
Nonnegativity Preserving Macro-Element

Interpolation of Scattered Data

Larry L. Schumaker 1) and Hendrik Speleers 2)

Abstract. Nonnegative bivariate interpolants to scattered data are con-
structed using some C

1 macro-element spline spaces. The methods are local,
and rely on adjusting gradients at the data points to insure nonnegativity of
the spline when the original data is nonnegative. More general range-restricted
interpolation is also considered.
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§1. Introduction

Interpolating scattered data is a common problem in a wide range of application
areas. It is often required that the interpolant preserves known shape properties
inherent to the data. Common shape properties are convexity, monotonicity and
nonnegativity. In this paper we consider the nonnegativity-preserving interpolation
problem.

Problem 1.1. Given a set of scattered data points {vi := (xi, yi)}n
i=1 in a domain

Ω ⊂ IR2 and corresponding nonnegative data values {fi}n
i=1, find a function s

defined on Ω such that s(xi, yi) = fi for i = 1, . . . , n, and s(x, y) ≥ 0 for all
(x, y) ∈ Ω.

A standard approach for solving this problem is to work with either polynomial
splines [2,5,6,9,16] or rational splines [1,8,11,12,15]. These splines are defined on a
triangulation with its vertices at the data points. Problem 1.1 is often solved as an
optimization problem in order to find a visually pleasing, nonnegative spline that
interpolates the data. Such methods are mostly global in nature, i.e., the spline
coefficients globally depend on all of the data. Our aim here is to focus on the
construction of local and easy to use methods based on standard C1 macro-element
spline spaces.

The paper is organized as follows. In Sects. 2 and 3 we describe nonnegativity-
preserving interpolation methods using the C1 Powell-Sabin and Clough-Tocher
macro-elements, respectively. We discuss the approximation order of the methods
in Sect. 4, and in the following section we explain how to treat certain range-
restricted interpolation problems. Sect. 6 is devoted to some numerical examples.
We conclude with some remarks.
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§2. A Method Based on the C1 Powell-Sabin Macro-element

Suppose △ is a triangulation with vertices at the data points {vi}n
i=1. For each

triangle T ∈ △, choose a point vT inside of T and connect it to each of the three
vertices of T . Connect vT and v

T̃
whenever the triangles T and T̃ share a common

edge. We assume that the points vT are chosen so that these lines cross the common
edges. It is well known that this is insured if the vT are taken to be the incenters. In
addition, connect the center of each boundary edge to the point vT in the associated
triangle. The resulting triangulation △P S is called a Powell-Sabin (PS-) refinement
of △, see Sect. 4.8.2 of [7]. Let S1

2 (△P S) be the corresponding space of C1 piecewise
quadratic splines defined on △P S. In this section we describe a method for solving
Problem 1.1 based on this spline space. We may think of the nonnegative values
{fi}n

i=1 as coming from an unknown nonnegative function f defined on Ω.

2.1. Hermite Interpolation with S1
2 (△PS)

It is well known (cf. [7]) that for any {fi, f
x
i , fy

i }n
i=1 there exists a unique (Hermite)

interpolating spline s ∈ S1
2 (△P S) such that

s(xi, yi) = fi, Dxs(xi, yi) = fx
i , Dys(xi, yi) = fy

i , for i = 1, . . . , n. (2.1)

In Problem 1.1 we are not given gradients, but there are many methods for esti-
mating them, see Remark 1.

In general, this Hermite interpolant is not guaranteed to be nonnegative, even
if the data values and gradients come from a (smooth) nonnegative function f .
Indeed, at vertices vi where the value fi is near zero, the spline can become negative
at some points in a neighborhood of vi if the gradient is too large at vi. For an
explicit example, see Sect. 6. In the next subsection we show how to adjust the
gradients to get a spline which does solve Problem 1.1.

2.2. Adjusting the gradients

We now describe a local method for adjusting the gradients in (2.1) so that the
corresponding Hermite interpolating spline will provide a solution of Problem 1.1.

For each vertex vi of △, let {eij := 〈vi, vij〉}nP S
i

j=1 be the set of edges of △P S attached
to vi. Note that the vij may be incenters of triangles of △, split points on interior
edges of △, or midpoints of boundary edges of △. Suppose the coordinates of vij

are (xij , yij), and let dij := (xij − xi)f
x
i + (yij − yi)f

y
i .

Algorithm 2.1. For each i = 1, . . . , n:

1) set γi = 1,
2) for j = 1, . . . , nP S

i : if dij < 0, set γi = min{γi,−2fi/dij},
3) set f̃x

i = γif
x
i and f̃y

i = γif
y
i .

It is easy to see that the {γi}n
i=1 obtained by this algorithm satisfy 0 ≤ γi ≤ 1

for all i.
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Theorem 2.2. Given a set of scattered data points {vi}n
i=1 in IR2, let △ be a trian-

gulation with vertices at these points, and let △P S be the associated Powell-Sabin
refinement. Suppose we are given {fi, f

x
i , fy

i }n
i=1 with fi ≥ 0 for i = 1, . . . , n. Let

{f̃x
i , f̃y

i }n
i=1 be the adjusted gradients produced by Algorithm 2.1. Then the spline

s ∈ S1
2 (△P S) that interpolates the adjusted data {fi, f̃

x
i , f̃y

i }n
i=1 solves Problem 1.1.

Proof: We examine s|T for a fixed macro-triangle T in △. Suppose v1, v2, v3

are its vertices, and let c1, . . . , c19 be the Bernstein–Bézier (B-) coefficients of s|T
associated with the domain points in T , see Sect. 6.3 of [7] and Fig. 1. Then
(cf. equation (6.5) of [7]),

c4 = [(ξ13 − x1)f̃
x
1 + (η13 − y1)f̃

y
1 ]/2 + f1,

where (ξ13, η13) are the coordinates of the vertex of △P S lying on the edge 〈v1, v2〉.
Clearly, the choice of the factor γ1 implies c4 ≥ 0. A similar argument shows that
the coefficients c5, . . . , c12 are also nonnegative. Since all remaining coefficients of
s|T are convex combinations of these coefficients (cf. equations (6.3) and (6.4) of
[7]), we conclude that s|T (x, y) ≥ 0 for all (x, y) ∈ T . Since T was arbitrary, it
follows that s(x, y) ≥ 0 for all (x, y) ∈ Ω.
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Fig. 1. B-coefficients of the C
1 PS-macro-element.

For a numerical experiment using this method, see Sect. 6. It is clear from
the proof of Theorem 2.2 that we could have constructed a nonnegative spline by
simply setting all of the γi = 0. However, this is not a good strategy as it creates
flat spots in the surface at every data point.

§3. A Method Based on the C1 Clough-Tocher Macro-element

Suppose △ is a triangulation with vertices at the data points {vi}n
i=1. For each

triangle T ∈ △, let vT be a point in the interior of T , and connect vT to each of
the three vertices of T . The resulting triangulation △CT is called a Clough-Tocher
(CT-) refinement of △, see Sect. 4.8.1 of [7] where the split points were chosen to
be the barycenters of the triangles of △. Here we allow more general split points.
In this section we describe a method for solving Problem 1.1 based on the spline
space S1

3 (△CT ) of C1 piecewise cubic splines defined on △CT .

3



3.1. Hermite Interpolation with S1
3 (△CT )

For each edge e := 〈vi, vj〉 of △, let ηe := (vi + vj)/2 be the midpoint of e, and let
Due

be the directional derivative associated with the unit vector ue corresponding
to rotating e ninety degrees in a counterclockwise direction. Suppose we are given
{fi, f

x
i , fy

i }n
i=1 along with additional real numbers {ge}e∈E , where E is the set of

edges of △. Then it is well known (cf. Sect. 6.2 of [7]) that there exists a unique
(Hermite) interpolating spline s ∈ S1

3 (△CT ) such that

s(xi, yi) = fi, Dxs(xi, yi) = fx
i , Dys(xi, yi) = fy

i , for i = 1, . . . , n, (3.1)

and
Due

s(ηe) = ge, for all e ∈ E . (3.2)

In Problem 1.1 we are not generally given the gradient values {fx
i , fy

i )}n
i=1 or the

cross derivative values {ge}e∈E , but there are many methods for estimating them,
see Remarks 1 and 2.

In general, the above Hermite interpolant is not guaranteed to be nonnegative,
even if the data values and gradients come from a (smooth) nonnegative function
f . As in the Powell-Sabin case, at vertices vi where the value fi is near zero, the
spline can become negative at some points in a neighborhood of vi if the gradient
is too large at vi. For an explicit example, see Sect. 6. In Sects. 3.4 and 3.5 we
show how to adjust the gradients {fx

i , fy
i }n

i=1 and the values {ge}e∈E to get a spline
which solves Problem 1.1. First we need to derive some sufficient conditions for a
C1 CT-macro-element patch to be nonnegative.

3.2. Nonnegativity of a cubic CT-macro-element patch

Given a triangle T := 〈v1, v2, v3〉, let TCT be the CT-refinement obtained by split-
ting T into three subtriangles by inserting a vertex vT := αT

1 v1 + αT
2 v2 + αT

3 v3,
where the αT

i > 0 and αT
1 +αT

2 +αT
3 = 1. It is well known (cf. Sect. 6.2 of [7]) that

dimS1
3 (TCT ) = 12. Now fix s ∈ S1

3 (TCT ), and suppose its B-coefficients are {ci}19
i=1

as shown in Fig. 2, where we orient T so that c1 is the coefficient associated with
v1. Then as shown in Theorem 6.5 in [7], s is uniquely determined by the coeffi-
cients {ci}12

i=1, and the remaining coefficients are determined (from C1 smoothness
conditions) by the formulae

c13 = αT
1 c1 + αT

2 c4 + αT
3 c9,

c14 = αT
1 c5 + αT

2 c2 + αT
3 c6,

c15 = αT
1 c8 + αT

2 c7 + αT
3 c3,

c16 = αT
1 c13 + αT

2 c10 + αT
3 c12,

c17 = αT
1 c10 + αT

2 c14 + αT
3 c11,

c18 = αT
1 c12 + αT

2 c11 + αT
3 c15,

c19 = αT
1 c16 + αT

2 c17 + αT
3 c18.

(3.3)

4
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c1 c2

c3

c4

c13

c9 c6

c14

c5

c8
c15 c7

c10

c11

c12

c16 c17

c18

c19

Fig. 2. B-coefficients of a CT-macro-element.

In this section we discuss conditions on the coefficients of s that guarantee that
it is nonnegative on T . Since ci = s(vi) for i = 1, 2, 3, it is clear that one necessary
condition is that

m := min{c1, c2, c3} ≥ 0. (3.4)

Finding a complete set of necessary and sufficient conditions seems to be a compli-
cated problem, and has not even been solved for a single cubic polynomial defined
on a triangle, see Remark 3. In view of the formulae (3.3) and the nature of the
B-form representation, the conditions ci ≥ 0, i = 1, . . . , 12, are sufficient. Inspired
by ideas in [6], we now derive a weaker set of sufficient conditions. Fix

a ≥ max

{
1,

1 − αT
1

3αT
1

,
1 − αT

2

3αT
2

,
1 − αT

3

3αT
3

}
, (3.5)

where we recall that (αT
1 , αT

2 , αT
3 ) are the barycentric coordinates of vT relative to

triangle T .

Lemma 3.1. Let {ci}12
i=1 be given numbers such that (3.4) holds. Suppose in

addition that

ci ≥ −m

3a
, 4 ≤ i ≤ 9, (3.6)

where a satisfies (3.5), and let

c10 ≥ −1

2
min

{
αT

1

αT
2

,
αT

2

αT
1

}
min{c13, c14}, (3.7)

c11 ≥ −1

2
min

{
αT

2

αT
3

,
αT

3

αT
2

}
min{c14, c15}, (3.8)

c12 ≥ −1

2
min

{
αT

1

αT
3

,
αT

3

αT
1

}
min{c13, c15}. (3.9)
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Let {ci}19
i=13 be given by (3.3). Then the corresponding spline s ∈ S1

3 (△CT ) is
nonnegative on T .

Proof: Combining (3.4)–(3.6), we see that

c13 = αT
1 c1 + αT

2 c4 + αT
3 c9 ≥ m

(
αT

1 − αT
2

3a
− αT

3

3a

)
= mαT

1

(
1 − 1 − αT

1

3aαT
1

)
≥ 0.

(3.10)
Similarly, c14, c15 ≥ 0. Now inserting (3.7) and (3.9) in (3.3) gives

c16 = αT
1 c13 + αT

2 c10 + αT
3 c12 ≥ c13α

T
1

(
1 − 1

2
− 1

2

)
≥ 0.

A similar computation shows that c17, c18 ≥ 0. It then follows from (3.3) that
c19 ≥ 0.

We now focus on the micro-triangle t := 〈v1, v2, vT 〉. Following an idea from
[6], fix 0 ≤ ξ ≤ 1, and consider the restriction pξ of s to the line from vT to the
point vξ := (1− ξ)v1 + ξv2. Then pξ is a univariate cubic polynomial which can be
written in Bernstein–Bézier form as

pξ(τ) = d0(1 − τ)3 + 3d1τ(1 − τ)2 + 3d2τ
2(1 − τ) + d3τ

3, 0 ≤ τ ≤ 1, (3.11)

where d0 = c19 and

d1 := c16(1 − ξ) + c17ξ, (3.12)

d2 := c13(1 − ξ)2 + 2c10ξ(1 − ξ) + c14ξ
2, (3.13)

d3 := c1(1 − ξ)3 + 3c4ξ(1 − ξ)2 + 3c5ξ
2(1 − ξ) + c2(1 − ξ)3. (3.14)

It is known (cf. [3,17]) that a cubic polynomial of the form (3.11) is nonnegative
for 0 ≤ τ ≤ 1 if and only if

a) d0, d1, d2, d3 ≥ 0,

or

b) d0, d3 ≥ 0 and 4(d0d
3
2 + d3d

3
1) + d2

0d
2
3 − 6d0d1d2d3 − 3d2

1d
2
2 ≥ 0.

We now verify that a) holds. First, since c16, c17 ≥ 0, it follows that d1 ≥ 0.
It is known (cf. [10,17]) that a necessary and sufficient condition for the quadratic
polynomial d2 to be nonnegative for 0 ≤ ξ ≤ 1 is that c13, c14 ≥ 0 and c10 ≥
−√

c13c14. In view of (3.10) and (3.7), it follows that d2 ≥ 0. To show that d3 ≥ 0,
we first verify that the analog of b) holds with the coefficients c1 = c2 = m and
c4 = c5 = −m/(3a) and a ≥ 1. With these coefficients we have

4(c1c
3
5 + c2c

3
4) + c2

1c
2
2 − 6c1c4c5c2 − 3c2

4c
2
5 =

m4

27a4
(27a4 − 18a2 − 8a − 1) ≥ 0.

But then the polynomial d3 is also nonnegative for any choice of c1, c2 ≥ m and
c4, c5 ≥ −m/(3a).

6



We conclude that pξ(τ) ≥ 0 for all 0 ≤ τ ≤ 1. Since this holds for all 0 ≤ ξ ≤ 1,
we conclude that s is nonnegative at all points in the triangle 〈v1, v2, vT 〉. A similar
argument shows that it is nonnegative at all points in the other two subtriangles of
T .

Based on this lemma, we can now develop an algorithm for solving Problem 1.1
with a spline s ∈ S1

3 (△CT ). The algorithm proceeds as follows:

1) estimate the gradients at the data points {vi}n
i=1,

2) estimate the normal cross-derivatives at midpoints of each edge e of △,

3) adjust the gradients so that (3.6) is satisfied for every triangle T ∈ △. Compute
a spline s ∈ S1

3 (△CT ) interpolating this adjusted data,

4) further adjust the coefficients of s so that the remaining conditions of Lemma 3.1
are satisfied for every triangle T .

For references to some methods for steps 1) and 2), see Remarks 1 and 2. We
discuss steps 3) and 4) in the following two sections.

3.3. Adjusting the gradients

As a first step towards constructing a spline s ∈ S1
3 (△CT ) solving Problem 1.1, we

now describe a local method for adjusting the gradients {fx
i , fy

i }n
i=1 so that the B-

coefficients of the corresponding Hermite interpolating spline satisfy the inequalities
(3.6) of Lemma 3.1 for every triangle T ∈ △,

For each vertex vi of △, let {eij := 〈vi, vij〉}ni

j=1 be the set of edges of △
attached to vi. Suppose the coordinates of vij are (xij, yij), and let dij := (xij −
xi)f

x
i +(yij −yi)f

y
i . Let mij := min{fk : fk is a data value associated with a vertex

of a triangle containing eij}. Let

aij ≥ max
T∈Tij

max

{
1,

1 − αT
1

3αT
1

,
1 − αT

2

3αT
2

,
1 − αT

3

3αT
3

}
, (3.15)

where Tij is the set of all triangles sharing the edge eij .

Algorithm 3.2. For each i = 1, . . . , n:

1) set γi = 1,
2) for j = 1, . . . , ni: if dij < 0, set γi = min{γi, (−3fi − mij/aij)/dij},
3) set f̃x

i = γif
x
i and f̃y

i = γif
y
i .

It is clear that the {γi}n
i=1 produced by this algorithm satisfy 0 ≤ γi ≤ 1 for

all i.

Lemma 3.3. Given a set of scattered data points {vi}n
i=1 in IR2, let △ be a trian-

gulation with vertices at these points, and let △CT be the associated Clough-Tocher
refinement. Suppose we are given {fi, f

x
i , fy

i }n
i=1 with fi ≥ 0 for i = 1, . . . , n, along

with additional values {ge}e∈E , where E is the set of edges of △. Let {f̃x
i , f̃y

i }n
i=1

be the adjusted gradients produced by Algorithm 3.2, and let s be the spline in

7



S1
3 (△CT ) that interpolates as in (3.1) to this adjusted data. Then the B-coefficients

of s satisfy (3.6) for every triangle T ∈ △.

Proof: Fix T in △. We may suppose v1, v2, v3 are its vertices, and let c1, . . . , c19

be the B-coefficients of s|T associated with the domain points in T as in Fig. 2.
Then (cf. equation (6.2) of [7]),

c4 = [(x2 − x1)f̃
x
1 + (y2 − y1)f̃

y
1 ]/3 + f1,

and the choice of γi insures that c4 satisfies (3.6) with m := min{f1, f2, f3}. A
similar argument shows that the coefficients c5, . . . , c9 also satisfy (3.6).

3.4. Adjusting the coefficients of s

The spline s in Lemma 3.3 is not necessarily a solution of Problem 1.1, since if the
given cross derivatives {ge}e∈E are too large for certain edges, we may get negative
values for s near these edges. While it is possible to adjust the {ge}e∈E in the same
way that we adjusted gradients in the previous section, in this section we instead
show how to adjust the B-coefficients of s directly to insure that conditions (3.7)–
(3.9) hold for each triangle T . This must be done with care when two triangles
share an edge since we need to make sure that all C1 conditions across the edge are
satisfied.

For each boundary edge e of △, there is one triangle Te := 〈ve
1, v

e
2, v

e
3〉 of △

containing e. We denote the corresponding micro-triangle which contains e by
te := 〈ve

1, v
e
2, vTe

〉, where vTe
is the split point in Te. If e is an interior edge of △,

there is a second triangle T̂e := 〈ve
2, v

e
1, v̂

e
3〉 of △ containing e. Let vT̂e

be the split

point in T̂e, and let t̂e := 〈ve
2, v

e
1, vT̂e

〉 be the corresponding micro-triangle containing
e. Let (αe

1, α
e
2, α

e
3) be the barycentric coordinates of vTe

relative to Te, and let
(α̂e

2, α̂
e
1, α̂

e
3) be the barycentric coordinates of vT̂e

relative to T̂e. Suppose (βe
1 , β

e
2 , β

e
3)

are the barycentric coordinates of vT̂e
relative to te, i.e., vT̂e

= βe
1ve

1 +βe
2v

e
2 +βe

3vTe
.

We note that βe
3 < 0. We write {ce

i}19
i=1 and {ĉe

i}19
i=1 for the coefficients of s|Te

and
s|T̂e

, where the orientation is chosen so that ce
10 and ĉe

10 are next to the edge e.

Algorithm 3.4.

1) For each boundary edge e of △: if necessary, increase ce
10 to satisfy (3.7).

2) For each interior edge e of △: if necessary, increase ce
10 so that it satisfies

(3.7). Then compute the corresponding coefficient ĉe
10 from the C1 smoothness

condition across e, i.e., set ĉe
10 = βe

1c
e
4 +βe

2ce
5 +βe

3ce
10. If necessary, increase ĉe

10

so that it satisfies the analog of (3.7). Then recompute the coefficient ce
10 from

the C1 smoothness condition across e.

We shall show in Theorem 3.6 below that after applying both Algorithms 3.2
and 3.4, the resulting spline will be a solution of Problem 1.1. But first we need
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to discuss whether step 2) of Algorithm 3.4 is well-defined. For this to happen, we
need

I :=
1

2
min

{
α̂e

1

α̂e
2

,
α̂e

2

α̂e
1

}
min{ĉe

13, ĉ
e
14} + βe

1c
e
4 + βe

2c
e
5

− βe
3

2
min

{
αe

1

αe
2

,
αe

2

αe
1

}
min{ce

13, c
e
14} ≥ 0. (3.16)

The interval [0, I] is a shifted version of the intervals to which ce
10 and ĉe

10 are
restricted by inequality (3.7) and by the C1 smoothness condition across edge e.

Lemma 3.5. Suppose Te and T̂e are neighboring triangles of △CT sharing an edge
e, and suppose βe

1 , β
e
2 ≥ 0. Suppose we choose a so that (3.5) holds for both Te and

T̂e, and that in addition

a ≥ 2 + A(1 − B)

3AB
, (3.17)

where

A := min

{
αe

1

αe
2

,
αe

2

αe
1

,
α̂e

1

α̂e
2

,
α̂e

2

α̂e
1

}
, and B := min

{
αe

1, α
e
2, α̂

e
1, α̂

e
2

}
.

Suppose {ci}9
i=1 and {ĉi}9

i=1 satisfy (3.4) and (3.6). Then (3.16) is satisfied.

Proof: Combining (3.6) with (3.10), we can bound I from below as

I ≥ m

2
(1 − βe

3) A

[(
1 +

1

3a

)
B − 1

3a

]
− (βe

1 + βe
2)

m

3a

= m (1 − βe
3)

[(
A

2
(B − 1) − 1

)
1

3a
+

AB

2

]
,

which is nonnegative by the choice of a.

The condition on βe
1 and βe

2 in Lemma 3.5 is equivalent to requiring that the
line joining the split points vTe

and vT̂e
inside Te and T̂e must intersect the line

segment e. This is equivalent to the restriction on the split points used in defining
Powell-Sabin refinements. Lemma 4.19 in [7] insures that this will be the case if
we take the split points to be the incenters. It is not hard to construct an example
showing that if this condition is not satisfied, then the quantity I in (3.16) cannot
be made nonnegative no matter how we choose a, see Remark 6. The following
theorem is now obvious.

Theorem 3.6. Given a set of scattered data points {vi}n
i=1 in IR2, let △ be a

triangulation with vertices at these points, and let △CT be the associated Clough-
Tocher refinement such that the lines joining split points of adjoining triangles of
△ intersect their common edge. Suppose we are given {fi, f

x
i , fy

i }n
i=1 with fi ≥ 0

for i = 1, . . . , n, along with additional values {ge}e∈E , where E is the set of edges

9



of △. Suppose for each edge of △, we choose aij to satisfy (3.15), and also (3.17)
if it is an interior edge. Suppose the gradients at the data points are adjusted by
applying Algorithm 3.2. Let s ∈ S1

3 (△CT ) be the corresponding interpolating spline
in Lemma 3.3, and suppose its B-coefficients are further adjusted by Algorithm 3.4.
Then the resulting spline solves Problem 1.1.

For many triangulations △, the choice of barycenters for the split points results
in a refined triangulation △CT with βe

1 , βe
2 ≥ 0 for all interior edges. In this case

we can choose all aij = 8/3 in this theorem.

§4. Approximation Order

In this section we provide error bounds for our interpolation methods measured in
the maximum norm. To measure smoothness of the interpolated function f , we use
the standard Sobolev semi-norms

|f |k = max
ν+µ=k

‖Dν
xDµ

y f‖,

where in this section ‖ · ‖ always refers to the maximum norm on Ω. We denote the
diameter of triangulation △ by |△|. For comparison purposes, we also quote results
giving error bounds for unrestricted Hermite interpolation with C1 Powell-Sabin
and Clough-Tocher macro-element spaces.

4.1. The Powell-Sabin Case

The following result gives an error bound for the unrestricted Powell-Sabin inter-
polant IPS, see Theorem 6.12 in [7].

Theorem 4.1. For every f ∈ Ck+1(Ω) with 0 ≤ k ≤ 2,

‖Dα
x Dβ

y (f − IPSf)‖ ≤ K1 |△|k+1−α−β |f |k+1, (4.1)

for all 0 ≤ α + β ≤ k. If Ω is convex, then the constant K1 depends only on the
smallest angle in △. If Ω is not convex, then K1 also depends on the Lipschitz
constant of the boundary of Ω.

We now establish an analogous error bound for our nonnegative Powell-Sabin
interpolant I+

PS . Given a triangulation △, let V be its set of vertices.

Theorem 4.2. Suppose f is a nonnegative function in Ck+1(Ω) with 0 ≤ k ≤ 2.
Given a triangulation △ of Ω, let {γv}v∈V be the factors arising in Algorithm 2.1.
Then

‖f − I+
PSf‖ ≤ L1,△ |△| + K1|△|k+1 |f |k+1, (4.2)

where
L1,△ := max

v∈V

[
(1 − γv)(|fx(v)| + |fy(v)|)/2

]
,

10



and K1 is the constant in Theorem 4.1. Moreover, L1,△ ≤ |f |1, and if f is positive
on Ω then L1,△ → 0 as |△| → 0.

Proof: Fix f ∈ Ck+1(Ω), and let T be one of the triangles of △. Then

‖f − I+
PSf‖T ≤ ‖f − IPSf‖T + ‖IPSf − I+

PSf‖T .

In view of Theorem 4.1, it suffices to estimate the last term. Let {co
i }19

i=1 and
{c+

i }19
i=1 be the B-coefficients of IPS|T and I+

PS |T , respectively, see Fig. 1. Then
examining the proof of Theorem 2.2, we see that

|co
i − c+

i | ≤ L1,△ |△|, i = 1, . . . , 19.

Using the fact that the Bernstein basis polynomials are bounded by one, we get

‖IPSf − I+
PSf‖T ≤ L1,△ |△|.

Since this holds for every triangle T , (4.2) follows.

Since 0 ≤ γv ≤ 1 for every v ∈ V, it is clear that L1,△ ≤ |f |1. We now
examine the behavior of L1,△ when f is positive on Ω. Let v be a vertex of △. By
construction γv is either one, or 0 < γv < 1 with

γv =
−2f(v)

hxfx(v) + hyfy(v)
,

for some 0 ≤ hx ≤ |△| and 0 ≤ hy ≤ |△|. But then

γv ≥ 2f(v)

|△| (|fx(v)| + |fy(v)|) .

Since f > 0, this lower bound for γv increases as |△| → 0, and γv eventually
becomes one for sufficiently small |△|. It follows that

L1,△ ≤ max

{
0, max

v∈Ω

( |fx(v)| + |fy(v)|
2

− f(v)

|△|

)}
. (4.3)

By the continuity of f , there exists ǫ such that f ≥ ǫ > 0, and it follows that
L1,△ → 0 as |△| → 0.

This theorem shows that for all triangulations with |△| sufficiently small,
our nonnegative Powell-Sabin interpolant provides optimal approximation order
of smooth functions.
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4.2. The Clough-Tocher Case

The following result gives an error bound for the unrestricted Clough-Tocher inter-
polant ICT , see Theorem 6.8 in [7].

Theorem 4.3. For every f ∈ Ck+1(Ω) with 0 ≤ k ≤ 3,

‖Dα
x Dβ

y (f − ICT f)‖ ≤ K2 |△|k+1−α−β |f |k+1, (4.4)

for all 0 ≤ α + β ≤ k. If Ω is convex, then the constant K2 depends only on the
smallest angle in △. If Ω is not convex, then K2 also depends on the Lipschitz
constant of the boundary of Ω.

We now derive an analogous error bound for our nonnegative Clough-Tocher
interpolant I+

CT . Given a triangulation △, let V be its set of vertices, and let E be
its set of edges. Suppose that the initial gradient values {fx

i , fy
i }n

i=1 at the vertices
and the normal cross-derivative values {ge}e∈E at the midpoints ηe of the edges are
sampled from a smooth nonnegative function f . We define I∗

CT f as the Hermite
interpolating spline in S1

3 (△CT ) that satisfies

I∗
CT f(v) = f(v), DxI∗

CT f(v) = γvDxf(v), I∗
CT f(v) = γvDyf(v),

for all vertices v ∈ V, and

Due
I∗

CT f(ηe) = Due
f(ηe),

for all edges e ∈ E . Here, γv are the factors produced by Algorithm 3.2, ηe are the
midpoints of the edges, and Due

are the directional derivatives defined in Sect. 3.1.
The B-coefficients of interpolants I+

CT and I∗
CT are distinguished by a superscript

plus and star, respectively.

Lemma 4.4. Suppose f is a nonnegative function in Ck+1(Ω) with 0 ≤ k ≤ 3.
Given a triangulation △ of Ω, let △CT be the associated Clough-Tocher refinement.
Suppose that for each triangle T and each edge e of T , the orthogonal projection
of the split point of T onto e lies on e. In addition, for each interior edge e of △,
suppose (3.17) holds with strict inequality, i.e.,

a >
2 + A(1 − B)

3AB
, (4.5)

with A and B the constants defined in Lemma 3.5, and suppose the same inequality
holds for each boundary edge e of △ with

A := min

{
αe

1

αe
2

,
αe

2

αe
1

}
, and B := min

{
αe

1, α
e
2

}
.

Then ∣∣Due
(I∗

CT − I+
CT )f(ηe)

∣∣ ≤ L3,△, (4.6)
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where L3,△ is bounded from above by K3 |f |1 with K3 a constant depending only
on the smallest angle in △CT . Moreover, if f > 0 on Ω then L3,△ → 0 as |△| → 0.

Proof: Let te := 〈ve
1, v

e
2, vTe

〉 be a micro-triangle in △CT containing e. Let δ :=
(δ1, δ2, δ3) be the directional coordinates of the unit vector ue relative to te. Then
the cross derivative Due

f(ηe) can be expressed in terms of the B-coefficients of
I∗

CT |te
(cf. Fig. 2) as

Due
f(ηe) = Due

I∗
CT f(ηe) =

3

4

[
(δ1c

e,∗
1 + δ2c

e,∗
4 + δ3c

e,∗
13 )

+ 2(δ1c
e,∗
4 + δ2c

e,∗
5 + δ3c

e,∗
10 ) + (δ1c

e,∗
5 + δ2c

e,∗
2 + δ3c

e,∗
14 )

]
. (4.7)

Since the coefficients of I∗
CT and I+

CT appearing here agree except for ce,∗
10 and ce,+

10 ,
we have ∣∣Due

(I∗
CT − I+

CT )f(ηe)
∣∣ =

3

2
|δ3||ce,∗

10 − ce,+
10 |. (4.8)

It now suffices to consider the case where ce,∗
10 fails to satisfy the inequality

(3.7), since otherwise ce,∗
10 equals ce,+

10 . Suppose e is an interior edge, and that the
other triangle sharing edge e is t̂e ∈ △CT . A similar argument will hold for a
boundary edge. Suppose also that ce,∗

10 ≤ ĉe,∗
10 . In this case ce,+

10 is equal to the
right-hand side of (3.7), and ce,∗

10 < ce,+
10 . Using δ1 + δ2 + δ3 = 0, |δi| ≤ K5 |△|−1, it

follows from (4.7) and the nature of the B-coefficients that

|δ1c
e,∗
4 + δ2c

e,∗
5 + δ3c

e,∗
10 | ≤ K6 |f |1,te

.

In view of our restriction on the CT-refinement, δ1, δ2 ≥ 0 or δ1, δ2 ≤ 0. Then,

K6 |f |1,te
≥ |δ1 + δ2|min{ce,∗

4 , ce,∗
5 } − |δ3|ce,∗

10 ≥ |δ3|
(
min{ce,∗

4 , ce,∗
5 } − ce,∗

10

)
,

or
|δ3|(ce,∗

10 − ce,+
10 ) ≥ −K6 |f |1,te

+ |δ3|
(
min{ce,∗

4 , ce,∗
5 } − ce,+

10

)
.

Using |δ3| ≥ K7 |△|−1 and our assumption that ce,∗
10 < ce,+

10 , we find that

|δ3||ce,∗
10 − ce,+

10 | ≤ max
{
0, K6 |f |1,te

− K7 |△|−1
(
min{ce,∗

4 , ce,∗
5 } − ce,+

10

)}
.

Defining

M :=
m

2
A

[(
1 +

1

3a

)
B − 1

3a

]
,

where m is as in Lemma 3.1, (3.6), (3.7) and (3.10) imply min{ce,∗
4 , ce,∗

5 } ≥ −m/(3a)
and ce,+

10 ≤ −M . Thus,

|δ3||ce,∗
10 − ce,+

10 | ≤ max
{
0, K6 |f |1,te

− K7 |△|−1
(
M − m

3a

)}
. (4.9)

Since m ≥ 0, using (4.5) we have M −m/(3a) ≥ 0. Thus, we can bound (4.9) from
above by K6 |f |1. If f > 0 then m > 0, and using (4.5) we get M −m/(3a) ≥ ǫ > 0.
It follows that the right hand side of (4.9) decreases to 0 as |△| → 0.

The restriction on the CT-refinement in Lemma 4.4 is satisfied when the split
points are chosen to be the incenters. This restriction is stronger than the one
imposed in Theorem 3.6.
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Theorem 4.5. Suppose f is a nonnegative function in Ck+1(Ω) with 0 ≤ k ≤ 3.
Given a triangulation △ of Ω, let △CT be the associated Clough-Tocher refinement.
Suppose that for each triangle T and each edge e of T , the orthogonal projection
of the split point of T onto e lies on e, and suppose for each edge of △, we choose
aij to satisfy (3.15) and (4.5). Then

‖f − I+
CT f‖ ≤ L4,△ |△| + K2|△|k+1 |f |k+1, (4.10)

where K2 is the constant in Theorem 4.3, and L4,△ ≤ K4 |f |1 with K4 a constant
depending only on the smallest angle in △CT . Moreover, if f is positive on Ω then
L4,△ → 0 as |△| → 0.

Proof: By the triangle inequality,

‖f − I+
CT f‖ ≤ ‖f − ICT f‖ + ‖ICT f − I∗

CT f‖ + ‖I∗
CT f − I+

CT f‖.

The first term on the right-hand side can be bounded by K2 |△|k+1 |f |k+1 using
Theorem 4.3. By an argument similar to the one in the proof of Theorem 4.2, we
find that the second term can be bounded by L1,△ |△|.

Let T be one of the triangles of △. Let {c∗i }19
i=1 and {c+

i }19
i=1 be the B-

coefficients of I∗
CT |T and I+

CT |T , respectively, see Fig. 2. Combining (4.6), (4.8)
and |δ3| ≥ K7 |△|−1, we get

|c∗i − c+
i | ≤

L3,△

K7
|△|, i = 1, . . . , 19.

Using the fact that the Bernstein basis polynomials are bounded by one, we get

‖I∗
CT f − I+

CT f‖T ≤ L3,△

K7
|△|.

Since this holds for every triangle T , (4.10) follows.

If we interpolate slightly different cross-derivatives, we can weaken the restric-
tion on the CT-refinement in Theorem 4.5 to the restriction used in Theorem 3.6.
For each interior edge e of △, let we be a unit vector parallel to the line joining the
split points of the two triangles sharing e. For every boundary edge e of △, let we

be the unit vector parallel to the line joining the midpoint of e and the split point
of the triangle containing e. We now take {ge}e∈E , such that the (unrestricted)
Hermite interpolating Clough-Tocher spline JCT f satisfies

Dwe
JCT f(ηe) = Dwe

f(ηe),

for all edges e ∈ E . Let J +
CT f be the corresponding nonnegative Clough-Tocher

spline. The next theorem can be proved in a similar way as Theorem 4.5.
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Theorem 4.6. Suppose f is a nonnegative function in Ck+1(Ω) with 0 ≤ k ≤ 3.
Given a triangulation △ of Ω, let △CT be the associated Clough-Tocher refinement
such that for each interior edge e, the line joining the split points of the two adjoining
triangles of △ intersect e. Suppose for each edge of △, we choose aij to satisfy (3.15)
and (4.5). Then

‖f − J +
CT f‖ ≤ L4,△ |△| + K2|△|k+1 |f |k+1, (4.11)

where K2 is the constant in the analog of Theorem 4.3 for JCT f , and L4,△ ≤ K4 |f |1
with a constant K4 depending only on the smallest angle in △CT . Moreover, if f
is positive on Ω, then L4,△ → 0 as |△| → 0.

When the diameter of the triangulation is small enough, we get optimal ap-
proximation order for I+

CT f and J +
CT f .

§5. Range Restricted Interpolation

In this section we discuss how the above methods can be adapted to deal with
interpolation of scattered data with range restrictions.

5.1. The case of a one-sided constraint

Suppose we want to construct a spline s interpolating given values {fi}n
i=1 at scat-

tered data points {vi}n
i=1 in a domain Ω, where s should also lie above a given

surface sL defined on Ω. In general this can be a difficult problem, but if sL is
taken to be a spline from the same space as s, it is straightforward. Indeed, in this
case, we can take s = sL + sd, where sd is a nonnegative spline interpolating the
values {fi − sL(xi, yi)}n

i=1 at the data points. We can use this approach with both
of the spline spaces discussed above. The same idea can be used to construct an
interpolating spline lying below a given surface sU .

5.2. The case of two-sided constraints

In this section we consider interpolation of scattered data with a spline satisfying
L ≤ s(x, y) ≤ U for all (x, y) ∈ Ω, where L < U are given constants. This problem
can be solved with minor modifications of the above methods.

For the Powell-Sabin method, we simply replace step 2) in Algorithm 2.1 by
the following:

2a) for j = 1, . . . , nP S

i : if dij < 0, set γi = min{γi, 2(L− fi)/dij},
2b) for j = 1, . . . , nP S

i : if dij > 0, set γi = min{γi, 2(U − fi)/dij}.

The situation for the Clough-Tocher method of Sect. 3 is similar. First, in
Algorithm 3.2 we must replace step 2) by

2a) for j = 1, . . . , ni: if dij < 0, set γi = min{γi, [3(L−fi)+(L−mij)/aij ]/dij},
2b) for j = 1, . . . , ni: if dij > 0, set γi = min{γi, [3(U−fi)+(U−Mij)/aij]/dij},
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where for each edge eij attached to vi, mij is defined as before, and Mij := max{fk :
fk is a data value associated with a vertex of a triangle containing eij}.

We also have to adjust Algorithm 3.4. What we need now is to make the
coefficients of the form ce

10 satisfy a modified form of (3.7), i.e.,

ce
10 ≥ L − 1

2
min

{
αe

1

αe
2

,
αe

2

αe
1

}
min{ce

13 − L, ce
14 − L},

ce
10 ≤ U +

1

2
min

{
αe

1

αe
2

,
αe

2

αe
1

}
min{U − ce

13, U − ce
14},

with analogous adjustments on the conditions for ĉe
10.

§6. Numerical Examples

In this section we give some examples to illustrate the performance of our algo-
rithms.

Example 6.1. Consider the test function

f(x, y) = (x2 − 1)2 (y2 − 1)2 (6.1)

on the domain Ω := [−1.5, 1.5]× [−1.5, 1.5].

Discussion: Let {vi}n
i=1 be the set of 25 data points shown in Fig. 3. Let △

be the corresponding Delaunay triangulation, and let △CT be its Clough-Tocher
refinement as shown in the figure. In Fig. 4 (left) we show a plot of the unrestricted
Hermite interpolating spline su ∈ S1

3 (△CT ) with data sampled from the function
f . Fig. 4 (right) shows a plot of the nonnegative spline s+ ∈ S1

3 (△CT ) produced
by the method of Sect. 3. We can see clearly that su takes on negative values (its
minimum is -1.02), while s+ remains nonnegative. Moreover, ‖f − s+‖ = .98 while
‖f − su‖ = 1.03, measured in the maximum norm on a 400 × 400 grid. Thus, our
restricted spline actually provides a slightly better fit than the unrestricted one.

−1.5 −0.75 0.2 0.95 1.5
−1.5

−0.75

0

0.9

1.5

Fig. 3. A Delaunay triangulation of 25 points in the domain Ω of Example 6.1,
and the corresponding CT-refinement (indicated with dashed lines).

16



Fig. 4. The Hermite Clough-Tocher interpolant of the function in Example 6.1
and our nonnegative Clough-Tocher interpolant based on the triangulation in
Fig. 3. The plane z = 0 is shown as a grid.

To understand better how our nonnegative spline interpolants compare to their
unrestricted counterparts, we now compare errors on a sequence of nested triangu-
lations.

Example 6.2. Let f and Ω be as in Example 6.1. Let △0,△1, . . . be a nested
sequence of type-1 triangulations of Ω, where △0 consists of 8 triangles, and the
successive triangulations are obtained by uniform dyadic refinement.

Discussion: For each i = 0, 1, . . ., the number of triangles in △i is easily seen to be
8∗4i. We compare our methods with the standard Hermite interpolants for both of
the spline spaces S1

2 (△PS) and S1
3 (△CT ), where in all cases we use exact derivatives

of the test function as data. Tab. 1 shows the results for levels i = 0, . . . , 6, where
we have reported the maximum errors on a 400×400 grid for the unrestricted spline
interpolants along with the errors for our nonnegative interpolants. We also give
the minimum values of the unrestricted spline interpolants on Ω.

The table shows that for the coarser grids, the unrestricted splines fail to be
nonnegative by substantial amounts, but for the finer grids they become almost
nonnegative. This is to be expected since for the finer grids, the splines are very
close fits to the true function. It also shows that for the coarser grids, our nonnega-
tive splines actually produce smaller errors than the unrestricted splines. The errors
for the unrestricted Powell splines are of order O(|△|3), while for the unrestricted
Clough-Tocher splines they are of order O(|△|4). This matches with the known er-
ror bounds for these spaces, see Theorems 4.1 and 4.3. The order of approximation
for both of our nonnegative-preserving methods seems to be O(|△|2).

We now examine the behavior of quantity L1,△ in Theorem 4.2 for the function
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Powell-Sabin Clough-Tocher
unrestricted nonnegative unrestricted nonnegative

level min error error min error error
0 -3.76 3.76 1.47 -3.17 3.17 1.67
1 -1.17 1.21 5.99e-1 -1.02 1.03 8.10e-1
2 -6.89e-2 1.98e-1 2.02e-1 -4.86e-2 1.41e-1 1.23e-1
3 -8.94e-3 2.54e-2 2.54e-2 -4.40e-3 1.25e-2 1.90e-2
4 -9.07e-4 3.04e-3 3.27e-3 -2.17e-4 9.24e-4 3.14e-3
5 -4.70e-5 3.73e-4 8.60e-4 -5.19e-6 6.26e-5 6.85e-4
6 -3.17e-7 4.61e-5 2.02e-4 -2.96e-7 3.45e-6 1.44e-4

Tab. 1. Hermite interpolation versus nonnegativity preserving interpolation for
Example 6.2, using Powell-Sabin and Clough-Tocher splines. The first column
denotes the number of mesh refinement levels. For each level, the minimal value
and the error of the unrestricted splines are shown, together with the error of
the corresponding nonnegativity preserving splines. All errors are measured in
the L∞-norm.

f in (6.1). Using the upper bound (4.3), we have

L1,△ ≤ max

{
0, max

v∈Ω

(
max{|fx(v)|, |fy(v)|} − f(v)

|△|

)}

≤ max
(x,y)∈Ω

(y2 − 1)2
(

4|x||x2 − 1| − (x2 − 1)2

|△|

)

≤ max
x∈[−1.5,1.5]

25

16

(
6|x2 − 1| − (x2 − 1)2

|△|

)
.

Let |△| ≤ 1/3. Then the maximum value is obtained at the points x̃ = ±
√

1 ± 3|△|,
and we get

L1,△ ≤ 225

16
|△|,

which explains the quadratic convergence of the error.

Example 6.3. Consider the positive test function

f(x, y) = (x2 − 1)2 (y2 − 1)2 + 0.001 (6.2)

on the domain Ω := [−1.5, 1.5]× [−1.5, 1.5]. Let △0,△1, . . . be the nested sequence
of type-1 triangulations of Ω in Example 6.2.

Discussion: We compare our nonnegativity preserving methods with the standard
Hermite interpolants for both of the spline spaces S1

2 (△P S) and S1
3 (△CT ), where

in all cases we use exact derivatives of the test function as data. Tab. 2 shows the
results for levels i = 0, . . . , 6, where the maximum errors are given for the unre-
stricted spline interpolants along with the errors for our nonnegative interpolants.
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Powell-Sabin Clough-Tocher
unrestricted nonnegative unrestricted nonnegative

level min error error min error error
0 -3.76 3.76 1.47 -3.17 3.17 1.67
1 -1.17 1.21 5.98e-1 -1.02 1.03 8.10e-1
2 -6.79e-2 1.98e-1 2.01e-1 -4.76e-2 1.41e-1 1.22e-1
3 -7.94e-3 2.54e-2 2.54e-2 -3.40e-3 1.25e-2 1.83e-2
4 9.32e-5 3.04e-3 3.04e-3 7.83e-4 9.24e-4 2.43e-3
5 9.53e-4 3.73e-4 3.73e-4 9.95e-4 6.26e-5 1.37e-4
6 1.00e-3 4.61e-5 4.61e-5 1.00e-3 3.45e-6 3.45e-6

Tab. 2. Hermite interpolation versus nonnegativity preserving interpolation for
Example 6.3, using Powell-Sabin and Clough-Tocher splines. The first column
denotes the number of mesh refinement levels. For each level, the minimal value
and the error of the unrestricted splines are shown, together with the error of
the corresponding nonnegativity preserving splines. All errors are measured in
the L∞-norm.

The minimum values of the unrestricted spline interpolants on Ω are also shown
in the table, and we see that they are positive on △i with i ≥ 4. On the coarser
grids our nonnegative splines actually produce smaller errors than the unrestricted
splines, and for levels i ≥ 6 the corresponding restricted and unrestricted splines
are identical.

For |△| ≤ 1/3, the quantity L1,△ in Theorem 4.2 for function f in (6.2) satisfies

L1,△ ≤ max

{
0,

(
225

16
− 1

1000|△|2
)
|△|

}
,

which reveals that the approximation order is better than quadratic, and that
the restricted and unrestricted Powell-Sabin spline interpolants are identical when
|△| ≤

√
10/375.

Our next example deals with range-restricted interpolation.

Example 6.4. Consider the function

f(x, y) =






1, y − x > 1
2 ,

2(y − x), 0 ≤ y − x ≤ 1
2 ,

1
2 cos

(
4π

√(
x − 3

2

)2
+

(
y − 1

2

)2
)

+ 1
2 ,

(
x − 3

2

)2
+

(
y − 1

2

)2 ≤ 1
16 ,

0, otherwise,
(6.3)

on the domain Ω := [0, 2]× [0, 1].

Discussion: This function is taken from [6], and is bounded below by the plane
z = 0 and bounded above by the plane z = 1. We will use again a nested se-
quence of triangulations △0,△1, . . ., where △0 is a type-1 triangulation consisting
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of 8 triangles, and the successive triangulations are obtained by uniform dyadic
refinement.

We compare our range-restricted methods with the standard Hermite inter-
polants for both of the spline spaces S1

2 (△P S) and S1
3 (△CT ), where in all cases we

use exact derivatives of the test function as data. We require our range-restricted
spline interpolants to satisfy 0 ≤ s(x, y) ≤ 1 throughout Ω. Tab. 3 shows the
results for levels i = 0, . . . , 6, where we have reported the maximum errors for
the unrestricted spline interpolants along with the errors using our range-restricted
methods. We also give the minimum and maximum values of the unrestricted spline
interpolants on Ω.

Powell-Sabin Clough-Tocher
unrestricted restricted unrestricted restricted

level min max error error min max error error
0 -3.33e-1 1.167 1.0 1.0 -3.01e-1 1.148 1.0 1.0
1 -1.66e-1 1.167 6.95e-1 6.95e-1 -1.50e-1 1.148 6.23e-1 6.23e-1
2 -8.33e-2 1.083 1.56e-1 1.56e-1 -7.52e-2 1.075 1.29e-1 1.29e-1
3 -4.16e-2 1.042 4.16e-2 4.17e-2 -3.76e-2 1.038 3.76e-2 3.76e-2
4 -2.08e-2 1.021 2.08e-2 2.08e-2 -1.88e-2 1.019 1.88e-2 1.88e-2
5 -1.04e-2 1.010 1.04e-2 1.04e-2 -9.38e-3 1.009 9.38e-3 9.39e-3
6 -5.20e-3 1.005 5.20e-3 5.20e-3 -4.69e-3 1.005 4.69e-3 4.69e-3

Tab. 3. Hermite interpolation versus range-restricted interpolation for Exam-
ple 6.4, using Powell-Sabin and Clough-Tocher splines. The first column denotes
the number of mesh refinement levels. For each level, the minimal and maximal
value of the unrestricted splines are shown, and the L∞-norms of the errors of
the unrestricted and range-restricted splines are given.

The table shows that for the coarser grids, the unrestricted splines fail the
range constraints by substantial amounts, but for the finer grids they are almost
satisfied. For this example, the range-restricted splines actually have essentially the
same errors as the unrestricted splines. The errors in all cases are of order O(|△|)
due to the fact that the test function is only C0. Fig. 5 shows both the unrestricted
Hermite interpolant based on Clough-Tocher splines on △1 and the corresponding
range-restricted interpolant.

§7. Remarks

Remark 1. The problem of estimating the gradients of an unknown function given
only values of f at a set of scattered points {vi}n

i=1 has been heavily studied in the
literature. Typical methods involve doing local least squares with low degree poly-
nomials or radial basis functions. For some specific methods and further references,
see [4,14].
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Fig. 5. Hermite interpolation versus nonnegativity preserving interpolation to
function (6.3) using Clough-Tocher splines on the type-1 triangulation △1 of Ω.
The planes z = 0 and z = 1 are shown as grids.

Remark 2. The same methods for estimating gradients at the {vi}n
i=1 can be used

to estimate cross derivatives at points on the edges of a triangulation when needed.
Alternatively, we can assume the cross derivatives vary linearly along each edge, in
which case the needed values can be computed from the gradients at the endpoints
of the edges.

Remark 3. A complete set of necessary and sufficient nonnegativity conditions
for bivariate quadratic polynomials was established in [2,10]. However, because of
their complicated nonlinear structure, these conditions are rather difficult to use in
practice. A set of necessary and sufficient conditions for bivariate cubic polynomials
is not derived yet. A sufficient criterion for nonnegativity is to require that all B-
coefficients of the polynomial are nonnegative. Weaker sufficient conditions were
given in [1,11].

Remark 4. In carrying out Algorithm 2.1, it suffices to perform step 2) only
for edges of △P S that are not interior edges of △. Making c5 (and the analogous
coefficient in the neighboring triangle) nonnegative insures c4 ≥ 0.

Remark 5. The method of Sect. 2 implicitly solves a linear programming problem
to determine the parameters γi:

max γi, subject to

0 ≤ γi ≤ 1,

2 fi + γidij ≥ 0, for j = 1, . . . , nPS

i .

For some related optimization strategies, see [9].
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Remark 6. It is easy to construct a simple example to show that Lemma 3.5
does not hold for any choice of a on some triangulations containing a negative
βe

1 or a negative βe
2 . Suppose that te := 〈ve

1, v
e
2, vTe

〉 and t̂e := 〈ve
2, v

e
1, vT̂e

〉 are
two micro-triangles of a CT-refinement △CT sharing an edge e := 〈ve

1, v
e
2〉, and

that the split points vTe
and vT̂e

are taken to be barycenters of macro-triangles

Te and T̂e. Suppose in addition that the shape of these triangles is such that
βe

1 , β
e
3 < 0, while βe

2 ≥ 0. We choose the values at ve
1 and ve

2 so that ce
2 > 0

and ce
1 > −ce

2((1 − βe
3)/2 + βe

2)/βe
1 . One can easily see that in this case ce

1 > ce
2,

since βe
2 = 1 + |βe

1 | + |βe
3 | implies that −((1 − βe

3)/2 + βe
2)/βe

1 ≥ 1 − 3/(2βe
1) ≥ 1.

Then, with zero gradients at both ve
1 and ve

2, we get ce
13 = ĉe

13 = ce
4 = ce

1 and
ce
14 = ĉe

14 = ce
5 = ce

2. This gives

I =
1

2
min{ce

1, c
e
2} + βe

1ce
1 + βe

2ce
2 −

βe
3

2
min{ce

1, c
e
2}

=
1

2
(1 − βe

3)c
e
2 + βe

1c
e
1 + βe

2ce
2

<
1

2
(1 − βe

3)c
e
2 −

(
1

2
(1 − βe

3) + βe
2

)
ce
2 + βe

2c
e
2 = 0.

Remark 7. The nonnegativity restriction imposed on our Powell-Sabin spline is a
sufficient but not a necessary condition, see Remark 3. Therefore the method de-
scribed in Sect. 2.2 is not able to reproduce all nonnegative quadratic polynomials.
However, any nonnegative linear polynomial can be exactly represented. It is easy
to see that in this case Algorithm 2.1 produces γi = 1 for all i, since, e.g., for any
point vij on triangle T := 〈vi, vk, vl〉, we have 2fi + dij ≥ fi + min{fi, fk, fl} ≥ 0,
or −2fi/dij ≥ 1 if dij < 0. In a similar way one can check that the method based
on the Clough-Tocher macro-element can exactly reproduce any nonnegative linear
polynomial, but not all quadratic or cubic polynomials.

Remark 8. In [6] it was suggested to choose each parameter aij = 8/3. This
is a valid choice in the case where all CT-split points are allowed to be taken as
barycenters. However, this is not generally applicable, see Remark 6.

Remark 9. In [16] the author proposed a global optimization strategy to ob-
tain nonnegativity preserving interpolants based on reduced Clough-Tocher macro-
elements. All B-coefficients of such interpolating spline are required to be nonneg-
ative. In this approach the same restriction on the CT-split points is imposed as
assumed in Theorem 4.5, which is stronger than the restriction in Theorems 3.6
and 4.6.

Remark 10. If one already has an implementation of a Hermite interpolation
method for Powell-Sabin or Clough-Tocher macro-elements, it can be adjusted in
a straightforward way to produce our nonnegativity preserving interpolatnt. Our
methods can also easily be integrated in more advanced data interpolation strate-
gies, e.g., as the one proposed in [13].
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Remark 11. The methods developed here can be easily modified to work with
other classical macro-elements such as the ones based on the Powell-Sabin-12 split,
the double Clough-Tocher split, and triangulated convex quadrilaterals, see Chap. 6
of [7]. For the double CT-split, this leads to somewhat weaker conditions on the
parameters aij that play a role in the analog of Algorithm 3.2. On triangulated
convex quadrilaterals, the parameters aij in the analog of Algorithm 3.2 have to
be set to infinity. The same technique can also be used for the construction of
nonnegative C1 cubic macro-elements on a rectilinear partition, consisting of both
triangles and convex quadrilaterals.

Remark 12. Nonnegative smoothing of noisy data using C1 Powell-Sabin macro-
elements has also been studied in the literature, see [18,19], but it is a global
method.
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