forp+1<j5<q.
Tab. 1. Parameters for the space Sr(Tpg).
r P L d P q n
8k 12k 12k + 1 18k + 1 k 2k 4k + 3
8k+1| 12k +1 12k +1 18k + 2 k 2k 4k + 2
8k+2| 12k +3 12k + 3 18k +5 k 2k+1| 4k+3
8k+3| 12k +4 12k +5 18k + 7 k+1| 2k+1| 4k+4
8k+4| 12k +6 12k + 7 18k +10| k+1| 2k+1| 4k+5
8k+5| 12k+7 126+ 7 18k +11| k+1| 2k+1| 4k+4
8k+6| 12k+9 12k +9 18k +14| k+1| 2k+2| 4k+5
8k+7| 12k+10| 12k 4+ 11| 18k +16| k+1| 2k+2| 4k+6




Tab. 2. Parameters for Theorem 4.2.

r a b K

8k 57 3 | 6k%>+3k
8k+1| 93 9 | 6k2-—3k
8k+2| 165 30| 6k2+3k+1
8k+3| 207| 48 | 6k2+ 3k
8k+4| 279 87| 6kZ+9k+3
8k+5| 315| 111| 6k2+ 3k
8k+6| 387| 168| 6kZ2+9k+4
8k+ 7| 429| 207| 6k2+9k+3

Theorem 4.2. Given 8k < r < 8 + 7, let a,b, k be the associated integers in
Table 2. Then

dim S, (Tps) = 222k? + ak + b. (4.4)
Moreover, the following set M, is a stable MDS for S,(Tps):
1) DT (v;) fori =1,2,3,
2) {gfg['ijru—d—l,szrl—u_Qja - -f}:g}d_j} forj=d—pu+1,...,randi=1,2,3.

Proof: First we show that M, is a determining set. Suppose s is a spline in
S, (Tps) and that ¢ = 0 for all £ € M,. We claim that all other coefficients must
also be zero, and so s = 0. For ease of notation, we write R;(v;) for the ring

R?m (v;), where T are the triangles defined in (1.1). We also define

[4] d—i lil d—i
Ej,i = {fq':d—j—u,v}u:{) U {éz:u,d—j—u}yzg)‘

These are the domain points in the j-th row of T U Tl parallel to the edge
(Uia Ui-i-l)'

The process proceeds in steps, and at any point in it, we refer to the coefficients
which have already been shown to be zero as known, and refer to the remaining
coefficients as unknown. First, we use the smoothness conditions to compute the
values of the unknown coeflicients in the disks D,(v;) for I = 1,2, 3. They turn out
to be zero since they depend directly on the values of c¢ for £ € M, which are all
assumed to be zero. We then use the C* smoothness conditions across the edges
(v,w;) and Lemma 2.1 to compute the u unknown coefficients in each of the rows
Eopy...,Epy, I = 1,2,3. This involves nonsingular systems with zero right-hand
sides. Then for each 1 < j <pand [ =1,2,3, we compute the 2(p—r+j—1)+1
unknown coefficients on the ring R,4;(v;). The computation of the remaining
unknown coefficients divides into six cases.



Case 1: r = 8k,8k + 1. We perform a cycle of computations. For each j =
p+1,...,q:

a) compute the 2(p —r + j — 1) + 1 unknown coefficients on the ring R, ;(v1),

b) compute the d —r + 2p — 25 + 1 unknown coefficients in the rows E,io(i—p)-1,1
and E, 2i_p)—1,3

o

o
— N N N

compute the 2(p — r + j — 1) unknown coefficients on the ring R, ;(v2),

compute the d —r+ 2p —2j + 1 unknown coefficients in the row E, o;_p)—1,2,

@

compute the 2(p — 7+ j — 1) — 1 unknown coefficients on the ring R, ;(v3).

—

if j < g, compute the d—r+2p—2j unknown coefficients in the rows E,.  3(;_p).1;
l=1,2,3.

At this point the only remaining unknown coefficients lie inside the disk D, (vr). In
view of the supersmoothness p at the vertex vy, we can consider these coefficients
to be those of a polynomial P of degree y = 12k + 1 on a single triangle (u1, ua, us).
Since we have already computed all coefficients of s in the disks D,44(v;), this
gives us all coefficients of P in the disks Dgg(u;) for [ = 1,2, 3. These determine all
coefficients of P, and hence all remaining coefficients of s.

Case 2: r = 8k + 2. In this case we do the cycle of computations of Case 1
for j =p+1,...,9 — 1. Next we compute the r + 1 unknown coefficients on the
ring R,44(v1). This gives us all of the coefficients of a polynomial P of degree
p = 12k + 3 in the disks Dgg4o2(u1) and Dgg41(u;) for | = 2,3. These determine all
coefficients of P, and hence all remaining coefficients of s.

Case 3: r = 8k + 3. If £ > 0, we first compute the d — r — 1 unknown coefhi-
cients in each of the rows E,;; for [ = 1,2,3. We then do the following cycle of
computations. For each j =p+1,...,q— 1:

a) compute the 2(p —r + j — 1) + 1 unknown coefficients on the ring R, ;(v1),

b) compute the d — r + 2p — 25 + 1 unknown coefficients in the rows Eriaii—p)a
and Fyi(j-p),3,

o

compute the 2(p — 7+ j — 1) unknown coefficients on the ring R, ;(v2),

(o
— ~— ~—

compute the d —r + 2p — 2j + 1 unknown coefficients in the row FE, 5;_p) 2,

@

compute the 2(p — 7+ j — 1) — 1 unknown coefficients on the ring R, ;(v3),

—

if j < q, compute the d — r + 2p — 25 unknown coefficients in the rows
E’l‘+2(j—p)+1,l7 l = 1,2, 3.

To complete the computation, we find the unknown coefficients on R, 4(v1), on
edge B, 3q—p)—1,1 if ¢ > p, and on R, ,(vs). This gives us all coefficients of the
degree p = 12k + 5 polynomial P in the disks Dggi3(w;), I = 1,2, and Dgga(us).
These determine all coefficients of P, and hence all remaining coefficients of s.

Case 4: r = 8k + 4,7 = 8k + 5. We proceed as in Case 3, except now we do the
cycles for all j = p+1,...,q. This gives us all coefficients of the degree y = 12k 47
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polynomial P in the disks Dgg14(u1), | = 1,2, 3. These determine all coefficients of
P, and hence all remaining coeflicients of s.

Case 5: r = 8k + 6. We first compute the unknown coefficients in the rows E, 1
for I = 1,2, 3, and then perform the cycles as in Case 3 for j =p+1,...,g—1. To
complete the computation, we then compute the unknown coefficients on the ring
R,4(v1). This gives us all coefficients of the degree p = 12k + 9 polynomial P in
the disks Dggy6(v1) and Dggis5(u;), I = 2,3. These determine all coefficients of P,
and hence all remaining coefficients of s.

Case 6: r = 8k + 7. We begin by doing the cycles of Case 1 for j =p+1,...,q—1.
Then we compute the unknown coefficients on R, 4(v1), on edge E, 2(q—p)—1,1, and
ring R, 4(v2). This gives us all coefficients of the degree y = 12k + 11 polynomial
P in the disks Dggy7(v1), I = 1,2 and Dggi6(us). These determine all coefficients
of P, and hence all remaining coefficients of s.

This completes the proof that M, is a determining set for S,(Tps). We now
show that it is minimal. Clearly,

#MT=3<p;2)+3(r+“;d“), (4.5)

which reduces to the number listed in (4.4). Now for » = 2m, our spline space
S-(Tpg) is a subspace of the spline spaces of Theorems 4.1, 5.1, 6.1, and 7.1 of
[10]. Sr(Tps) is the subspace satisfying the x smoothness conditions in (4.2)—(4.3).
Thus, by those theorems,

2
(STm_£84m+13 _ o = 2m, m odd,
2
‘ w_’ﬁ r = 2m, m even,
dler,-(TPS) Z< 57m2 190 36
STm +30m+36 _ i r=2m+1, m even,
2
\w_“’ r=2m+ 1, m odd.

But this is equal to #M,., and we conclude that M,. is a MDS and dim S,.(Tpg) =
#M,.

To verify the stability of M,, we observe that all of the above computations
are stable since the determinants of the systems arising in Lemma 2.1 (cf. the proof
in [2]) are bounded away from zero by a constant depending only on the smallest
angle in Tpg and the barycentric coordinates of the center point vy. O

§5. Examples

In this section we illustrate the construction of the previous section for several values
of r. For reference, in Table 3 we list the values of r, p,d and the corresponding
dimensions for 1 < r < 15.



Tab. 3. Properties of S, (Tpg).

T p d dim
1 1 2 9

2 3 5 30
3 4 7 48
4 6 10 87
5 7 11 111
6 9 14 168
7 10 | 16 207
8 12 19 282

9 13 | 20 324
10 15 | 23 417
11 16 | 25 477
12 18 | 28 088
13 19 | 29 648
14 | 21 | 32 T
15| 22| 34 858

Figures 2 — 9 show the elements corresponding to r = 2,...,9. This covers each
of the eight cases. In each figure we mark the domain points corresponding to item
1) of Theorem 4.2 with black dots, and those corresponding to item 2) with black
squares. Each figure also includes additional information on the special smoothness
conditions and the calculation of unset coefficients. In particular, we mark the
endpoints of special smoothness conditions with a bracket, and also illustrate the
steps in the calculation of unset coefficients by drawing lines through the groups of
domain points being calculated in each step. The grey line marks the disk D, (vr)
corresponding to the supersmoothness C*(vr). The grey-shaded area marks the
union of the disks D,(v;) and the sets Eq;,..., E,; for i = 1,2,3.

We now discuss two examples in detail.

Example 5.1. The space Sy(Tpg) is the 30 dimensional subspace of St**3(Tpg)
which satisfies one additional smoothness condition corresponding to the linear
functional 73 ;.

Discussion: Fig. 2 illustrates the MDS for this space. It consists of 10 points
in each of the disks D3(v;), marked with black dots. The tip of the smoothness
condition corresponding to 7'2,1 is marked with a bracket. In following the proof
of Theorem 4.2, after computing the coefficients corresponding to the points in the
sets Eo1,...,Eq; for [ =1,2,3, we use Lemma 2.1 to compute the remaining three
coefficients on ring R4(v1). O

Example 5.2. The space S4(Tpg) is the 87 dimensional subspace of 5366’7(Tp5)
which satisfies three additional smoothness conditions associated with 7'75,l for | =
1,2,3.



Discussion: Fig. 4 shows the MDS for this element. It consists of 28 points in each
of the disks Dg(v;), marked with dark dots, along with the three points marked
with squares. O

§6. Nodal degrees of freedom

It is common in the finite-element literature to describe the degrees of freedom of
macro-elements in terms of derivatives. In this section we show that there is a
natural way to do this for the macro elements introduced in Definition 4.1. Let
D, and D, be the usual partial derivatives. Let é; be point evaluation at ¢. If
e := (v, vy41) is one of the edges of T', we denote the derivative normal to that edge
by D.. Let
; )+ 1—12)y + v

ng,i::(wr jillJr a2 T (6.1)
Theorem 6.1. Given 8k < r < 8k + 7, let S,(Aps) be the spline space defined
in Definition 4.1 where p, u,d are as in Table 1. Then any spline s € S§,(Apg) is
uniquely determined by the following set of data:

1) {65, Dy DBYo<atp<p, fori=1,2,3,
2) {6, ,Del}zzl, forj=1,...,r—d+ p and ! =1,2,3, where e; := (v, v;41)-
ey,

Proof: It is easy to see that setting this nodal data is equivalent to setting the
B-coefficients listed in Theorem 4.2. See [6] for some explicit formulae. O

§7. Hermite Interpolation of Scattered Data

In this section we briefly examine the use of our macro-elements for interpolation of
Hermite data at a set of scattered points V := {(z;, ;) }}_;. Our aim is to construct
a C7 spline which interpolates this data.

We begin by triangulating the data points. Let A be a triangulation with
vertices at the points of V. For many applications, this might be the Delaunay
triangulation. Let Apg be the triangulation obtained from A by performing the
following steps:

1) insert the incenters of each triangle T of A,
2) connect the incenters of neighboring triangles,
3) connect the incenter of each triangle T' to the three vertices of T' and to the

centers of any edges of T which are boundary edges of A.

Thus, each triangle of A has been subjected to a PS-split. To perform interpolation,
we make use of the space

S (Aps) :={s€C"(Q): s|r € S§.(Tps) for all T € A}, (7.1)
where () is the union of the triangles in A.
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Fig. 4. The macro-element S4(Tpg).
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Fig. 5. The macro-element S5(Tpg).-
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Theorem 7.1. Given 8k <r < 8k + 7, let p, u,d be as in Table 1. Then

2 —d+1
dim S, (Aps) = <3p2+ )V+<T+“2d+ )E (7.2)

where V' and E are the number of vertices and edges of A\, respectively.

Proof: Let M, be the following set of domain points:
1) for each vertex v of A\, choose a triangle T' of Apg attached to v and include

Dj(v),
2) for each edge e = (v1,vq) of A, let T = (v, v1,v2) be a triangle of A pg contain-
ing the edge e. Then include the points {g;—fjw_d_l’zdﬂ_u_%, e, ;’Z:O,d—j} for

j=d—p+1,...,7.
The cardinality of M,. is precisely the number in (7.2). Now setting the coefficients
ce of s for { € M,, we can use the smoothness conditions to uniquely determine all
remaining coefficients in the disks D,(v;). Then the remaining coefficients in each

macro-triangle can be uniquely computed as in the proof of Theorem 4.2. This
shows that M, is a MDS, and the result follows. O

We claim that the minimal determining set M, described in the proof of
Theorem 7.1 is stable. To see this, we note that as shown in Lemma 2.2 of [10], the
smallest angle in the refined triangulation Apg is at least O sin(fa)/4, where O
is the smallest angle in A.

We are now ready to solve the Hermite interpolation problem.

Theorem 7.2. Given r > 0, let d, p, u be as in Table 1. For any function f which
is sufficiently smooth so that the needed derivatives exist, there is a unique spline
s € §;(Apg) such that

D;Dgs(:ﬂzayl):D:Dgf(xzayl)7 OSV+/’LSp7 7’:17777'7
and
DI Hs(nl ) = DEFHIf(E ), 1<i<j, 1<j<r—d+p,

for all edges e of /\, where ngz are the points associated with e as in (6.1).

Proof: For each triangle T of A\, the interpolant s can be constructed locally
since the given data uniquely determines the nodal data listed in Theorem 6.1. By
construction of the macro-elements, the resulting spline s is globally in C”, and
thus lies in the spline space S, (Apg). O

The Hermite interpolant of Theorem 7.2 is exact for polynomials of degree
d. Coupling this with the stability of the construction and using the Bramble-
Hilbert lemma as in [9], it is easy to establish the following error bound which
shows that for sufficiently smooth f, the Hermite interpolant provides optimal
order approximation.
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Theorem 7.3. Suppose f lies in the Sobolev space WE(Q) for some p < k < d,
and let s be the interpolating spline of Theorem 7.2. Then

IDZDY(f — $)lloo < KA flita,00 (7.3)

for 0 < a+ B < k, where |A| is the mesh size of A (i.e. the diameter of the
largest triangle), and |f|k41,p Is the usual Sobolev semi-norm. If § is convex,
then the constant K depends only on r and on the smallest angle O in A. If Q)
is nonconvex, it also depends on the Lipschitz constant Lgq associated with the
boundary of ).

Although we did not need a basis to solve the Hermite interpolation problem,
for other applications it is useful to observe that the space S, (A pgs) has a convenient
stable local basis. For each £ in the MDS M, defined in the proof of Theorem 7.1,
let B be the unique spline in S,(Apg) such that

)\nt = (56,", ne M, (74)

where A, is the linear functional which picks off the B-coefficient corresponding to
the domain point 7. In view of (7.4), the splines { B¢ }¢c a4, are linearly independent,
and thus form a basis for S, (Apg). It is easy to see that the B, have local support.
In particular,

1) If £ is a point as in item 1) of Theorem 7.1, then supp(B¢) is contained in the
union of all triangles of A sharing the vertex v.

2) If ¢ is a point as in item 2) of Theorem 7.1, then supp(Bg¢) is contained in
T UT, where T and T are the triangles of A sharing the edge e. (If e is a
boundary edge of A, then there is only one such triangle, and it is the support
set).

§6. Remarks

Remark 6.1. Macro-elements can be constructed without splitting triangles, see
[18-21]. As observed in [17], they belong to the classical superspline space 82;24:1 (T).

Remark 6.2. The java code of the first author for examining determining sets
for superspline spaces was the key tool in discovering the macro-elements described
in this paper. The code is described in [1], and can be used or downloaded from
http://www.math.utah.edu/~alfeld. That web site also contains code that can
be used to generate colored versions of our figures for all values of r, along with a
detailed documentation of the MDS code.
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Remark 6.3. As shown in [10], it is not possible to construct C" macro-elements
on the PS-split using splines of lower degree than those considered here, and it is
not possible to enforce lower supersmoothness at the vertices of T'. At first glance
it might appear the degrees of freedom in item 2) of Theorem 4.2 could also be
removed. This can in fact be done if one is interested only in an element on a single
triangle. But it does not work if we want an element which can be applied locally
in a larger triangulation. The reason is that enforcing any additional smoothness
will lead to a coefficient in 2) being determined by data at all three vertices. If this
is done on two neighboring macro triangles, we will in general get coefficients which
do not satisfy the C" smoothness across the common edge.

Remark 6.4. It is of course possible to construct smooth macro-elements on other
triangle splits such as the Clough-Tocher split. For macro-elements on these splits,
see [2,9]. The degrees of the splines used here are lower than for the Clough-Tocher
splits, but the cost is a more complicated split. Splines of still lower degree could
be obtained by working with even more complicated triangle splits.

Remark 6.5. It is also possible to create macro-elements with even fewer degrees
of freedom by the process of condensation. This amounts to further restricting the
spline space (usually by forcing certain cross-derivatives along edges of the triangle
T to be of lower degree than they naturally are). We do not recommend this
strategy since it produces elements which no longer reproduce the full polynomial
space, and thus have reduced approximation power.

Remark 6.6. The construction described here is not unique in the sense that
there are other choices of the extra smoothness conditions which also lead to macro-
elements with the same number of degrees of freedom.

Remark 6.7. In contrast to the Clough-Tocher case [2], it is not possible to perform
Powell-Sabin refinement on general triangulations by splitting all triangles T' :=
(u,v,w) about a split point vy := ru + sv + tw with fized barycentric coordinates
r,s,t. In Sect. 7 we have followed the usual approach in which the points vr are
chosen to the be the incenters of the triangles. This is known to guarantee that
refinement is possible and also insures the stability.

Remark 6.8. Theorem 7.3 describes the approximation power of the the spaces
Sr(Aps) measured in the uniform norm. Analogous results hold for the p-norms,
and can be proved using the quasi-interpolation operators (Jx defined by

Qrf = > Aexf Be,

£eEMy

where B¢ are the dual basis splines of Sect. 6 and A¢ j are the linear functionals
defined in Sect. 10 of [8].
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