Designing NURBS Cam Profiles
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by
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Abstract. We show how to design cam profiles using NURBS curves whose
support functions are appropriately scaled trigonometric splines. In particular,
we discuss the design of cams with various side conditions of practical interest,
such as interpolation conditions, constant diameter, minimal acceleration or jerk,
and constant dwells. In contrast to general polynomial curves, these NURBS
curves have the useful property that their offsets are of the same type, and hence
also have an exact NURBS representation.

1. Introduction

There are a number of schemes based on ordinary polynomial splines for the de-
sign of displacement functions describing cam profiles, see e.g. [20,21]. However,
the existing schemes have the drawback that the parametric representation of the
resulting cam profiles is not suitable for immediate practical application. In par-
ticular, these profile curves are not industry standard NURBS curves. Thus, to
use polynomial splines in the manufacturing process, their representations must be
converted (approximately) to a form accepted by CNC milling machines.

The purpose of this paper is to show that trigonometric splines are an attractive
alternative to classical polynomial splines for cam design. Indeed, as observed in
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our paper [13], trigonometric splines can be used to define rational curves, and
therefore do not need conversion as the polynomial splines do. Moreover, curves
constructed with trigonometric splines have the useful property that their offsets
are also rational, and hence have the same convenient representation.

In this paper we show how trigonometric splines can be used to to design pro-
files for cam mechanisms with a flat face follower. A typical objective is to determine
a cam shape by means of a displacement (or support) function satisfying a given
set of side conditions, including for example prescribed values of the displacement
function and its first and second derivatives (velocity and acceleration of the cam).
In addition, we may seek to enforce certain global characteristics on the cam, such
as constant diameter, or small values for the maximum acceleration or jerk.

2. Curves Defined by Support Functions

In this section we review properties of curves defined by support functions. This
is the natural setting for the design of profiles of cam mechanisms with a flat face
follower.

Let h(6) be a positive continuous function defined on an interval I = [a, b].
One natural way to associate a curve in R* with h is via its polar graph

Gy :={P(0) == (2(0),y(0)) : a <6 <b}, (2.1)

where 2(6) = h(6)cos(6) and y(0) = h(0)sin(f). If [a,b] = [0,27] and if A is
2m-periodic, then Gy, is a closed curve. The polar representation is useful for the
description of profiles for cam mechanisms with a roller follower.

An alternative way to associate a curve with a univariate function k() can
be used for the design of profiles of cam mechanisms with a flat face follower, see
Fig. 1. For each 6, let L(#) be the line passing through the point P(f) in (2.1)
which is perpendicular to the ray OP(6) from the origin to P(#), and let

C}, = {the envelope of the lines L(#) : a < 6§ < b}. (2.2)

The function h is called the support function of the curve Cp. In the present
application, it describes the displacement of the follower as a function of the rotation
angle of the cam.

The curve C}, can also be expressed as a parametric curve. In fact [19],
Cr = {(x(6),y(0)) : a <6 <b},

where now



Fig. 1. Cam mechanism with a flat face follower.

This representation also reflects the fact that the curve normals have distance h'(6)
from the origin, see Fig. 1.
The signed radius of curvature of the curve C}, is given by

p(0) == h(6) + h"(@). (2.3)

Thus, a closed curve C}, is conves if and only if p(6) > 0 for all 0 < 6 < 2.
Using support functions one can easily describe offset curves of a given curve:
the offset curve at signed distance d from Cy is Cp, with hq(6) := d + h(6). The

closed curve C}, agrees with its offset at distance —d and thus is of constant diameter
d > 0 provided
h(0) + h(6 +7)=d, 6¢€]0,r). (2.4)

For more details on the use of support functions for describing (constant di-
ameter) curves, see [19].

3. Trigonometric Splines

In this section we briefly recall some facts about trigonometric splines. For more
details, see [18]. Given integers N > 0,k > 1, a positive constant «, and an interval

I =a,b], let
i1 <ty <o <Ingk (3.1)

be a knot sequence such that
0<ti+k—ti<ﬂ'/a, iZl,...,N. (32)
Associated with the knot sequence, let

T'(0) =1 3.3
+(9) { 0, otherwise, (3.3)



S(tH_k — 9)

s(tigk — tit1)

TFG) = ——
() s(tigh—1 —t;) "

THRN6),  k>1, (3.4)

where from now on s(6) := sin(af) and c() := cos(af). Here TF¥ is defined to be
identically zero if ¢,y = t;, and terms in (3.4) with zero denominator are treated
as zero. The TF are the well-known normalized trigonometric B-splines of order k.
Each TF(6) is positive for 8 € (¢;,ti+x), and is zero for all 6 ¢ [t;,,1x]. Moreover,
on each subinterval (#;,#,11), the B-spline TF belongs to the space of trigonometric
polynomaals of order k, defined by

—_— { span{l,s(20),c(26),s(46),c(40),...,s((k —1)0),c((k — 1)8)}, k odd
' span{s(6),c(0),s(36),¢(30),...,s((k —1)8),c((k — 1))}, k even.

The space § of trigonometric splines of order k is defined as the linear span of the
B-splines, namely

=1

N
S = {ZaTk a; € R, izl,...,N}.

When £ is odd there exist coefficients £¥ such that
N
1=) ¢ THO),  th <0<ty (3.5)
=1
The coefficients £¥ in the partition of unity (3.5) were computed in [11] using results
on trigonometric polar forms. In particular, it follows from Lemma 5.3 of [11] that
(k—1)/2

1
flk = m Z H C(ti+u(2j) - ti-HA(Zj—l))v (36)
po g=1

where the sum is taken over all permutations p : {1,...,k — 1} — {1,... .k —1}.
The cases of k£ = 3 and k = 5 are of particular practical interest:

£ = c(tiva —tig), (3.7)

and

€ =

[C(ti+2 — tix1)c(tiva — tiys) + c(tizs — tiv1)c(tiva — tiyz2)

+ c(tiva = tig1)e(tivs — tita)], (3.8)

W



fors=1,...,N.

The first derivative of a trigonometric spline is

D740 = ot -y | I e SOBRO) o)

see [12]. Higher derivatives can be calculated by using this formula recursively.
Thus, for example, the second derivative is

(0 —t)DTF1(0) — as(8 — t)TF(6)
S(tigr—1 — i)

e(titr — G)DTiIii—_ll(e) + s(tivr — G)Tiﬁ_ll(e)] . (3.10)

DZTik(G) =alk—1) [

s(tigk — tit1)

4. Connection with Rational Curves

Curves G}, of the form (2.1) with h(6) = 1/f(6), where f is a trigonometric spline,
have been studied in several papers of Sanchez-Reyes [16,17], although without ref-
erence to the trigonometric spline literature. They were also studied independently
by de Casteljau [2], who calls them focal splines, and more recently by Casciola
and Morigi [1] who call them p-splines. These curves can be viewed as rational
geometric spline curves. Their segments are rational curves of degree k — 1 with a
special arrangement of the control points.

These types of curves are useful in several engineering applications, including
the design of cams with roller followers. However, as mentioned above, for flat face
follower cams it is more natural to consider curves C} corresponding to a support
function h € §. Tt turns out that with o = (k — 1)71, C}, is a piecewise rational
curve (NURBS curve) of degree 2k — 4, see [13]. Explicit formulae for the Bézier
representations of the segments of the curve can be found there.

A striking property of the curves C} is that their offsets are also rational
curves. In fact, for k£ odd, this is easy to see, since the space 73 contains constants
and hence the functions h(6) 4+ d,d € IR, are in this space whenever h is. A more
general argument which also applies to even values of k can be found in [13].

5. Cam Design

In this section we discuss the practical aspects of using trigonometric spline support
functions to design cams. In particular, we discuss making the support function
take on prescribed values at given angles, constructing cams with prescribed dwells,
creating constant diameter cams, and designing cams with minimal acceleration or
jerk.
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5.1. Closed Curves

The curve C} will be closed if and only the corresponding support function A is
2m-periodic. There is a standard way to create periodic splines [18]. Let {ti}?:""fk_l

be an extended partition with ¢t = 0, t,4x = 27, and
tivn=1%;4+27, ¢=1,...,2k—1, (5.1)

and let {Tik}?:"i'lk_l be the corresponding trigonometric B-splines of order k. Sup-
pose ay, ..., ay, are given real numbers, and that

Qitn = a;, t=1,...,k—1. (5.2)

Then the trigonometric spline

n+k—1

he) = Y aTH0) (5.3)

=1
is 27-periodic, i.e., R)(0) = R)(27), for j =0,...,k — 2.

5.2. Interpolation

It is clear from the previous section that in designing a cam using support functions
h of the form (5.3) with coefficients satisfying (5.2), we have n free parameters at
our disposal, namely the coeflicients ay,...,a,. One way to use (some of) these
degrees of freedom is to force h to take on prescribed values at given angles. In
particular, given 0 < 6y < --- < 6,, < 27 and positive numbers hy, ..., h,,, the
function h satisfies

h(6;) = hj, J=1...,m (5.4)
if and only the following set of m linear conditions on the coefficients a; hold:

n+k—1
Y aTHO)=h;  j=1,...,m. (5.5)

=1

It should be pointed out that it is not always possible to choose coefficients
so that (5.5) holds. For example, if more than & of the 6; fall in one knot interval
[ti,tit1], we would be forcing more than k conditions on a single trigonometric
polynomial, which is impossible. The following result shows that in general, inter-
polation is possible if the §; are sufficiently spread out.

Theorem 5.1. Given {9]‘};”:1, suppose there exists a sequence 1 < 17 < -+ <
1m < n such that
ti; <0 <ty 4, t=1,...,m. (5.6)



Then the interpolation problem (5.4) is solvable for any given hy, ..., hp,.

Proof: A general result concerning the nonsingularity of interpolation matrices for
trigonometric splines can be found in [10]. The result stated here is the periodic
version, and can be derived from the nonperiodic case using the same arguments
as for the case of periodic polynomial splines, cf. [18]. The conditions (5.6) are
called the Schoenberg- Whitney conditions, and it can be shown that they are also
necessary. W

Using results in [10], it is possible to show that prescribed derivatives can also
be interpolated under appropriate conditions.

5.3. Dwells

A cam is said to have a dwell of displacement n between the angles ¢1 and ¢,
provided that the support function h satisfies

h(6) =, 61 <6< o (5.7)

This means that the follower remains at a fixed distance n above the center of the
cam as the cam turns through the angles ¢1 to ¢5 [8].

Assuming that we represent the support function % as a trigonometric spline of
odd order, we now show how to create a dwell of specified displacement n between
two angles chosen from the knot set {t;}75F.

Theorem 5.2. Suppose ¢1 = t; and ¢ =t, with k <1l <r < n+ k. Then given
n, the support function h defined in (5.3) satisfies (5.7) if and only if

ci = nEr, t=14+1—Fk,....,r—1. (5.8)

Proof: By the support properties of the trigonometric B-splines, (5.7) holds if and
only if

r—1

Z «TF() =, 1 <0 < os. (5.9)

1=I+1—k

Now in view of the partition of unity equation (3.5), this is equivalent to (5.8). W

The requirement that a dwell begin and end at a knot is no restriction in
practice as we are free to choose the number and location of the knots of h. It 1is
possible to create cams with more than one dwell, but of course if two successive
dwell displacements differ, then the corresponding dwell intervals must be separated
by at least one knot interval.

5.4. Constant Diameter Cams



To design constant diameter cams, we must make the support function b satisfy
the condition (2.4). As noted above, this is only possible if we work with odd order
trigonometric splines. In addition, we have to choose the knots and coefficients of

h carefully. Let n = 2m, and suppose

tivk+m = tigk + 7, r=1,...,m.

Theorem 5.3. Suppose the support function (5.3) has coefficients {ai}?:"i'lk_l sat-

isfying
Gipm = d EF — a4, i=1,...,m, (5.10)
and (5.2), where n = 2m and £F are the coefficients appearing in (3.6). Then the

curve C}, has constant diameter d.

Proof: By construction, h is periodic on [0,27]. By the way in which the knots
were defined, it is clear that for 0 < 6 < 7,

k+m—1

h(6) = Z ai T} (8)
1
hO+7m)= Y aipm THO+ 7).

=1
Inserting (5.10) and taking note of (3.5), we see that

k+m—1
hO) +h(0+m)=d Y & THO)=d 0<6<m,

=1

i.e., (2.4) holds and thus C}, has constant diameter d. W

5.5. Minimizing Acceleration and Jerk

One of the goals in designing cams is to create profiles for which the acceleration
and jerk of the follower arm are small. In terms of our geometry, the acceleration
is given by the second derivative of h, while the jerk is given by the third derivative
of h.

Let h be the desired displacement function of the form (5.3) satisfying (5.2).
We wish to design a cam minimizing the expression

Mh|| oo = Mh(z)), 5.11
|34h] = macx [Mh(a) (5.11)

where M is a given differential operator. Setting M = D? corresponds to mini-
mizing the acceleration, whereas M = D? leads to the minimization of the jerk.
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Another possibility is to set M = D? + 1 in which case by (2.3) we would be
minimizing the curvature of the cam.

Typically, various side constraints are imposed on the cam such as interpolation
and dwelling conditions, or the requirement of constant diameter, described in
earlier sections. These conditions are linear in the coefficients a = (ay,...,a,), and
assuming there are m of them, they can be expressed in matrix form as

Ca=b, (5.12)

where C' is an m by n matrix, and b is an m-vector, both depending on the type
of constraints. Unfortunately, the problem of minimizing (5.11) subject to (5.12) is
nonlinear, and hence a numerical method must be employed. This is in contrast to
the least squares problem, which leads to a linear system of equations. However,
least squares solutions may not be optimal, since they may have large values of
acceleration or jerk at certain angles of the cam.

To solve the minimization problem numerically, we discretize the interval [0, 27]
by replacing it with a sufficiently dense set of points {u;}/~,. We now approximate
the minimization problem by the following linear programming problem:

minimize €
subject to

n+k—1

Y aMTHu)-<<0, I=1,... L,

i—1 (5.13)
n+k—1

Y aMTHu)+e<0, I=1,... L

=1

Ca=050.

Here ¢ i1s an auxiliary variable whose minimization clearly forces the expression

Mh(up)|,

max
1=1,...,L

approximating ||Mh| , to be as small as possible. The standard linear program-
ming problem (5.13) can be be solved using well-established methods.

5.6. Convex Cams

Assuming a cam is designed by the optimization process described in the previous
section, it is a relatively easy matter to add conditions which will help insure that
the resulting cam is conver. We simply require that the signed radius of curvature
be nonnegative at some (relatively dense) set of points {u;}~, in [0, 27]:

h(ul) + h”(ul) >0, I=1,...,L.
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Fig. 2. The cam in Example 6.1.

This is just a set of L additional side constraints on the optimization problem (5.13).

6. Examples of Cam Design

To illustrate the above theory, we now present several examples of cam designs with
constant diameters using trigonometric splines of order ¥ = 3 and k¥ = 5. To get
cams with NURBS curve profiles, throughout this section we take o = 1/(k — 1).
All of our examples are based on equally spaced knots with a spacing 27 /n.

6.1. Cams Based on Trigonometric Splines of Order 3

For k = 3 the support function for each curve segment is of the form h;(6) =
ri + m;cos(6) + n;sin(f). Thus each segment of the support function is a circle
with center (m;, n;) and radius ;. Since h € C[0, 27], it follows that the cam profile
consists of a collection of circular arcs joined together with first order geometric
continuity (continuous tangent lines). With k& = 3, the acceleration of the cam

follower 1s a discontinuous function of 8 with jumps at the angles corresponding to
knots of h.
Example 6.1. Construct a cam with the following properties:

1) a displacement of 1.0 at angle 6 = 0,

2) a displacement of 1.5 at angle § = /2.

3) a constant diameter of 2.

Discussion: We seek h in the form (5.3) with n = 4. The conditions (5.10) for
constant diameter 2 are

az + ayp = 2cos(n/4) = 1.4142136

as + az = 2cos(w/4) = 1.4142136.
Combining these with the two interpolation conditions, we have a system of four
linear equations for the four coefficients. The solution is a; = 0.3524855, a; =

1.0448228, a3 = 1.0761710, and a4 = 0.3695643. The corresponding cam is shown
in Fig. 2. A



11

35
3
25
2
15
1 1 2 3 4 5 6
15 15
1 1
05 0.5
0 1 2 3 5 0 1 2 3 4 6
-0.5 -0.5
-1 -1
-15 -15

Fig. 3. The cam in Example 6.3.

Example 6.2. Construct a cam with the same properties as in Example 6.1 except
with displacement 1.3 at angle 6 = 7 /2.

Discussion: In this case the four equations turn out to be incompatible, and so
these design requirements cannot be met with n =4. W

We now consider a more ambitious example which includes most of the design
elements discussed above.

Example 6.3. Construct a cam with the following properties:

1) constant diameter 4,

2) a dwell of displacement 1.0 in the interval [0, 7 /5],

3) a displacement of 1.5 at angle 8 = 7 /2.
Discussion: We choose n = 30 and solve (5.13). The resulting cam is shown in
Fig. 3 along with plots of the displacement, velocity, and acceleration. Because
the cam is of constant diameter, it also exhibits a dwell of displacement 2.5 for

m < 6 < 67 /5. For later comparison, we note that ||A'|| = 1.627 and ||r"| = 1.535.
|

6.2. Cams Based on Trigonometric Splines of Order 5

In this subsection we choose k = 5 and o = .25. In this case, s € C3[0,27], and

thus both the acceleration and jerk of the cam follower are continuous functions of

6.
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Fig. 4. The cam in Example 6.4.

Example 6.4. Construct a C® cam with the properties listed in Example 6.3.

Discussion: We choose n = 30 and solve (5.13). The resulting cam is shown in
Fig. 4 along with plots of the displacement, velocity, and acceleration. For this cam,
For this cam, ||A'|| = 1.761 and ||A"|| = 1.878. Thus, the only cost for the smooth
acceleration is a slight increase in the maximum norms of velocity and acceleration.

Example 6.5. Construct a cam with the following properties:
1) h(0) =1 and R'(0) = h"(0) = 0.
2) h(r)=m+1and h'(r) =h"(7) =0.

Discussion: We choose n = 30 and solve (5.13). The resulting cam is shown
in Fig. 5 along with plots of the displacement, velocity, and acceleration. This
example should be compared with Example 1 in [21], and in particular with their
cubic spline design shown in Fig. 5 of that paper. The norm of velocity for our
design is 2.17 as compared to 1.89 for theirs, and (after normalization), the norm
of acceleration for our design is 4.2 as compared to 5.4 for their design. W

7. Remarks
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Fig. 5. The cam in Example 6.5.

Remark 7.1. In designing cams with dwells, it is important that the displacement
be constant throughout the dwell interval (i.e., the cam curve is a circular arc in
this interval). While this is difficult to achieve with many curve schemes, as we
have seen above it is easy to achieve with our scheme (for odd order splines).

Remark 7.2. Rational curves with rational offsets have been an active area of
research in computer-aided geometric design in the past few years, and have im-
portant applications in NC milling and layered manufacturing (see [4,5,6,14] and
references therein). However, the simple generation of our family of rational geo-
metric splines with rational offsets does not seem to have been exploited previously.

Remark 7.3. Using the presented approach might be advantageous for solving
various design problems where the length of the curve is specified as an additional
constraint. While most existing approaches give rise to a nonlinear problem [3,7,15],
using the curve representation in terms of support functions gives rise to a system
of linear equations for the spline coeflicients. The linearity follows from the fact

that the length is given by ['[h(6) + h"(6)]d6.
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