Multi-sided Macro-Element Spaces Based
on Clough-Tocher Triangle Splits
with Applications to Hole Filling
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Abstract. C" macro-element spaces are constructed on polygonal domains
with an arbitrary number of sides. The spaces consist of polynomial supersplines
defined on triangulations which have been partially refined with Clough-Tocher
splits. In addition to giving dimension formulae, minimal determining sets, and
nodal bases, we derive error bounds for the corresponding Hermite interpolation
operators. A number of examples are presented to show how the spaces can be
used to fill n-sided holes.

§1. Introduction

Before describing the problem of interest in this paper, we need to recall some
standard notation. Let Q@ C IR? be a polygonal domain which may contain holes.
We do not require that €2 be connected. Suppose A is a triangulation of 2. Given
integers 0 < r < d, let

Si(A):={s€C"(Q):s|p € Py, forall T € A}

be the classical space of polynomial splines of degree d and smoothness r, where Py is
the space of bivariate polynomials of degree at most d. Given r < p < d, we write

S;P(A) == {s € Sg(A) : s € CP(v) for all vertices v of A}

for the corresponding space of supersplines, where as usual, s € C?(v) means that
the polynomials in the set {s|r : v is a vertex of T'} have common derivatives up to
order p at v.

Let H be an n-sided polygonal domain whose edges are either edges of A or
are not contained in ). Fig. 1 and Fig. 2 show some examples. We define

0..— 1L if the edge (v;,v;11) is an edge of A,
710, otherwise.
where vy, ..., v, are the vertices of H. Let 8 = (0,,...,60,). Our aim in this paper
is to solve the following problem.
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Fig. 1. The extension problem.

Fig. 2. The hole filling problem.

Problem 1.1. Suppose A is a triangulation of the set ). Find a triangulation
Ng. g of H and a spline space S,y C Sy”(Ne,m) such that for every s € Sy” (1),
there exists a spline sg i € Sp g satisfying:

1) the derivatives of s and s¢ i agree up to order p at each of the vertices shared
by H and (),

2) the normal derivatives of s and sg g agree up to order r across each of the
edges shared by H and ().

We can think of the spline sz as extending the spline s from S;”(A) to S;P(A),
where A := AU Ag . The extended spline has the same supersmoothness as the
original spline, but is defined on all of Q := QU H. The case where H is in the
interior of €2 is particularly interesting. In this case we say that H defines a hole in
2, and solving Problem 1.1 is equivalent to filling the hole H.

Finding a spline space Sy g C S;*(Ag,mr) solving Problem 1.1 can be also be
regarded as the problem of creating an n-sided macro-element which takes informa-
tion from m < n sides.

Definition 1.2. We say that the spline space So.u C Sy* (g m) is a f-macro-
element space provided it solves Problem 1.1.

If H is a three-sided hole in €2, then Problem 1.1 can be solved using clas-
sical macro-element spaces, at least for those values of r, p,d where such spaces
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are known. In this paper we make use of the Clough-Tocher (CT) macro-element

spaces constructed in [2]. They are subspaces of the superspline spaces Sgg;ffl (A)

with m > 1 and Sgm 13> (A) with m > 0. In our notation, such macro-element
spaces can be regarded as (1,1,1)-macro-element spaces, see Sect. 4 below. Our con-
struction of general n-sided macro element spaces will use them along with some
new (1,1,0)-macro-element spaces to be introduced here.

The paper is organized as follows. In Sect. 2 we collect some well-known facts
from the Bernstein-Bézier theory. In Sect. 3 we review minimal determining sets for
spline spaces. The (1,1,1)-macro-element spaces are described in Sect. 4 , and the
new (1,1,0) macro-element spaces are intoduced in Sect. 5. In Sect. 6 we describe
f-macro-element spaces, and in Sect. 7 we introduce the extension operator used
to solve the main problem. In Sect. 8 we describe nodal degrees of freedom for
our macro-element spaces. Error bounds and numerical examples can be found in
Sects. 9-11, and concluding remarks are given in Sect. 12.

§2. Preliminaries

We will make extensive use of well-established Bernstein-Bézier techniques, cf. [1-
9]. As is well known, any polynomial p of degree d on a triangle T := (uq, ug, us)
can be written in B-form
T nd
b= Z CijeBijks

i+j+k=d
fljk are the Bernstein basis polynomials of degree d associated with T". In

particular, if (c, 3,7) are the barycentric coordinates of any point v € IR? in terms
of the triangle 7', then

where B

d! o L
Bzdj (u) ::i!j!k!a’ﬂjyk, i1+ 5+ k=d. (2.1)

As usual, we associate the coefficient c;f';.k with the domain point

Uy + jug + k L
§£k = (i 3122 U3)’ i+j+k=d

We write Dy := {fgk}iﬂ-i-k:d- The domain point §£k is said to be distance 7 to
the edge (ugz,us). It is distance j from (ug,u;) and distance k from (up,us). We
will work with the usual rings and disks of domain points defined by

RZ(Ul) = {Sf;k ri=d—n},
D} () :={&y i >d—n},

with similar definitions at the other vertices of T'. If v is a vertex of A\, the sets
R, (v) and Dy, (v) are defined to be the unions of the rings RZ (v) and disks DI (v),
respectively, taken over all triangles T attached to v.
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Suppose that T := (u1, us, uz) and T := (u4, us, us) are two adjoining triangles
which share the edge e := (ug,u3). Let c;jx and ¢;;x be the coefficients of the B-
representations of p := s|r and p := s| 7 of some piecewise polynomial s defined on

T UT. Then following [2], for any n < m < d, we let

Tm,eS = En,m—n,d—m - Z Ci,j+d—m,k+m—nB'?jk(u4)’ (22)
i+j+k=n
where B, are the Bernstein polynomials of degree n on the triangle T'. We refer

to the domain points gd—m m—n and ﬁ;fm_n d—m as the tips of the smoothness

condition. As observed in [2], s is C" continuous across the edge e if and only if
TmeS = 0, n<m<d, 0<n<r.

Assuming that the coefficients of p are known and that p joins p with C" conti-
nuity, the smoothness conditions can be used to compute the coefficients ¢, m—n,d—m
of p for 0 < n < r. They can also be used in situations where some of the coeffi-
cients of both p and p are known and others are unknown, as shown in the following
lemma for computing coefficients on the ring R, (u2).

Lemma 2.1. [2] Suppose T and T are as above, and the edge (ug,us) is non-
degenerate with respect to ug, i.e., the points ui, us, uq are not collinear. Suppose
that all coefficients of the polynomials p and p corresponding to domain points in
the disk Dy, (uz) are known except for the following coefficients on R, (uz):

Cy = Cy.d—m,m—v> v=~F+1,...,q,

(2.3)

Cv = Com—v,d—m> v=~{+1,...,q,
for some £, m,q,G with 0 < q,q, -1 <{¢<gq,q, and g+ G — £ <m < d. Then these
coefficients are uniquely determined by the smoothness conditions

En,m—n,d—m = Z ci,j+d—m,k+m—nB%k;(u4)a £+1 <n<q+ (j — L. (24)
i+j+k=n

§3. Minimal determining sets

Let S9(A) be the space of continuous splines of degree d on a triangulation A, and
let D4 A be the union of the sets of domain points associated with the triangles
of A. Then it is well known that each spline in 8Y(A) is uniquely determined by
its set of B-coefficients {c¢ }¢ep, - In particular, the coefficients of the polynomial
s|r are precisely {c¢ }eepy anT-

We recall that a determining set for a spline space S C 89(A) is a subset M
of the set of domain points D4 A such that if s € S and ¢ = 0 for all § € M,
then ¢ = 0 for all £ € Dy, i.e., s = 0. A determining set M is called a minimal
determining set (MDS) for S if there is no smaller determining set. It is known that
M is a MDS for S if and only if every spline s € § is uniquely determined by its
set of B-coefficients {c¢}eem. A MDS M is called stable provided for each 6 > 0
there is a constant Ky such that for any spline s € S defined over a triangulation
whose smallest angle is at least 0, max¢ep, , |ce| < Ko maxee |cel.
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§4. (1,1,1)-macro element spaces

For convenience, we recall the construction of (1,1,1)-macro-elements given in [2].
Given a triangle T := (v, vy, v3), let vp be the barycenter of T. Then we define
the associated Clough-Tocher split Ter to consist of the three triangles Tl .=
(v, vi,viy1) for i = 1,2,3, where we identify vy = v;. We write e; for the edge
(v, vr) for i =1,2,3. Given r > 1, let m = |[r/2| and

_ [ Bm+1,5m+2,6m+3), r=2m+1,
(prp,d) = {(3m,5m+1,6m+1), r=2m. D
Let
83" (Tor) = {s € S} (Tor) : s € C*(vr)}: (4.2)

Theorem 4.1. [2] Let S,(Tcr) be the linear subspace of all splines s in S;”* (Tcor)
satisfying the additional smoothness conditions

PP 0, 1<j<i, 1<i<r-m-—1, (4.3)
ot s =0,  1<j<i, 1<i<r-m-—1, (4.4)
HH s=0, 1<j<m-i+1, 1<i<m, (4.5)
i s=0, 1<j<m-i, 1<i<m-1. (4.6)

Then
2
39IMm~“4+63m+24 r 2m 1,

. _ 2 bl
dim S, (Ter) = { 39m2+233m+6’ = 9m.
Moreover, the following set M, of domain points is a stable MDS:

1) DT (v;), for i =1,2,3,

[] []

2) {gfp,d p—3r - fqzd pP—3:P J 1, fori=1,2,3.

§5. (1,1,0)-macro element spaces

Given r > 1, let m, p, i, d be as in (4.1).

Theorem 5.1. Let S, (Tcr) be the linear subspace of all splines s in 8;”*(Tcr)
that satisfy the following set of additional smoothness conditions:

7 os=0, i-r+m+1<j<2%-2r—1, p+2<i<2r, (5.1

1,€2
m,s=0, i-r+m+1<j<i, 2r+1<i<d, (5.2)
TE_T:L-;J;HS—O, 1<j<r—-m-1, 1<i<r—-m-1. (5.3)

Then
2
3Tm~+57m+22 r 2m 1’

. = _ 9 9
dim S, (Ter) = { 37m2431m+6
2

5.4
, T =2m. (5.4)



Moreover, the following set M\r of domain points is a stable MDS:
1) DT (v;), for i =1,2,3,

lél il
2) {£Jp7dp]7" Jdpjp] 1,f01‘z-12
T[l] Lz r+m+ J T[2 |_7, r+m_l
3) {5r+g m4i—j+1,p0— 7,}_] 1 U {§r+gp i,m4i— J+1} , forie=r—m+1,
-7 = 1)
T[l] z+m+ J |_ 71+mJ -
4) {gi—{—j,p—j—{—l,p 1} U {gH—J p—i,p— j+1}J 1 for t=Ty..50p— L.

Proof: First we show that ./\/lr is a determining set. Suppose that we set the
coefficients c¢ of s € S, (Ter) to zero for all € € M,.. Then we claim that all other
coefficients must be zero. First, by the C? supersmoothness at the vertices, all
coefficients corresponding to domain points in the disks D,(v;) must be zero for
j=1,2,3. Now we use Lemma 2.1 to solve for the unset coefficients corresponding
to domain points on the rings R,y;(v2) for ¢ = 1,...,p+ 1. Each step involves
solving a homogeneous system of equations. Since d = 2p + 1, this shows that all
coefficients corresponding to domain points in T U T2 must be zero. By the C*
supersmoothness at v, it follows that all of the coefficients of s corresponding to
domain points in 1 N D, (vr) must also be zero. Then enforcing the smoothness
conditions listed in (5.3) implies that the remaining undetermined coefficients in
T8l are zero. We have shown that all coefficients of s must be zero, and thus M\T
is a determining set.

To show that M, is a minimal determining set, we now show that its cardinality
is equal to the dimension of S, (Tor). First suppose r = 2m + 1. It is easy to
check that #M\T = (37m? + 57m + 22)/2. Now consider the superspline space
ngié SMH2(Tor). By Theorem 2.2 in [11], the dimension of this space is (46m? +
68m + 24)/2. Our space S, (Ter) is the subspace which satisfies the 3m? + 4m + 1
special conditions (5.1)—(5.3) and the supersmoothness C3™*1(v;) for i = 1,2, 3.
Enforcing this supersmoothness requires an additional 3(m?+m)/2 conditions, and
thus

62 94 9 9 2 ~
6m2 + 68m + B 6m=” + 8m + _ 3(m* +m) < dim S, (Tor)

2 2 2
< 37m? 4 57m + 22

- 2

Since the expression on the left equals the one on the right, we conclude that it is
equal to the dimension of S (Ter), and MT is a MDS.

We now consider the case r = 2m, where #M, = (37m? + 31m + 6)/2.
By Theorem 2.2 in [11] the dimension of the superspline space Sgn";fr N (Tor)

is (46m?2 + 34m + 6)/2. Our space S,(Tcor) is the subspace which satisfies the
3m? special conditions (5.1)-(5.3) and the supersmoothness C3™(v;) for i = 1,2, 3.
Enforcing this supersmoothness requires an additional 3(m?+m)/2 conditions, and
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Fig. 3. The C' macro-element S (Ter).

thus

46m? +34m+6  6m2  3(m? S,
6m +2 m+6 72n _3(m ;m)gdier(TCT)S

37m? +31m +6
5 )

Since the expression on the left equals the one on the right, we conclude that it is
equal to the dimension of S,.(T¢r), and M, is a MDS.

—~

Finally, we claim that M, is stable. This follows from the fact that once we
set the coefficients of a spline s € S, (Tor), the remaining unset coefficients can be
computed in the order described above either directly from smoothness conditions
(known to be a stable process) or from Lemma 2.1. The latter computation involves
solving a non-singular linear system whose determinant (and thus the constant K
of stability) depends only the smallest angle in 7. O

Example 5.2. The macro-element space §1 (Ter) is the subspace of all splines
17172 s - 3 —
s € 83 *(Tor) satistying 73,5 = 0.

Discussion: By Theorem 5.1, the dimension of §1 (Ter) is 11, and a MDS M\l is
given by
1) DT (v;), for i =1,2,3,
(1 2]
2) {é-?ll ’5%11 }
This MDS is illustrated in Fig. 3, where the tip of the special smoothness condition
is marked with a black triangle. This point is in M;. The other points in item 1)

are marked with black dots, while those corresponding to 2) are marked with stars.
O

Example 5.3. The macro-element space 3\2 (Tor) is the subspace of all splines
s € 872’3’6(TCT) satisfying 72,623 =0 fori=25,6,7.

Discussion: By Theorem 5.1, the dimension of 32 (Ter) is 37, and a MDS M\g is
given by



Fig. 5. The C° macro-element S3(Tor).

1) DT (v;), for i =1,2,3,
i) Ll opli]
2) {5%;33 ) gg?:Z ’ 5%123 }'?:17
[
3) &3a1 -
This MDS is illustrated in Fig. 4, where the the tips of the three special smoothness
conditions are marked with black triangles. These points are in My. The other

points in 1) are marked with black dots, while those in 2) are marked with stars.
The point in 3) is marked with ®. O

Example 5.4. The macro-element spacelgg(TCT) is the subspace of all splines
s € 893,4,7(T0T) satisfying Tgms = 0, 7.2;2215 =r7i,.s =0 fori =789, and
4 o 7 b

TpesS = 0.

Discussion: By Theorem 5.1, the dimension of S’},(TCT) is 58, and the set M\3
consisting of the points



OO0 000 & e 8

Fig. 7. The C°® macro-element S (Ter).

1) D () for i = 1,2, 3,
6] oplil oplil oplil oplil oli]
2) {€ﬂ4 ’ 3213 ’ 53134 ’ 5??:12 ’ 5%?33 ’ 53’3124 }12217
[

3) & -
is a MDS. This set is illustrated in Fig. 5, where the tips of the seven special
smoothggss conditions across edge es are marked with black triangles. These points
are in Mj3. The tip of the special smoothness condition across edge e3 is marked
with an open triangle. This point is not in Mj3. The other points in 1) are marked

with black disks, while those in 2) are marked with stars. The point in 3) is marked
with ®. O

The analogous diagrams for our C* and C® macro-elements are shown in Fig. 6
and Fig. 7.

§6. #-macro-element spaces
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Given H and 6 as in Problem 1.1, let A(®) be an initial triangulation of H. As
a means of creating extra degrees of freedom if so desired (see Remark 12.4), we
allow the possibility that A(®) may have some vertices in the interior of H. Let
n(‘),,nOE, nd be the number of vertices, edges, and triangles of A For example,
we can take A(® to be the Delaunay triangulation of H whose vertices coincide
with the vertices of H, in which case n?/ =n, nOE = 2n — 3 and n% =n—2.

We now give an algorithm for creating a triangulation Ay g which is suitable
for constructing a f-macro-element space associated with H. In addition to defining

Ag m, the algorithm defines an ordering T4, ..., T, nd, of the triangles of the triangu-
lation A(®. Tt also classifies the edges of A(®) by assigning an integer 0 < k. < 5

to each edge. The value of k. will later guide the construction of an associated
macro-element, space.

Algorithm 6.1.

1) For all 1 < i < n with 0; = 1, mark the edge (v;,v;+1) of H and the vertices
v; and Vi41-

2) For i = 1 until n%, find a triangle T in AU with a maximal number of
marked edges, say ei, ..., en,;. We suppose these edges are numbered in coun-
terclockwise order, and are oriented in a counterclockwise direction around the
triangle. Then

a) set T; :=T,
b) ifm; = 1, set Ky, — {151: Iof;;}tf;i“;iz;ex opposite ey is marked,
c) if m; =2, set ke, =3 and ke, = 2,
d) if m; =3, set key = Key = Key = 1,
e) define A(®) = AG=D\{T;}, and mark the edges and vertices of A N T;.
3) Define Ay g to be the triangulation which results from applying the Clough-
Tocher split to each triangle T; with m; > 2, fori =1,...,n.
4) Set k. = 0 for all remaining edges of A(©).
We illustrate Algorithm 6.1 in the following two examples.

Example 6.2. Let H be the four-sided polygonal domain shown in Fig. 8 (left),
and suppose § = (1,1,1,1). Let A be the initial triangulation of H shown in the
figure on the left, where n%, = 4, n% =5, and n% = 2.

Discussion: Applying Algorithm 6.1, we get m; = 2 and ms = 3 and the trian-
gulation Ay g shown in Fig. 8 (right). O

Example 6.3. Let H be the seven-sided polygonal domain shown in Fig. 9 (left),
and let # = (1,1,1,0,0,1,1). Let A be the initial triangulation shown in the
figure on the left, where n%, =7, n% = 11, and n}. = 5. The edges of H with 0; = 1
are drawn with heavy lines, while those with 6; = 0 are drawn with thinner lines.

Discussion: Algorithm 6.1 gives m; = mg = m3z = my = 2 and ms = 1, and the
triangulation Ag g shown in Fig. 9 (right). O
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V4

V4
U1 A V1 % v
U3

Fig. 8. The construction of Ag g for Example 6.2.

Vg
vy vy i
Vs ﬁ
(5] D) U1 V2
U4
U3

Fig. 9. The construction of Ag g for Example 6.3.

Ve VU5 Ve V5
U1 ‘av U1 A’
V2 U3 V2 V3

Fig. 10. The construction of Ay g for Example 6.4.

Example 6.4. Let H be the six-sided polygonal domain shown in Fig. 10 (left),
and let § = (1,1,1,1,1,1). Let A©) be the initial triangulation shown in the figure
on the left, where nY, =7, n% = 12, and n = 6.

Discussion: Algorithm 6.1 gives m; = 1, mg = -+ = ms = 2, and mg = 3. The
associated triangulation Ag g is shown in Fig. 10 (right). O

We are now ready to define our f-macro-element spline space. Let £; be the
subset of edges of A(®) which lie in the interior of H. In the following definition it
is important that the edges of £ have specific orientations. We assume that if e
is the edge between two triangles T; and T; with ¢ < j (in the numbering assigned
by Algorithm 6.1), then e is oriented counterclockwise with respect to triangle Tj.
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Let u be as defined in (4.1).

Definition 6.5. Let Sg g be the subspace of splines s in 8;* (/g i) satisfying the
following additional smoothness conditions.

For each edge e € &7,

1) if ke =2,
a) Tgi_gﬂ,eS:O, forj:l,...,Li_rz"'mJ andi=r—m+1,...,r—1,
b) T;_—'_i—i—i,eszo’ forj:17---7tr_i2+mJ andi:r,_._,p—l,
2) if ke = 3,
a) Téff;l_,-ﬂ_l,es:O, forj=1,..., =™ andi=r—m+1,...,7r—1,
b) 7t s =0,forj =1, =" andi=r,....p— 1.
3) if ke = 4,
a) Thi.s=0forj=1,...;iandi=r+1,...,p.
4) if ke =5,

a) T;H-’es:o, forj=1,...;5andi=r+1,...,p,
b) Tfﬂ’es:O, forj=0,...,d—iandi=p+1,...,d.
For each triangle Ty with my = 2,
1) s € C*(wy), where wy is the split point inserted in Ty,

2) s satisfies the smoothness conditions (5.1)—(5.3) on the interior edges of the
CT-split of Ty,

For each triangle Ty with my = 3,
1) s € C*(wy), where wy is the split point inserted in Ty,

2) s satisfies the smoothness conditions (4.3)—(4.6) on the interior edges of the
CT-split of Ty.

We now turn to the task of constructing a minimal determining set for the spline
space Sp g. Our minimal determining set will consist of two parts, My and Mg.
These will be constructed by the following two algorithms.

Algorithm 6.6. Let V; be the set of vertices that lie on an edge e; of H with
Hi =1. Set

My = | DI (v),

vEV
where T, is some triangle of Ag g attached to v.

We now define a set Mg of points associated with the marked boundary edges
of H. Let £p be the set of such edges.
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Algorithm 6.7. Let MEg be the set of domain points obtained by the following

steps. For each edge e := (ug,u3) in €p, let T, := (u1,us,u3) be the triangle in
Ag g containing e, and include
T, T, ..
]‘) gj,p’d—p—j""’ j7d_p_j,p for] — 17...’7'
2) if ke = 2,
a) g?j—j,p—i,m—i—i—j—i—l? forj=1,..., L#J andi=r—m+1,...,r—1,
b) gﬁj,p—i,p—j—*—l} forj=1,..., L#J andi=r,...,p—1.
3) if ke = 3,
a) gfj—j,m—i—i—j—i—l,p—i? forj=1,..., =2t | andi=r—m+1,...,r—1,
b) gz}-j’p—j—{—l,p—i) forj - 17 ey L%WJ and 7; =Ty...,0— 1.
4) if ke = 4,
a) €Ty o uforj=1,...iandi=r+1,...,p.
5) if ke = 5,
a) €5 . o nforj=1,.,iandi=r+1,...p,
b) gz;ii—l—j,_]’ fOI‘j:O,...,d—i andi:p+ 17...’d'

We are now ready to state our main theorem. Let ngy := 2?21 0;, and let n; be the
number of edges e of H with k., =1 for 1 =2,...,5. Set

o & ST

it=r—m-+1 =

— z—r+m+1 ks r—z—l—m+1
as= Y | e

i=r—m-+1 i=r

_ (d+2 p + 2 r+1
M= 9 2
_(d+2 p+2 r+1
T 2 2
Let n1 be the cardinality of V;.

Theorem 6.8. The set

«

(S48

MG,H = MVUME

is a minimal determining set for Sy rr, and

5
. . p+2 r+1
dimSy g = n1< 9 ) +n9< 9 ) +Zniai. (6.1)

Proof: Suppose s is a spline in Sp g, and that all of its coefficients corresponding
to domain points in the set My g have been set. We now show that all remaining
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coefficients are uniquely determined by smoothness conditions. We examine the
triangles 71, . ..,Tn% in order. Suppose the coefficients of s have already been
determined for triangles T4,...,Ty—1. To show that s is uniquely determined on
Ty, we consider three cases depending on the value of m, associated with T;. Here
we use the notation of Sect. 4.

Suppose my = 1, and let Ty := (uy, u2, u3z) where e := (ug, ug) is the marked
edge. Suppose k. = 4. Then the coefficients in the disks D,(u;) for i = 1,2, 3 are
either set or are uniquely determined by the C'* smoothness at the u;. Moreover,
all coefficients of the form cg;.‘k with 0 < ¢ < r are either set or determined by
the C" smoothness across e. The remaining a4 coefficients of s corresponding to
domain points in T, are either set or are uniquely determined by the smoothness
conditions listed in 3) of Definition 6.5. If k. = 5, then we first compute D, (u;)
from C? smoothness for : = 2, 3. The remaining a5 coefficients are either set or are
computed using the smoothness conditions in 4) of Definition 6.5.

Now consider the case my = 2. Suppose Ty := (u1,us2,us3), and that e; :=
(u1,ug) and ey := (ug,usz) are the two marked edges in counterclockwise order.
Let, Te[l] = (U, U1, U2), TF] := (U, u2,us3), and TE] := (U, uz, u1), where u, is
the center of Ty. The coefficients in the disks D,(u;) are either set or are uniquely
determined by the C? smoothness at u; for i = 1,2,3. Moreover, all coefficients
corresponding to domain points ;;; in Te[y] with 0 < ¢ < r are either set or are
determined by the C” smoothness across e, for v = 1,2. Now the coefficients listed
in 3) and 4) of Theorem 5.1 are either set or can be computed from the smoothness
conditions listed in 1) and 2) of Definition 6.5. But then Theorem 5.1 shows that
all remaining coefficients of s corresponding to domain points in the triangles Te[”]
for v = 1,2, 3 are uniquely determined.

Finally, suppose my = 3. Suppose T, and T}V] are as above. In this case,
the coefficients in the disks D,(u;) are either set or are uniquely determined by
the C? smoothness at u; for 1 = 1,2,3. Moreover, all coefficients corresponding to
domain points §;;x in Te[y] with 0 < ¢ < r are either set or are determined by the
C™ smoothness across e, for v = 1,2,3. Then all remaining coefficients of s are
uniquely determined by Theorem 4.1.

This completes the proof that My g is a minimal determining set for Sy g.
But then the dimension of Sy g is equal to the cardinality of My g7, which is easily
seen to be the number in (6.1). O

§7. The extension operator
We now present a solution to Problem 1.1.

Theorem 7.1. Given Q, H,0 and an initial triangulation A of H, let Nog H
be the triangulation produced by Algorithm 6.1. Let Sy g be the spline space of

Definition 6.5, and let A = AUAg gr. Then for every spline s € S (A), there exists
a unique spline § € §;° (), such that §|q = s and §|g € Sp,u, and § satisfies the
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following additional smoothness conditions. For each edge ey := (vg,ve11) shared
by H and (2,

1) if ke, = 2,

a) r+j

Td—p—i—i,el fOT‘]Zl,’L#J andizr—m-l—l,...,r—l,

5=0,
b) T;—_'_'Z;+i,el§:0, forg:l,,L#J andi:fr’”.’p_]__
2) if ke, = 3,

r+j - _ - 1 .
a) Tg o ivj1e5=0forj=1,..., |=rtmtl fand i =r—m+1,...,r—1.

b) T;tj,;+j_1,e£§:0; forj:l,...,[%J andi=r,...,p—1.

3) if ke, = 4,
a) Tg+j’el§:0, fOI‘j:l,,,,,iandi:7-+1,___’p'
4) if ke, =5,

a) T,’;ﬂ,eeé:(), fory=1,...,tandi=r+1,...,p,

b) TZ_H’eeg:O, forj=0,...,d—t1andi=p+1,...,d.

Proof: First we show that the smoothness conditions listed in 1)-4) uniquely
determine the coefficients of a spline g € Sg g. It suffices to show how to compute
the coefficients of g associated with the minimal determining set My U Mg of
Theorem 6.8. Using the C” smoothness at the boundary vertices of H, we can
compute the coefficients of g corresponding domain points in D,(v) for all v in the
set V of Algorithm 6.6. We have now computed all coefficients corresponding to
My . Now using the C" smoothness across the boundary edges of H along with
the smoothness conditions listed in 1)-4), we can compute the coefficients of g
corresponding to the domain points in Mg. It is easy to check that each coefficient
in Mg g corresponds to exactly one smoothness condition, and thus the above
construction is unique. Moreover, the construction also guarantees that if we set
8|ng.n =g, then 5 € S;P(A). O

Theorem 7.1 defines a linear operator @) mapping S;”(A) into S;* (A). Note
that Qp = p for every polynomial of degree d. We give error bounds for this
operator in Sect. 9.

¢8. Nodal degrees of freedom

In this section we describe a set of nodal degrees of freedom for our macro-element
space. Let D, and D, be the usual partial derivatives, and let d; be the point
evaluation functional associated with the point t. If e := (u,v) is an oriented edge
of H, we denote the unit derivative normal to e by D.. Let

; (J+1—d)u+idv\J
J —
Al ._{ e }z . (8.1)
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Let V1 be as in Algorithm 6.6, and let

Ny = | {6,DZ D8 }ocars<p-
vEV]

Theorem 8.1. Each spline s € Sy g is uniquely determined by the nodal values
{As}ren, where N := Ny UNg, and Ng is the following set of nodal functionals:
for each edge e of H,

1) if ke > 1, {6: D :t € NI}, forj=1,...,7.
2) ifke=2,{0:DI:t €A’} forj=r+1,...,p— 1, where v; :== p— j.
3) ifke=3,{6Di:t €N’} forj=r+1,...,p, where vj :=p—j+ 1.
4) if ke =4, {0:DI:te Ai}, forj=r+1,...,p.
5) if ke = 5,

a) {6:DI:teN}forj=r+1,...,p.

b) {6;D3 :t € A3} forj=p+1,...,d.

Proof: Given s € Sy, we show that prescribing values for {As}rca uniquely
determines all of the coefficients of s corresponding to the domain points in the
minimal determining set M of Theorem 6.8. It is well known that setting the values
of {DFDF s(v) }o<atp<, uniquely determines the coefficients of s in the disk D, (v),
and it follows that the values of {As}xea,, uniquely determine the coefficients of
s corresponding to the domain points in My . To compute the coefficients of s
corresponding to Mg, we make use of the values of the normal derivatives across
edges. For each edge e with k. > 1, we can use the value of the normal derivative of
order one to compute the one unknown coeflicient corresponding to a domain point
at a distance of 1 from the edge. Then assuming we have computed all coefficients
corresponding to domain points at distances 2,...,5 — 1 from the edge, we can use
the values of the j-th derivative at 7 points on e to compute the unknown coefficients
corresponding to domain points at distance j from the edge. This involves solving
a nonsingular system of j linear equations in the j unknowns. At this point we
have shown that all of the coefficients corresponding to the domain points in item
1) of Algorithm 6.7 have been determined. We now consider the computation of
coefficients corresponding to domain points which lie at distances r+1 < 7 < p from
an edge e with K, = 2 or kK, = 3. Fixr+1 < 5 < p, and suppose that the coefficients
have already been computed for all domain points in Mg within a distance of
J — 1 of such edges. Then using Lemma 2.1, we now compute all coefficients at a
distance j from such edges which can be determined from smoothness conditions
around vertices. Then the remaining coefficients corresponding to domain points
at a distance j can be computed by solving a linear system of size v; x v;. The
situation is slightly simpler when k. = 4. In this case we can solve j X j systems
to find coefficients at a distance j from e for all j =r+1,..., p. When s = 5, this
can be continued for all j = p+1,...,d, using systems of sized—j+1xd—j+1.
O
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§9. Error bound for macro-element interpolation

Given H and 0, let Sy i be the corresponding macro-element subspace of S;”(Ag p)
in Definition 6.5. Then for any f which has at least d derivatives at all points on
the boundary of H, as required in the statement of Theorem 8.1, there exists a
unique spline sy € Sp, g for which Asy = Af for all A € N, where NV is the set
of functionals of the theorem. This defines a linear projector P mapping W2 (H)
onto Sp . We now give an error bound for how well Pf := s; approximates f on
H. Let |Ag m| be the mesh size of Ag g, i.e., the diameter of the largest triangle
in Ng . We write |f|q4+1,m for the usual Sobolev semi-norm.

Theorem 9.1. Suppose f lies in the Sobolev space W1 (H). Then
IDE DY (f = PHllr < K[Dgu|* =P flats,m, (9.1)

for 0 < ao+ B < d. The constant K depends only on the smallest angle in Ay g
and on the number of triangles in Ng .

Proof: Let f € W& (H). Then there exists a polynomial q := g; € P4 such that

IDEDY(f — )l < K| Do, | " 777 flaga,m, (9-2)

where K; depends only on the number of triangles in Ay g and the smallest angle
in Ag g. Since Pg = g,

IDEDE(f — Pf)lla < IDEDE(f — @)llu + |DEDEP(f — q)||m-

To estimate the second term, suppose ¢ are the B-coefficients of P(f —¢). We now
show that

d
lcel < K2 Ao ul'|f —qlig,  forall§ € Da, . (9.3)
1=0

where K5 is a constant depending only on the smallest angle in Ay i and on the
number of triangles in Ag . Clearly, this assertion is true if £ belongs to the mini-
mal determining set My rr of Theorem 6.8, since for each such £ the corresponding
coefficient can be computed directly from values of f and its derivatives at points
on the boundary of H. Now as shown in Theorem 6.8, all remaining coefficients c¢
are computed using smoothness conditions across interior edges of Ag . We claim
that for these coefficients, we have

cg| < K5 mmax ey, (9.4)

where K3 is a constant depending only on the smallest angle and the number of
triangles in Ag i. Indeed, each time we use either a smoothness condition or
Lemma 2.1, the newly computed coefficients are bounded in size by a constant
times the size of the previously computed coefficients.
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Let T be a triangle in Ag r. Then since the Bernstein basis polynomials form
a partition of unity,
P(f— < max |cg|.
1P = 0llr < ma e

By the Markov inequality, cf. [14],
1D DY P(f = g)llr < Ka|T|~ DN P(f = )|,

where K, depends on the smallest angle in 7. Combining the above inequalities
leads immediately to (9.1). O

If H and 0 are such that the nodal determining set for Sg i only involves
derivatives up to order m < d, then the analog of Theorem 9.1 also holds for
functions in WX (H) for all m < k < d. We emphasize that the error bound in
Theorem 9.1 applies only to holes with a small diameter and which are filled with
a small number of triangles. It is not meant for larger holes such as those in several
of the examples of Sect. 11 below.

§10. Interpolation on polygonal tilings

Although our study of n-sided macro elements was motivated mostly by the hole-
filling problem, it is possible to use n-sided macro-elements to construct spline
interpolants on a polygonal domain €2 which has been partitioned into smaller
polygons. Suppose that A = Ufil H; is a partition of {2, where for each i, H; is an
n;-sided polygon. In the simplest case we can take all of the H; to be three-sided, in
which case A is a triangulation, but here we allow more general n-sided polygons,
and in fact allow a mixture of polygons with differing numbers of sides and differing
shapes. Given a function f, for each H; we suppose we are given the nodal data
needed to construct the corresponding interpolant on H;, where data is given on
all n; sides of H;, i.e., 6; = (1,...,1). This leads to a spline sy defined on all of .
Let a; be the smallest angle in the triangles defining the macro-element on H;.

Theorem 10.1. Suppose f lies in the Sobolev space WX (Q). Then
IDSDy(f = sp)lle < KA 7P| flay 0, (10.1)

for all 0 < a+ B < d. The constant K depends only on m := max{n;}}¥, and
o = min{o; }N,.

Proof: The result follows immediately from Theorem 9.1 applied to each polygon
H;. O

Theorem 10.1 shows that if A% is a sequence of partitions of Q with m®) < M
and a(®) > § for all k, then spline interpolation on A) provides asymptotically
optimal order approximation in the context of polynomial splines of degree d. It is
also possible to prove a similar result where some of the macro-elements do not use
information on all edges. But to make this work, we have to control the lengths
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89\ |10

Fig. 11. Filling the hole in Example 11.1.

of chains of propagation by first interpolating on a subset of polygons with full
information, and then use the elements without full information only sparingly (as
was done for example in recent papers on Lagrange interpolation with splines, see
e.g. [8,9] and references therein).

§11. Filling n-sided holes

In this section we illustrate the use of our macro-elements for filling n-sided holes.
In all of our examples we take 2 to be the unit square {2 with a hole H cut in
it. In particular, we define A to be a type 1 triangulation of Q with 128 triangles,
see Fig. 11 (right). For later reference, we number these triangle in lexicographical
order, starting with the triangle which is closest to the origin and moving in the
y-direction, then in the z-direction. We create the holes by removing some of these
triangles as marked in the figures. All of the examples are based on C! cubic
splines, where the intial spline is obtained by first interpolating f with a spline
sy constructed using the C! cubic Clough-Tocher macro-element on each triangle,
then restricting it to Q\ H. We define the initial triangulation A(®) of H to be the
set of triangles removed to form H, and set § = (1,1,...,1,1). For the first three
examples we take f(z,y) = (1 + 2e73OV#*+4°=6.1)) =3 45 the test function. For
comparison purposes, we numerically evaluated f — sy on a grid of 10000 points
and computed both the maximum norm ||f — s¢l|5 = 1.2900 (~2) and the average
i norm || f — sf||s = 7.3404 (—4) defined as the sum of the absolute errors divided
by 10000.

Example 11.1. Let H be the 6—sided polygonal hole in the interior of Q obtained
by removing the four triangles numbered 89, 90, 91, 105 as in Fig. 11 (right).

Discussion: Using Algorithm 6.1, we process the triangles in the order 89, 91, 105,
then 90. In the first three triangles we use 2-sided macro-elements, while in the
last triangle we use the standard 3-sided macro-element. Fig. 11 (left) shows the
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Fig. 12. Filling the hole in Example 11.2.

result of filling the hole. The extended spline 5 is almost as good an approximation
of f as sy, and the two splines are virtually indistinguishable to the eye. Indeed,
If — 3¢l = 1.2900 (=2) and || f — 5¢]l, = 7.5396 (—4). O

Example 11.2. Let H be the 10-sided polygonal hole in the interior of Q obtained
by removing the eight triangles marked in Fig. 12 (right). Let f be the same test
function as in Example 11.1.

Discussion: Using Algorithm 6.1, we process the triangles in order from 37 to 44.
The spline filling the hole H is shown in Fig. 12 (left). Two-sided macro elements
are used for all triangles except for the last, which uses the standard three-sided
element. Here ||f — §[|5 = 1.2900 (—2) while || f — 5|l, = 7.5122 (—4). O

It is clear that any error introduced in the extension into the first triangle
processed in Example 11.2 (number 37 in Fig. 12 (right)) will propagate into the
next triangle and so on until we get to the last triangle (cf. the discussion of error
bounds in the previous section). This did not cause any problem in this example,
but could lead to oscillations for very long thin holes. This can be avoided by
choosing the order in which the triangles are processed to stop the propagation.
We now illustrate this with the T-shaped hole shown in Fig. 13.

Example 11.3. Let H be the 18-sided T-shaped hole shown in Fig. 13, and let f
be as in the above two examples.

Discussion: Algorithm 6.1 suggests that we process the triangles in the order 37—
41, 46-42, 90-57. The last triangle to be done is number 57, where a three-sided
macro-element is used. In this case the extended spline, shown in Fig. 14 (left), is
close to the spline sy except in the triangles numbered 42 and 57. Here || f — 5|5 =
6.8531 (—2) while ||f — 5¢||; =1.0174(-3). O
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Fig. 13. The hole in Examples 11.3 and 11.4.

Fig. 14. The extensions in Examples 11.3 and 11.4.

In this example s clearly exhibits some oscillations, and does not fit f nearly
as well as sy. We now show how this problem can be overcome by processing the
triangles in a different order.

Example 11.4. Let H and f be as in Example 11.3, but now suppose we process
the triangles in the order 41-42, 46—43, 3740, 57-58, and 90-73.

Discussion: In this case triangles 41 and 42 employ the one-sided macro-element.
Three-sided macro-elements are used in triangles 40, 43, and 73. In this case the

extended spline, see Fig. 14 (right) is much closer to the spline sf, and in fact now
If —5llg = 1.2900 (—2) while ||f — 3¢y = 7.8046 (—4). O

We now give an example where the hole has one edge on the boundary of Q.
Here we take f(z,y) = sin(2(z —y)) as the test function. In this case [|f — s¢[l5 =
1.5932 (—4) while || f — sy[l1 = 2.3449 (=5).
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Fig. 15. Filling the hole in Example 11.5.

Example 11.5. Let H be the 14-sided polygonal hole in Q obtained by removing
12 triangles from /\ as shown in Fig. 15 (right).

Discussion: The spline filling the hole is shown in Fig. 15 (left). Here || f — 5|5 =
4.9114 (—4) while || f — &7, = 2.8034 (=5). O

Our final example shows that the method also works for parametric surfaces.
Here we take z(u,v) = 2u, y(u,v) = sin(4u), and z(u,v) = cos(4v) which produces
the partial cylinder shown in Fig. 16.

Example 11.6. Let H be the 18-sided T-shaped hole in Q obtained by removing
the 16 triangles marked in Fig. 13.

Discussion: The spline filling the hole in the cylinder is shown in Fig. 16. O

§12. Remarks

Remark 12.1. In developing the macro-elements presented here, we have made
extensive use of Peter Alfeld’s java code for examining determining sets of super-
spline spaces. The code is described in [1], and can be used or downloaded from
http://www.math.utah.edu/~alfeld.

Remark 12.2. The construction described here is not unique in the sense that
there are other choices of the smoothness conditions and degrees of freedom which
produce macro-element spaces on the same triangulations.

Remark 12.3. For the case r = 2, it is possible to build n-sided macro-element
spaces using quintic splines instead of the degree 6 splines used here, provided that
the Clough-Tocher split is be replaced by the more complicated split used in [13].
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Fig. 16. Filling the hole in Example 11.6.

Remark 12.4. If the initial triangulation A(®) of the hole H contains vertices inside
H, then it is easy to design macro-element spaces which allow Hermite interpolation
at those interior vertices. In this case we could treat the case k. = 5 in Definition 6.5
in the same way as k. = 4 and add the disks D,(v) to the minimal determining set
for all interior vertices v.

Remark 12.5. Another way to gain additional control over the shape of a macro-
element surface is to use the degrees of freedom of the element to minimize an
energy functional instead of setting them using information across the boundary
edges. Filling holes using C! minimal energy splines was investigated in [4,5]. Here
we can work with macro-elements with arbitrary smoothness.

Remark 12.6. Theorems 9.1 and 10.1 give error bounds in the uniform norm.
Analogous results hold for the p-norms.

Remark 12.7. The problem of filling holes in a suface is of major importance in
CAGD, and a variety of methods have been proposed. See [4,10] for references to
some of the literature.

Remark 12.8. Our thanks to Frank Zeilfelder for his very careful reading of the
manuscript, and for suggesting several improvements.
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