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Abstract. We develop a method for interpolating scattered data on sphere-like
surfaces based on a local triangular patch which is constructed from a blend
of certain spherical Bernstein-Bézier polynomials introduced recently by Alfeld,

Neamtu & Schumaker [2]. The method produces a C'* interpolant which matches
values and derivatives, and is a natural analog of a planar method of Foley &
Opitz [6] and Goodman & Said [7]. We also show how the same approach

can be used to construct a C% quintic hybrid patch matching second derivative
information as an analog of a planar method of Chang & Said [5].

1. Introduction

We begin by stating the interpolation problem of interest. Suppose S is the unit
sphere (or a sphere-like surface, see Remark 8.1), and that {v;}; is a set of
scattered points located on S. Given real numbers {f;}7 ;, we seek a function s
defined on S which interpolates the given data in the sense that

s(vi) = fi, i=1,...,n. (1.1)

This problem arises in many applications, and a variety of methods for solving
it have been proposed, see [4] and references therein. Our approach is to construct
an interpolant defined piecewise over a spherical triangulation with vertices at the
data points. Each piece of the interpolant is defined locally over a single triangle
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using spherical analogs of the classical Bernstein-Bézier polynomials recently in-
troduced by Alfeld, Neamtu, & Schumaker [2, 3, 4]. To avoid having to subdivide
triangles, we employ the blending idea which Foley & Opitz [6] and Goodman &
Said [7] used to create rational (hybrid) patches on planar triangles.

In this paper our aim is to construct a C'' cubic hybrid patch on a spherical
triangle. The approach can easily be adapted to produce a C? quintic hybrid patch,
see Remark 8.3. We proceed as follows. First we create a (spherical) triangulation
of S with vertices at the data points. Then on each triangle 7' we construct a
function which interpolates the given values and prescribed derivatives at each of
the three vertices of T. Each piece of the interpolant is a blended version of the
spherical Bernstein-Bézier polynomials introduced in [2], and is constructed in such
a way that the pieces fit together to form a globally C'! surface. The method retains
virtually all of the advantages of the spherical Clough-Tocher method discussed in
[4], but without the need to split triangles.

The paper is organized as follows. In Sect. 2 we introduce some basic notation
related to spherical barycentric coordinates and spherical Bernstein Bézier polyno-
mials. Our new hybrid cubic patch is introduced in Sect. 3, and in Sect. 4 we show
how it can be used to solve the interpolation problem. In Sect. 5 we present the
results of some numerical experiments and a comparison with the Clough-Tocher
method discussed in [4]. The problem of how to estimate derivative information at
the data points is examined in Sect. 6. In Sect. 7 we discuss some numerical ex-
periments using estimated derivatives. Finally, we conclude the paper with several
remarks. For simplicity, we assume throughout the paper that S is the sphere, but
everything carries over immediately to sphere-like surfaces, see Remark 8.1.

2. Spherical Barycentric Coordinates and SBB-Polynomials

The following notation is taken from [2]. Suppose {v;}?_, is a set of linearly inde-
pendent unit vectors (points on the unit sphere S). Then

T = {’U €S : v=">buvy + by + 63’03, b; > 0}

is a spherical triangle with vertices vy, vo, vs. For each v on S, the unique real num-
bers by, by, bg are called the the spherical barycentric coordinates of v with respect

to T.

Given an integer d, the set of functions

B¢ :

iv) = i,j,k,bibgb’;, i+ +k=d,

are called the spherical Bernstein basis polynomials associated with T. As shown
in [2], they can be viewed as homogeneous functions of degree d whose extensions
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to IR® form a basis for all homogeneous polynomials of degree d. A function of the
form

p(v) = Y cimBi(v), (2.1)

i+j+k=d

with ¢;jx € IR is called a spherical Bernstein-Bézier (SBB)-polynomial or SBB-
patch.

It is shown in [2] that SBB-polynomials possess almost all of the properties
of the classical planar Bernstein-Bézier polynomials. In particular, they are easy
to store, can be evaluated by a stable and efficient version of the de Casteljau
algorithm, have derivatives which are again SBB-polynomials, and can be easily
joined together to construct convenient classes of splines on the sphere S and on
general sphere-like surfaces.

For later use, we recall that the coefficients ¢;;; of an SBB-patch can be asso-
ciated with the domain points

(‘l"l)l —|— ]"UQ —|— k’Ug) . .
ijk ‘&= 7 ; , 1474+ k=d.
Sk = [or ¥ joa & koa] J

Here || || denotes the usual Euclidean norm in IR*. We are particularly interested
in d = 3, in which case we can refer to the coefficient ¢111 as an interior coefficient,
and the other nine coefficients as boundary coefficients.

Suppose p is an SBB-polynomial in the form (2.1), and that ¢ is an arbitrary
vector in IR®. Then (see Theorem 3.3 of [4]), the directional derivative of p (con-
sidered as a trivariate homogeneous function)

d T I
Dyp(v) := =5 p(v +69) ‘9:0 =g Vp(v) (2:2)
is given by
Dyp(v)=d ) cil9)Bij (v), (2.3)
it jrk=d—1
where

cije(9) = bi(g)eivr gk +ba(g)cijrr e + bs(g)cijrr, i+j+k=d—1, (2.4)

and (b1(g),b2(g),b3(g)) are the spherical barycentric coordinates of ¢ relative to T'.

We close this section with an interpolation result from [4]. For any two vertices
of T', let D;; denote the directional derivative corresponding to the direction v; —v;,
where we interpret subscripts mod 3.
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Lemma 2.1. The nine boundary coefficients of a cubic SBB-polynomial p are
uniquely determined by the values p(v;), D; i+1p(v;), and D; jy2p(v;), 1 = 1,2, 3.
Proof: See Lemma 5.3 of [4]. The coefficients at the vertices match the given

values, 1.e.,

€300 = P(’Ul)a Co30 = P(’Uz)a Co03 = P('U3)-

The remaining boundary coefficients of p are determined by the derivatives at the

vertices. For example,

c210 = ¢300 + D12p(v1)/3. A

3. A Hybrid Cubic SBB-Patch

Given a spherical triangle T' = (v1, vz, v3), let The its interior, and 97 its boundary.
For each ¢ = 1,2, 3, let e; be the side opposite v; corresponding to b; = 0. Motivated
by the planar case [6, 7], we define a hybrid cubic SBB-patch by

Pv)= > cipBlj(v), (3.1)

i+j+k=3
with
3
€111 = 0111(‘U) = ZO%AE(Z?M 527 53)7 (32)
(=1

where A; are prescribed functions. Here ayq, ag, a3 and the ¢ except for ¢i1; are
given real numbers, and by, by, bg are the barycentric coordinates of v with respect
to T

Substituting (3.2) in (3.1) and rearranging the sums, it follows immediately

that
3

P(v) = ZAE(’U)PE(‘U%

=1

where py(v) is the ordinary SBB-patch which has the interior coefficient ¢111(v) = ay
and the same boundary coefficients as P. This means that P is just a blend of three
SBB-patches.

In order to assure that P has certain desirable properties, throughout the
remainder of the paper we assume that the blending functions satisfy the following

hypotheses:

H1) A¢(v) := Ae(b1(v),ba(v),b3(v)) is continuous on T and bounded on T,
H2) Y2 Ay(v)=1forvel

H3) A¢(v) =1 on the interior of e;, and is zero on the rest of 97,
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H4) Ay is positively homogeneous, i.e., A¢(av) = a” A¢(v) for some real p and all
positive real numbers a,

o]
H5) %‘f‘ is continuous on 7, and

By (v) = 0. (3:3)

Some specific choices for the Ay are given in Sect. 4.2 below. In the remainder
of this section we show that under these hypotheses, the hybrid patch is well-defined
and is a C'! function on T. We begin with continuity.

Theorem 3.1. The hybrid patch P is a continuous function on T.

Proof: First we observe that for v on the boundary 07 of T, P reduces to the
ordinary SBB-polynomial py whose boundary coefficients are the same as those of
P, and whose interior coefficient is 0. Since P is clearly continuous on 7, it suffices

to consider what happens as we approach 07. Now in view of H1), it is clear that

if v* € 9T, then P(v) — P(v*) = po(v*) as v — v*. W
For later use we note that the values of P at the vertices are given by

P(v1) = ¢300, P(v3) = co30, P(v3) = cgos- (3.4)

We now turn to directional derivatives of P. In view of our assumption H4)
on the Ay, a hybrid SBB-patch has a natural extension to IR* as a homogeneous
function. This allows us to compute its directional derivatives by the formula (2.2).

Theorem 3.2. For any vector ¢ in R, D, P is a continuous function on T'. For
(IS f%,
DgP(‘U) =3 Z Czljk(g)Bizjk(v) + [Dgclll(v)]Bfu(‘U)a (3.5)
i+ )+ k=2
where c}jk are defined by (2.4), and

Dyci1r(v) = Zongb,,(g)%:j. (3.6)

=1 v=1
Moreover, for points v on the edge e;, we have D,P(v) = Dyps, where py is the
ordinary SBB-polynomial whose boundary coefficients are the same as those of P,
and whose interior coefficient is ay.
Proof: We first examine D P(v) for v € T Applying D, to (3.1) and using the
chain rule, we immediately get (3.5). Using the chain rule again, we have

_ v de(v)
Dgcul(v) = Z aTl)gb,,. (37)
v=1 v
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It was shown in [2] that Db, = b,(g) for v = 1,2,3, and (3.6) follows. Now
hypothesis H5) implies D, P is continuous on T

As v approaches a point v* on the boundary, (3.5) and (3.3) imply that D, P(v)
approaches Q(v*), where

Qv) =3 Z Czljk(g)Bzzjk('U)'
i+t k=2
Note that in (3.5) and in this formula for Q(v), the coefficient c},;(¢) also depends

on v. Clearly @ is a continuous function on 07
We now examine the derivative D, P on the boundary. Clearly, at the vertices

of T

DyP(v1) = 6%00(9)7 Dy P(vy) = C(1)20(9)7 DyP(v3) = C(lJoz(g)- (3.8)

Hypothesis H3) implies ¢}, (v) = ay for all v in the interior of the edge e,. Thus, for
such v, Q(v) reduces to the derivative at v of the ordinary SBB-polynomial whose
boundary coefficients are the same as those of P, and whose interior coefficient is

ae. 1

4. A Hermite Interpolation Method

In this section we show how to use the hybrid patch introduced in the previous

section to solve a Hermite version of the original interpolation problem (1.1), where

we now specify derivative information at each data point v;. Suppose that for each
1.2

i =1,...,n, g} and g7 are noncollinear vectors, and that (z],z?) are given real

numbers. Then we seek a function s such that
s(vi) =fi,

Dggs('vi) =z, (4.1)

Dg§8(‘0i) e

7

for: =1,...,n. We propose the following algorithm for solving this interpolation
problem:
Algorithm 4.1.

1) find a triangulation A = {Tj}évzl of S with vertices at the data points {v;}"_,,

2) for each triangle T = (Vp, , Uy, Umg) in A, choose the boundary coefficients of

a cubic hybrid SBB-patch Pr so that for j =1,2,3,

PT('Umj ) :fmj
Dg} Pr(vm; ) =z!

mj

D2 Pr(vm;) =2,

J m]‘7
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3) for each triangle T choose the three additional parameters ai ,al, al defining

Pr to make the following global function C' continuous on S:

PTl(‘U), v e Ty
s(v) =74 - (4.2)

PTN(‘U), v € Ty.

Given a prescribed set of data points {v;}7_; on the sphere, there are many
possible triangulations using these points as vertices. One reasonable choice would
be the Delaunay triangulation which can be computed using the code of Renka [9].

Step 2) can be carried out using Lemma 2.1. Indeed, given the values for
Dg15(v;) and Dy s(v;), we can compute all of the derivatives needed in the lemma
to get the boundary coefficients of Pr. We now discuss how to do step 3).

4.1. Computing the Interior Coefficients

In this section we present three methods for computing the parameters defining
the interior coeflicients of the interpolating hybrid patches. The goal is to choose
these coefficients so that the overall interpolant (4.2) is C'. We consider only
local methods, where the choice of the parameters for a patch Pr depends only on
information in the triangle 7' (or at most in a neighboring triangle). It suffices to
explain how to compute one parameter, as the others can be done in a similar way.

The first method is based on setting a cross-boundary derivative at the center
of each edge of the triangulation.

Method 1.

Given a triangle T' = (vy, vg, v3), let w be the midpoint of the edge e := (va,v3),
and let ¢ = v3 X vy. This is a vector perpendicular to the plane spanned by vy and
vz, and defines a cross derivative D, along e. Given a prescribed real number z,,,
by (3.5) we can make D,P(w) = 2z, by choosing

Zw /3 =Bgao(w)[bi(g)c120 + ba(g)coso + bs(g)coz1]
+ Bgn('w)[bl (9)ar + ba(g)cozn + bs(g)co2]
+ Bgoz[bl (g9)c102 + b2(g)co12 + b3(g)coos]-

Since b1(g) and B3,;(w) are both nonzero, this equation uniquely determines «;.

It is easy to see that this construction leads to patches which join together
to form a C' surface on all of S. Indeed, for v € e, DyP(v) = ¢jy0Baao(v) +
511 B311(v) 4 g2 Bigz(v), which is uniquely determined by the values of D,P(vs),
DyP(w), and DyP(vs).

This method requires a value for z,, = D, f(w). In practice it may be necessary
to estimate this quantity, see Sect. 6. Alternatively, a; can be determined by forcing
the cross-boundary derivative to be linear, see Remark 8.2.
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Fig. 1. A pair of neighboring triangles.

Method II.

For completeness, we now discuss a method suggested in the planar case by
Foley & Opitz [6], although since it fails for certain triangulations (which are hard
to identify in advance), we do not recommend using it in practice. It involves
working on a pair of neighboring triangles. Suppose T and T are two adjoining
triangles as shown in Fig. 1. Let P and P be the associated hybrid patches. We
denote their boundary coefficients by ¢;jx and &k, respectively. For a C° join, we
must have 6030 = €030, 5021 = €Cp21, 6012 = Cp12; and 6003 = Cp03- We now show how
to compute the parameters «a; and &; for these two patches.

Suppose

v =1v; + Svg + tvs

U1 Ifﬁl + g’l)z + E’Ug.
Let p and p be the ordinary SBB-polynomials with the same boundary coefficients
as P and P, and with interior coefficients a; and é;, respectively. Then as shown
in [2], the following two conditions are necessary for a C? join between the two

patches p and p:

Ly = — &0 + r?ea10 4 2rscizo + 2rtag + s%coz0 + 2stegar + ticorz = 0,

Ly 1= — Ey01 + r2co01 + 2rsaq + 2rteion + s2coa1 + 25tcorz + t2cooz = 0.

(4.3)

We now add these equations together, and if the resulting coefficient r(s +¢) of ay

is nonzero, solve to get

a1 =[(€210 + €201) — 7“2(0210 + ¢201) — 82(0030 + ¢o21) — t2(6012 + ¢o03)

(4.4)
— 28t(€021 + 6012) — 2T8€120 — 27‘t6102]/2’f’(3 + t)



A similar computation with the other two C? conditions

L3 := — co10 + 710 + 2F5¢120 + 27ty + %30 + 25tcoay + t2corn = 0, (4.5)
Ly := — co01 + 7 E01 + 275G + 27té102 + %21 + 25tco1n + t2cooz = 0, '
yields
a1 =[(e210 + c201) — fz(ézlo + é201) — 52(0030 + ¢o21) — {2(6012 + ¢o03) (4.6)

— 25%(6021 —|— 6012) — 27:56120 — 2?5&102]/2%(5 —|— {)

This method for computing o and é&; can only be applied when the factors
r(s+1t)and 7(3 + t~) are nonzero. It is easy to see that for all configurations of the
triangles 7" and T, r < 0 and 7 < 0. However (in contrast to the planar case), s +1
and 3 4+t can be zero for certain configurations. This happens, for example, when
the points vy and vy are antipodal.

We now show that if a; and & can be computed by the above formulae, then
the two patches automatically join together with C'! continuity across their common

edge (va,v3).

Theorem 4.2. Suppose P and P are two cubic hybrid SBB-patches on adjoin-
ing triangles with coefficients determined as above. Then P and P join with C!
continuity across the common edge (v, v3).

Proof: It is easy to check that
F=1/r, §=—s/r, t=—t/r. (4.7)

As shown in [2], there are three C'! conditions to establish:

My 1= — €120 + rci20 + sco30 + tep21 =0
My := —ay + rag + sco21 + tegi2 =0
Ms := — €192 + rcio2 + sco12 + tegos = 0.

By the choice of the boundary coefficients, the first and third conditions are auto-
matically satisfied. Inserting (4.4) and (4.6) in M> and using (4.7) along with the
fact that M; = M3 = 0, it is easy to check that M; =0. W

Method III.

In Method II we have solved for the parameters a; and &; by combining certain
C? continuity conditions. However, in general, none of these four C? conditions will
actually be satisfied. This suggests that we try to make them be satisfied in a least-
squares sense, subject to side conditions which insure that the two adjacent patches
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P and P are C! continuous across their common edge. We consider the following
problem:

4
minimize Z L?, subject to My = 0.
=1
This is a standard constrained least squares problem, and can be solved for example

by introducing a Lagrange multiplier A to reduce it to a 3 x 3 linear system for ay,

Gy, and the A\. We get
8T2(82 —|— tz)Oél —|— T/\ :4T't[6210 - 7'26210 - 27‘36120 - S2C030 - 2StC021 - t2C012]
~ 2 ¢ 2 ¢ 2
+ 4rs[éoo1 — rocg01 — 2rteion — 8 co21 — 2stcora — tcoo3)
~2 ¢ ~2 72\ ~ ~7 ~2 ~ B ~2 a~7 72
&7 (S —|—t )011 - A :4T't[6210 — T C210 — ZT‘SClQO — S Co30 — ZStC()Ql —t C012]
475[ca0n — P01 — 27102 — Peom — 2teors —
+ 7“8[6201 r C201 ritCro2 — S Co21 S1Cp12 C003]
rap — g = — SCp21 — tC()lQ.

The determinant of this system is

—8r8(s? + t?)

—8r2[i? (5% + %) + (s + 17)] = T+

Since r < 0, this determinant can only be zero if s = ¢ = 0. This happens if and
only if v and vy are antipodal.

4.2. Choice of the Blending Functions A,

There is a a fair amount of leeway in selecting blending functions A, satisfying
properties H1) — H5) of Sect. 3. Here we discuss a choice which has been used in
the planar case [6, 7]. We give only the definition of A; as the definitions of A; and
Aj are similar and are obtained by simply shifting indices.

Example 4.3. Let m be a positive integer, and let
07 v = v, Vv2,V3,

Ai(v) = by' b3"
BT+ bIBT 4 by

otherwise.

Discussion: For v not at a vertex of T,

OA;  —mb T b (b7 + bY)

b, D2 ’
A1 mbPby T bEm
by D2 ’

A1 mbPbimey !

0bs D? ’
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where D = b*b5* + b7'b5" 4 b7"b5*. It is now easy to check that all of the properties
H1) — H5) hold. In particular, 0 < A;(v) <1lforallve 7. A

This type of blending function was used in the planar case by Foley & Opitz
[6] with m = 1, and by Goodman & Said [7] with m = 2. These kinds of rational
functions have also been used to construct certain bubble functions for use in the
finite-element method, see [1, §].

4.3. Properties of the Hybrid Interpolant

Before giving some numerical experiments to illustrate the performance of our hy-
brid interpolation method, we make some general remarks about its properties, and
compare it to the Clough-Tocher macro element method discussed in [4].

Storage: To store a hybrid interpolant, we have to store one coefficient for each
vertex of the triangulation, 2 coefficients for each edge, and 3 coeflicients for each
triangle. Assuming there are V vertices and using the formula £ = 3V — 6 for the
number of edges and N = 2V — 4 for the number of triangles, we see that the total
storage is 13V — 24. Referring to Table 1 of [4], we see that this is less than one-half
the amount required for the Clough-Tocher method.

Evaluation: To evaluate a hybrid interpolant at a vertex of a triangle 7', we simply
use the formulae (3.4). To evaluate it at any other point v in T, we first compute
the value of ¢111(v), and then use the de Casteljau algorithm [2]. For the kinds
of weight functions suggested in Sect. 4.2, computing ¢q11(v) involves only a few
operations. Thus, the total cost of a hybrid evaluation is essentially the same as an
evaluation of a Clough-Tocher interpolant, since the latter also requires testing to
find which of the three subtriangles of T' contains v.

Precision: It was shown in [4] that the Clough-Tocher method gives exact results
when applied to data taken from a cubic SBB-polynomial. The following theorem
shows that if the parameters of our hybrid interpolant are chosen by any of the
methods in Sect. 4.1, then it is also exact for cubic SBB-polynomials.

Theorem 4.4. Suppose f is a cubic SBB-polynomial, and that s is the piecewise
hybrid cubic patch which interpolates f and its derivatives at the vertices of a

triangulation A, where the interior Bézier coefficients are computed by any of the
methods in Sect. 4.1. Then s = f.

Proof: Fix a triangle 7" in the triangulation A, and suppose we write f in the form
(2.1). Consider the interpolating patch Pr associated with a triangle 7. In view of
Lemma 2.1, the boundary coefficients of Py must agree with those of f. Moreover,
it is easy to check that for all three methods the three parameters definining ¢1,,(v)
are equal to the interior coefficient ¢111 of f. Now in view of our hypothesis H2) on
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the weight functions, it follows that cf},(v) = ¢11; for all v € f%, and so Pr = f on
7. N

5. Numerical Results with Exact Derivatives

We have conducted a number of experiments to compare the hybrid method with
the methods discussed in [4], using the same setup as used there. In particular, we
suppose that exact data is taken from the test function

flz,y,2) =1+ 2% + 2V 4 2% 4 10zyz (5.1)

at the vertices of the sequence of regular triangulations Ay, ..., A7 used in [4]. Ay
has 6 vertices, one at each of the intersections of the z, y, and z axes with the unit
sphere. For each ¢ > 2, A, is obtained from A,;_; by subdividing each triangle in
Ay¢_7 into four subtriangles. These triangulations have 6, 18, 66, 258, 1026, 4098,
and 16386 vertices, respectively.

To show the performance of the hybrid method, we compute the maximum rel-
ative error between the hybrid interpolant and the true function on certain discrete
sets of points on the sphere. In particular, when working with Ay, the error is mea-
sured on the discrete grid V; defined in [4]. Each such grid contains approximately
1 million points. All computations were done in double precision.

Table 1 shows the results obtained using Methods I — III to compute interior
coefficients, and the blending functions given in Example 4.3 with m = 1. For
comparison purposes, the last column shows the errors obtained with the Clough-
Tocher interpolant described in [4]. The NC in the row corresponding to Ay stands
for “not computable”. It occurs because for the triangulation Ay, for some pairs of
triangles the vertices vy and v of Fig. 1 are antipodal, and as discussed in Sect. 4.1,
Methods II and III cannot be used in this case.

Method 1 Method 11 Method II1 CT Method
AN 1.06 (-1) NC NC 1.06 (-1)
Ay 4.39 (-2) 7.05 (-2) 7.05 (-2) 442 (-2)
A3z 1.05 (-2) 1.05 (-2) 1.05 (-2) 1.05 (-2)
Ay 1.07 (-3) 1.07 (-3) 1.07 (-3) 1.07 (-3)
Ajx 7.62 (-5) 7.62 (-5) 7.62 (-5) 7.62 (-5)
Ag 4.89 (-6) 4.89 (-6) 4.89 (-6) 489 (-6)
Ar 3.03 (-7) 3.03 (-7) 3.03 (-7) 3.03 (-7)

Table 1. Error for Hybrid and CT Methods.
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Except for Ay (which has only 18 vertices), the errors for all three hybrid meth-
ods are almost exactly the same as those for the Clough-Tocher method. We also
tried other triangulations and other test functions, and in all cases got comparable
results for the three methods and the Clough-Tocher method.

To explore the effect of choosing different values of m in the blending functions
(4.8), we repeated the above computations with m = 2,5,50,10000. We found that
there is not much difference in the results.

6. Estimating Derivatives

In the original interpolation problem (1.1) we are given only function values at
scattered data points. But the hybrid method requires three pieces of information
at each data point: a value, and two directional derivatives. Moreover, if we use
Method I to compute the interior coefficients, we also need cross-boundary infor-
mation at the center of each edge. Thus, to construct a hybrid interpolant, we first
have to estimate the missing derivative information.

6.1. A Derivative Estimation Algorithm
In this subsection we consider the following problem:

Let f be a smooth function defined on the sphere S and let v* € S. Given
a vector ¢, find an estimate for the directional derivative D, f(v*) based
on the values of f at points W := {w,}_, on S.

This is the usual numerical differentiation problem, except that here it is posed on
the sphere. The standard approach is to use the data to construct an approximation
p to f, and then use Dyp(v*) as an estimate of D, f(v*). Since we are working on
the sphere, it is natural to choose an SBB-polynomial for the approximant. We are
led to the following algorithm.

Algorithm 6.1.

1) choose a triangle T, and let {Bfljk}i-|—j+k:d be the associated spherical Bern-
stein basis polynomials,

2) find ¢;jk, so that
p(v) = Y cipBi(v)
i+jtk=d

minimizes
N

Z[p(wu) - f(wu)]zv

v=1

3) compute Dyp(v*) as an estimate of D, f(v*).
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Step 2) involves solving a standard discrete least squares problem, and reduces to
solving a linear system for the coefficients ¢;;;. In Step 3) we use the formula (3.5)
to compute Dyp(v*).

6.2. Choice of T

Theoretically, in Step 1) of Algorithm 6.1 it doesn’t matter which triangle we choose
to define the Bernstein basis functions B;ijk' However, in practice the choice of T
does have a considerable effect on the condition of the system of equations for the
cijk, and on the accuracy of the estimate. To illustrate the effect of varying the size
and location of T', we present some numerical results using cubic SBB-polynomials
(d = 3) to estimate the derivative D, f(v*) for the function f = = + y + z, where
v* =(1,0,0) and ¢ = (0,0,1). We choose the data set W to consist of 15 random
data points with spherical coordinates (6, ¢) in the interval [—10°,10°].

Table 2 shows the effect of varying the size of T. The quantity [ in the table
controls the size of the triangle T' = (v1,v2,vs) on which the basis functions are
defined. For each , T' is a symmetric triangle centered about v*, such that the
angles between the v* and the vectors v; are equal to 3, measured in degrees. The
first vertex of T' is located at the point with spherical coordinates (3,0). The
second column of the table gives the condition numbers of the corresponding linear
systems. The third column of the table lists the errors | D, f(v*) — Dyp(v*)].

Table 3 illlustrates the effect of varying the location of T. Each row in the
table corresponds to using the same triangle used in the third row of Table 2,
but translated so that its center lies at the point with spherical coordinates (v, 0)
instead of at the point v* with spherical coordinates (0,0). As in Table 2, we list the
condition numbers of the corresponding linear systems, and the errors |Dg,f(v*) —
Dyp(v*)|.

Since the function f = z 4+ y + z is itself a cubic, with 15 data points the least
squares SBB-polynomial should fit exactly, and we should get an exact estimate for
the derivative. Thus, the errors shown in the two tables are due solely to numerical
errors arising in setting up and solving the least squares problem. The tables clearly
show that both the condition number and accuracy are affected by the size of 3
and ~. Triangles which are too small, too large, or too far way from the data set
result in higher condition numbers and loss of accuracy.

In this section we have illustrated the effect of varying the size and location
of T. However, for a given set W of data, both the condition number and error
also depend on the shape and orientation of T. Thus, in general, finding the best
possible T' would be computationally very expensive.

6.3. Automatic Selection of T

For practical applications, it is important to have an automatic process for selecting
a good triangle T'. Our numerical experience suggests that it is best to choose T'
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17 Condition | Error

1 6.9 (5) 3.3 (-10)
5 54 (2) 1.3 (-14)
10 | 3.1 (3) 1.0 (-13)
20 | 3.2 (5) 7.9 (-13)
40 | 5.4 (7) 1.2 (-11)

Table 2. Effect of Triangle Size on Derivative Estimation.

¥ Condition | Error

0 3.1 (3) 1.0 (-13)
5 5.6 (4) 5.4 (-13)
10 | 3.6 (6) 4.9 (-12)
20 | 1.3 (9) 2.1 (-10)
45 | 2.5 (12) 6.2 (-8)
90 | 1.0 (14) 1.1 (-6)

Table 3. Effect of Triangle Location on Derivative Estimation.

just large enough to contain most of the data points in W. We propose the following
procedure:

1) compute the unit vector v, = w./||w.||, where w, = (w1 + -+ + wn).

2) choose T to be a symmetric triangle centered at v. which is as small as possible
so that the inscribed disk contains all of the points in W.

For the data in Table 2, this procedure leads to a triangle T = (vy,v3,v3)
such that the angles between v, and the v; are all equal to 13°. The corresponding
condition number is 3.3 (3) and the associated error is 9.8 (-14). These numbers
compare quite favorably with the choice f = 5 which gave the best error in the
table.

6.4. Performance of Numerical Differentiation

The overall performance of the numerical differentiation procedure depends on the
smoothness of f, the number of data points in W, how close they are to the point
v* of interest, and how they are distributed in a disk around v*.

To get some feeling for how well numerical differentiation performs in a typical
situation, we computed estimates for the derivative D, f(v*) of the function f
defined in (5.1) and compared them with the true values. The basis triangles were
computed using the automatic method of the previous section.

Table 4 shows the results for v* = (1,0,0) and ¢ = (0,0,1). It is based on
a collection of data sets Wy g with & = 12,15,30 and 8 = 1,5,10, 20,40, where
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the set W} g contains k random points whose polar coordinates (6, ¢) in degrees
lie in the interval [—f3, 5]. For each choice of k and 3, the table lists the error

|Dgf(v*) - Dgp(v*)|-

I} 12 data 15 data 30 data
1 1.410 (-6) | 6.493 (-7) | 8.809 (-7)
5 | 1.751 (-5) | 8.047 (-5) 1.096 (-4)
10 | 1.373(-3) | 6.289 (-4) | 8.639 (-4)
20 | 1.014 (-2) | 4.504 (-3) | 6.525 (-3)
40 | 5.892(-2) | 2.289 (-2) | 4.255 (-2)

Table 4. Effect of Size and Spread of Data Sets.

As expected, for all choices the k, the error increases monotonically as we
increase the spread of the data points. However, the behavior as we varied k is a
little unexpected. In most cases k = 15 gave better results than k£ = 12, but also
better results than & = 30. We observed the same behavior in tests on a number

of other functions.

6.5. Application to Hybrid Interpolation

We return now to the problem of solving the interpolation problem (1.1) using the
hybrid interpolation method based on a triangulation A with vertices at the data
points V := {v;}"_ ;. As pointed out above, to construct the hybrid interpolant,
we need to estimate two derivatives at each vertex (and if Method I is used to
compute interior coefficients, also one derivative at the center of each edge of the
triangulation).

Suppose v* is the point where we need to estimate a derivative corresponding
to the direction ¢g. Since we are working with cubic SBB-polynomials, it is natural
to use a cubic SBB-polynomial to compute the estimated derivative Dy f(v*). Since
p has 10 coefficients, in order to apply Algorithm 6.1, we have to choose a set W«
of at least 10 data points near v*. Assuming that we do not have additional data

at our disposal, we have to choose these points from V.

The simplest way to choose W« is to take the N points in V' which are closest
to v*, based on their geodesic distances from v*. However, generally we will get
better estimates if the points are somewhat uniformly distributed around v*. As
in the planar case, it is possible to design algorithms to achieve this by looking at

more than N points in choosing W« .
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7. Numerical Results with Estimated Derivatives

To illustrate the effect of using estimated derivatives, we reran the experiments of
Sect. 5 for the same function (5.1), using Method I for calculating interior coeffi-
cients. This time, however, we do not use exact derivatives, but instead compute
estimates by the method of Sect. 6, using the triangle constructed by the automatic
procedure described there.

Table 5 shows the results for the hybrid interpolant based on the triangulations
Az, Ay, As. For each Ay, the needed derivatives were estimated based on values of
f at the vertices of Ay itself, using only the 15 closest points for each estimate. The
columns marked E.,, Fy, E; give the relative errors measured by E]f = ef;/HfHoo,

where , , ,
€Co *— IIlVaX |f(7]1/) - 5(771/)|

el — (E]f:l[f(nf) - s(nf)]2>1/2
2 N
et = 3 1f(nl) = s(b)I/N,

1

v

and V; = {nf}, are the sets of N = 1,048,578 points on the sphere defined in
[4]. The column marked Exact gives the values of E, when exact derivatives are
used. We see that in all cases, the errors with estimated derivatives are only a few

times larger than with exact derivative data.

Exact F FEy Fy

Az 1.049 (-2) 3.112 (-2) 6.018 (-3) 4.023 (-3)
Ay 1.073 (-3) 3.057 (-3) 3.649 (-4) 2.306 (-4)
Asx 7.631 (-5) 1.831 (-4) 1.651 (-5) 1.041 (-5)

Table 5. Effect of Estimated Derivatives on Hybrid Interpolation.

In some applications we may have a large set of data points U, but we want to
construct an interpolant based on a triangulation with fewer vertices. In this case
we can select a subset V of U to use as vertices for the triangulation A on which the
hybrid interpolant is based, but continue to use all of the points of U in estimating
derivatives. To get an idea of how this works, we again consider interpolating the
function f in (5.1). We choose V' to be the set of 66 vertices of the triangulation A
in Sect. 5. To see what happens when more data is available to estimate derivatives,
we constructed sets U,, from V by adding an addition n — 66 data points, chosen
randomly on the sphere. Table 6 shows the results for n = 66,100,150,200. For
comparison purposes, we also list the errors obtained using exact derivatives in the

row labelled n = oo.
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n Eoo E2 E1

66 3112 (-2) | 6.018 (-3) | 4.023(-3)
100 2.078 (-2) | 4.498 (-3) | 3.390 (-3)
150 2.570 (-2) | 3.708 (-3) | 2.421 (-3)
200 2.446 (-2) | 2.966 (-3) | 1.852 (-3)

o 1.049 (-2) | 1.533(-3) | 9.853 (-4)

Table 6. Error for the hybrid interpolant on Aj using n data points.

As the table shows, the relative maximum error using estimated derivatives is
only a few times worse than the relative maximum error using exact derivatives. It
also shows that using more data points to estimate derivatives does not necessarily
improve E.,, but both E; and E5, which measure average error, do decrease as n

Increases.

8. Remarks
Remark 8.1. A surface S in IR?® of the form
S:={o(v):=pv)v : veES}

where p is a continuous, positive, real-valued function defined on the unit sphere
S is called a sphere-like surface. The entire Bernstein-Bézier theory developed in
[2, 3, 4] applies to general sphere-like surfaces, and thus our hybrid method also
extends immediately to such surfaces.

Remark 8.2. In the planar case, Goodman & Said [7] suggested a scheme similar to
our Method I for choosing the parameters defining the interior coefficients ¢111. In
particular, to determine the parameter a associated with a triangle T' = (vy, vg, v3),
they forced the cross-boundary derivative along the edge (v2,vs) to be a linear
polynomial rather than a quadratic one. This approach eliminates the need to
provide a value for the cross-boundary derivative at the center of the edge, and
also works in the spherical case. However, as pointed out in [6], piecewise cubic
surfaces whose cross-boundary derivatives are only linear are visibly less smooth
than those without the restriction. In practice we have to compute estimates for
derivatives at the vertices, and so it is no additional burden to also compute them
at the midpoints of edges.

Remark 8.3. The blending idea presented here can also be used to create a C*
quintic hybrid patch as was done in the planar case in Chang & Said [5]. Now we
take

P(v)= > cipBij(v), (8.1)

i+j+k=5
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with
3

cijk = cijr(v) = cijreAe(bi, b, bs), (8.2)
=1

for (¢,5,k) € C := {(2,2,1),(2,1,2),(1,2,2)}. The blending functions Ay can be
chosen as in Example 4.3, but here we need m > 2 to insure C? continuity between
adjoining patches. In this case we can use derivative information up to order 2 at
each vertex to determine all coefficients of the patch except for those with subscripts
in C. For each ¢ = 1,2,3, the three coeflicients ¢;jx ¢ with (¢,7,k) € C can be
determined from the value of the perpendicular cross derivative at a point in the
interior of the edge e, and the values of the second order perpendicular cross

derivative at two other points in the interior of the edge e;. This is the analog of
our Method I above.
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