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Abstract. We describe two methods which can be used to interpo-
late function values at a set of given points in a volumetric domain

using quadratic and cubic trivariate splines which are C' smooth.
The methods start with a tetrahedral partition of the data points,
and use well-known refinement methods to create finer partitions on
which the spline spaces are built. The construction of the interpolating
splines requires some additional function values at selected points in
the domain, but no derivatives are needed at any points in the three-
dimensional space. Both interpolation methods are local and stable,
and provide approximation order three for smooth functions.

§1. Introduction

Given a set of points V := {n;}_; in IR3, our aim in this paper is to
provide a constructive method for solving the following problem.

Problem 1. Find a tetrahedral partition whose set of vertices includes
V, an N-dimensional space S of C! splines defined on this partition, and
a set of additional points {n;} N 41 such that for every choice of the data
{2}V |, there is a unique spline s € S satisfying

s(ni) = 2, i=1,...,N. (1)

We call P := {n;}¥., and S a Lagrange interpolation pair, and refer to s as
a Lagrange interpolating spline.
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We emphasize that the spline s solving Problem 1 must be uniquely
determined from function values only, in contrast to most known trivari-
ate spline interpolation methods which make use of derivative information.
Constructing Lagrange interpolation pairs is a complicated problem, es-
pecially since we want a method which

1) is local in the sense that the value of s at a given point 7 is only
influenced by the data values z; at points n; which are near 7,

2) is stable in the sense that small changes in the data z; will result in a
small change in s,

3) has linear complexity in the sense that given n data points and an initial
tetrahedral partition of them, the number of operations required to
complete the solution of the problem should be O(n),

4) yields optimal approximation order in the sense that if z; = f(n;) for
some smooth function f, then the interpolant approximates f to the
same order as the best approximation of f from S.

To reach these goals, both § and P must be carefully chosen. The
only result we have found in the literature [21] deals with the special case
where the points of V lie at the corners of a collection of boxes in R3.
The method makes use of C! quintic splines. Our aim here is to solve
the problem for a general set V. We give two solutions, one based on
C' cubic splines, and the other on C! quadratic splines. Starting with a
given tetrahedral partition A of the points V, both methods approximate
smooth functions to order three, which is optimal for quadratic splines,
but one order less than optimal for cubic splines. Both methods also
make use of a certain priority list of the tetrahedra in A for organizing
the additional points in P. Our construction is based on the following
steps:

1) choose an initial tetrahedral partition A with vertices at the points
of V,

2) refine A by splitting each of the tetrahedra of A into subtetrahedra,

3) define an appropriate C spline space S over the refined tetrahedral
partition,

4) use a priority list of the tetrahedra in A to insert additional interpo-
lation points on the edges of the tetrahedra in A to create the point
set P.

The paper is organized as follows. In Section 2 we introduce some
notation and describe the Bernstein-Bézier representation of splines. In
Section 3 we discuss a key algorithm for classifying tetrahedra which also
establishes a priority list for later processing the tetrahedra to create a
local interpolant. The main results of the paper are contained in Sections 4
and 5, where we introduce the Lagrange interpolating pairs, and show
that the corresponding interpolation processes are stable and local. Error
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bounds for the methods are given in Section 6, and we conclude the paper
with several remarks in Section 7.

§2. Preliminaries

Suppose A is a finite set of closed tetrahedra in IR® whose union is a
connected set 2. Then we call A a regular tetrahedral partition A of
provided any pair of tetrahedra intersect only at a common vertex, along
a common edge, or along a common triangular face, Given A and an
integer 1 < d, we write

Si(N):={s€CHQ): s|p € Py, al T € A}

d+3)

for the space of C' polynomial splines of degree d, where P, is the ( 3

dimensional space of trivariate polynomials of degree d.
Given a (non-degenerate) tetrahedron T' = (vq, v2,v3,v4) in A with
vertices vy, vg, U3, V4, let

Dd,T = {§£k£ = (7:’01 +j’U2 + k’U3 + E’U4)/d}i+j+k+e:d

be the associated set of domain points. We write Dy o for the union
of the sets Dy over all T € A. Given an integer 0 < m < d, let
RT (vy) := {§£ke : i =d—m}, DI (v)) := {§£k€ : 1 >d—m}, and
associated with the edge e := (vs,vs), let EJ(e) := {5, + 4,5 < m}.
We call R,,(v1) :== J{RZL (v1) : T has a vertex at v} the shell of radius
m around vy, and D,,(v1) := J{DZI (v1) : T has a vertex at vy} the ball
of radius m around v;. The analogous sets associated with other vertices
and edges are defined similarly.

Throughout the paper we make use of the well-known Bernstein-Bézier
representation of trivariate splines: for every spline s in S} (A),

sl; = D cijre B, (2)
itj+htb=d

where ijke = % A’iAgA’;)\ﬁ, t+j+k+£=d, are the Bernstein basis
polynomials of degree d associated with T'. Here, A\, € P1, v =1,...,4, are
the barycentric coordinates associated with 7. It is well known that each
continuous spline on A of degree d is uniquely determined by its corre-
sponding set of B-coefficients {c¢}¢ep, ,- To describe smoothness condi-
tions for splines, suppose that T := (v1, ve, v3,v4) and T := (v1,va, V3, Us)
are two adjoining tetrahedra from A which share the oriented triangular
face F := (vy,vy,vs) (i.e. T and T are neighboring tetrahedra), and let s|7
be given as in (2) and

~ Bd
sl = E : Cijke Bijre, (3)
i+j+k+e=d
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where E‘fj . are the Bernstein basis polynomials of degree d associated with
the tetrahedron T. Then, the C' smoothness of s across F' is equivalent
to cijro = éijk:()a 1+7+k=d, and

Cijk1 = A1(s) Cit1,5.k,0 + A2(s) Gijt1k,0F (4)

A3(Vs) Cijkt1,0 + Aa(Vs) Gijik1s

where i + j + k = d — 1. The smoothness condition (4) can be used to
calculate the B-coefficient on the left provided the B-coefficients on the
right are given, and clearly this calculation is stable since the weights
{\.(vs5)}2_; depend only on the smallest angle in {T,T'}.

As usual, we define star®(T") := T, and for £ > 1, define star®(T) to
be the union of the set of all tetrahedra from A which touch a tetrahedra
in star*~(T). (Two tetrahedra from A are said to touch each other, if
they have at least one common vertex.)

We recall that a subset M of Dy A is a determining set for a spline
space S C 8Y(A) provided that setting the B-coefficients {c¢ }eers of s € S
determines all other B-coefficients. It is called a minimal determining set
(MDS) provided that there is no smaller determining set. It is well known
that M is a minimal determining set for S if and only if setting the B-
coefficient {c¢}eem uniquely determines all B-coefficients of s € S. A
MDS M is called ¢-local provided that there exists an integer £ such that
for every tetrahedron T := (v, v, v3, v4) in A and every £ € TNDy A, the
B-coefficient c¢ of a spline in & can be computed from the B-coefficients
{en}nene, where Ae € M N starf(T'). The MDS M is said to be stable
provided that there exists a constant K depending only on the smallest
angle of A such that

el < K e ey, ©)

for all £ € Dy .

Finally, we say that an interpolation method based on a Lagrange
interpolation pair P and S is f-local provided there is an integer £ such
that for every for every tetrahedron T := (vq,vq,v3,v4) in A and every
§ € TN Dy, the B-coefficient c¢ of an interpolating spline in & can be
computed from the values {z,}ner, for some I'c C P Nstar’(T). The
interpolation method is called stable provided there exists a constant C
depending only on the smallest angle in A such that

<
cg| < Cmax|z,|, (6)

for all £ € Dy .

For convenience, we say that the computation of the B-coefficients
of a spline in § is a /-local and stable process whenever M is a ¢-local
stable MDS for S, or the coefficients are computed from an interpolation
method based on a Lagrange interpolation pair P and & which is ¢-local
and stable.
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§3. Classifying Tetrahedral Partitions

The key to our construction of Lagrange interpolating pairs giving a local
and stable solution to Problem 1 is the following algorithm for separating
the tetrahedra of a given tetrahedral partition A into classes Ty,..., 74.
The algorithm also creates an ordering 11, ..., Ty, of the tetrahedra of A.

Algorithm 2.
1) Let all vertices of A be unmarked,

2) for i =0 to 3:
Repeat until no longer possible: choose a tetrahedron T such
that exactly ¢ of its vertices are marked. Put T in T;, and mark
the remaining vertices of T,

3) put all remaining tetrahedra in Ty.

Algorithm 2 defines an ordering T7,...,T,, of the tetrahedra, where
the tetrahedra are listed in the order depending on the number of marked
vertices of A. The algorithm is easy to program, and is efficient enough
to decompose large tetrahedral partitions on a standard PC. Note that for
a given tetrahedral partition, there may be many choices at each step, so
obviously the decomposition is not unique.

The next lemma establishes some simple properties of the decompo-
sition obtained from the above algorithm. These properties will be used
to prove the locality of the spline interpolation methods described below.

Lemma 3. Suppose Ty,...,74 are the classes of tetrahedra created by
Algorithm 2. Then

1) no two tetrahedra in the class Ty can touch each other,

2) if two tetrahedra in the same class T; touch at a vertex v, then they
must also touch a tetrahedra in one of the classes T; with 0 < j <
min(3,7 — 1) at the same vertex v.

Proof: The first assertion is obvious. To establish 2), first note that after
marking the vertices of tetrahedra in classes 7y, ..., 73, all vertices of A
are marked. This establishes the claim for : = 4. Now suppose two or more
tetrahedra in 77 touch at a vertex v, and let T, T be the first two marked
by Algorithm 2. If v is not a vertex of some tetrahedra in 7y, then before
v was marked, T would not have touched any marked tetrahedra, and so
would have been put in class 7y, since all its vertices would have been
unmarked. A similar argument shows that 2) also holds for the classes 7
and 73. O
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Fig. 1. The Worsey-Farin split subdivides a tetrahedron T into twelve subtetra-
hedra by connecting a point v, from the interior of 7" with its vertices
as well as with a point v, in the interior of each triangular face of T'.

§4. C' Cubic Splines on Worsey-Farin Refinements

Given an arbitrary tetrahedral partition A, let A, be the tetrahedral
partition obtained as follows:

1) for each tetrahedron T' € A, choose a point v, in the interior of T,
and connect it to the four vertices of T,

2) for each triangular face F' of A\, choose a point v, in the interior of
F and connect it to the three vertices of F' and to the point v, for
each tetrahedron sharing the face F'

We call A, a generic Worsey-Farin refinement of A. However, for our
purposes, we cannot work with arbitrary generic Worsey-Farin refine-
ments. We say that a generic Worsey-Farin refinement A, is an ad-
missible Worsey-Farin refinement of A provided that if T and T are two
neighboring tetrahedra sharing a face F', then the split point v, lying in
the interior of F' lies on the line joining v, and v.. The Worsey-Farin
refinement for one tetrahedron is illustrated in Fig. 1, where v, is shown
(four times) as a black dot, while the four split points v, are shown as
grey dots.

In order to define the spline space of interest here, we need some
additional notation. For each edge e := (u,v) of A, let F! and F? be two
consecutive faces of A, which contain e. Let D.; be the directional
derivative associated with the vector (u, v}w) where v}w is the split point in
the face F}, and let D, 5 be the analogous derivative associated with face
F2.

For an admissible Worsey-Farin refinement A, of A, we define

S;(AWF) ={s€ S?}(AWF) : De,18le, De,28le € P,
for each edge e of A}.

Let n, and n, be the number of vertices and edges of A, respectively.
For each v € V, let T, be a tetrahedron in A, with vertex at v.

(7)
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vV, Vo
Fig. 2. Labelling of B-coefficients in the proof of Theorem 4.

Theorem 4. The dimension of S}(A,,,.) is4n,,, and M :=
is a 1-local stable minimal determining set.

veY D{U (U)
Proof: First we show that M is a determining set. Suppose s € S (A, ),
and set the B-coefficients of s to zero corresponding to all domain points
in M. This implies that s and its derivatives of order 1 must vanish at
all vertices of A. Now for each edge e := (u,v) of A, the fact that the
univariate linear polynomials g} := D, 1s|. and g2 := D, 2s|. vanish at
both u and v implies that they vanish everywhere on e. It follows from
[25] that s = 0. This shows that M is a determining set for S}(A,, ),
and dimS3 (A, ) < #M = 4n,,.

It was shown in [25] (see also [12]) that the dimension of S3(A, ) is
4n,, +2n,. Our space S3(A\,, ) is the subspace of splines s where gl and
g2 are linear polynomials for each edge e of A. We claim that enforcing
this condition requires exactly two linear constraints on the B-coefficients
of s for each edge e. To verify the claim, suppose the coefficients of s in
face F! are as in Fig. 2. Then for all 0 < ¢ < 1,

gi(t) = (1 —t)*(cq — c7) + 2t(1 — t)(c5 — cg) + t2(c6 — co)- (8)
This implies g} is linear if and only if

c4 —C7+cg— Ccg+ 2cC
s = ‘; CEE (9)

The condition for g2 to be linear is similar. We have now shown that
dimS}(A,, ) > 4n, + 2n, — 2n, = 4n,,, and combining this with the
upper bound established above, we conclude that dimS}(A,,,) = 4n,,.
This implies M is not just a determining set, but is in fact a minimal
determining set.
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We now show that M is stable and 1-local. Clearly, the B-coefficients
of s corresponding to domain points in the balls D;(v) can be computed
directly from B-coefficients in M N DT” (v) using smoothness conditions.
This is a stable local process. Now let T be a tetrahedron in A. We begin
by examining the computation of the B-coefficients of s corresponding to
the remaining domain points on R3(v,), i.e., on the faces of T. Let F' :=
(v1,va,v3) be such a face. Then referring to Fig. 2, we need to compute the
B-coefficients labelled ¢, ..., ce and bs, bs, ds. We first discuss coefficient
cs. Let e = (v1,v2). The requirement that D, 15|. and D 35| be linear
polynomials implies that D<,,1,,,F)s|e is also linear, where v, is the split
point of F. But then coefficient c5 can be computed directly from (9).
Clearly, this is a stable local process. The B-coeflicients b5 and ds can
be computed in a similar way. Now suppose that (A1, A2, Az) are the
barycentric coordinates of v, relative to F. Then ca = Ajcqy + Aacs +
Asbs, with similar formulae for the remaining B-coefficients associated
with domain points on F'.

Next we consider B-coefficients corresponding to domain points on
the shell Ry(v,). All of these B-coefficients can be stably computed from
B-coefficients on R3(v,.) using C! smoothness. Repeating this process,
we stably compute the B-coefficients corresponding to domain points on
R;(v,.), and finally the B-coefficient corresponding to the domain point

V. O
_ We are now ready to define a point set P3 to go with the space
SY(A,, ). Suppose that Ty,...,T,, is a the ordering of the tetrahedra

induced by Algorithm 2.

Algorithm 5.
1) Put all vertices of A in Ps,
2) fori=1,...,ng:
For each edge e := (u,v) of T;:
a) if neither u nor v are vertices of some tetrahedron T; with j < i,

put the points 24t and “£2¥ into Pj,

b) if u is a vertex of some tetrahedron T; with j < i but v is not,
put the point %2“ into Pis,

c) if v is a vertex of some tetrahedron T; with j < i but u is not,
put the point 2”% into Pj3.

The cardinality of Ps is 4n,,, where n, is the number of vertices of
A. We are now ready to prove the main result of this section, namely
that P3 and S}(A,,,) form a Lagrange interpolation pair. At the same
time we show that the corresponding interpolation method is 4-local and
stable as defined in Sect. 2.
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Theorem 6. Given any real numbers {z,}ncp,, there exists a unique
spline s € 83(A,, ) such that s(n) = z, for all n € P5. Moreover, the
computation of the B-coefficients of s is a 4-local and stable process.

Proof: Suppose we are given Z := {z,}pcp,. We begin by showing that
the B-coefficients of s associated with the points in the balls D;(v) are
uniquely determined by Z for all vertices v of A. We do this by considering
one tetrahedron at a time, where we go through the tetrahedra T, ..., T,
of A in the order defined by Algorithm 2.

Let 7o, ..., 74 be the classes of tetrahedra created by the algorithm.
We say that a vertex of A is a type-k vertex if it is a vertex of a tetrahedron
in 7, but not a vertex of any tetrahedron in 7; with 0 < j < k. Note
that every vertex of A must be of type 0, 1, 2 or 3.

We first consider the tetrahedron 7' := T; € 7Ty. According to
Algorithm 5, for each edge e := (u,v) of T, Ps; contains the points
u, 2utv ut2v 4 But since s reduces to a univariate polynomial on e,
it follows that the B-coefficients of s corresponding to the four domain
points on e are uniquely determined by interpolation at these points. This
is a stable computation since the matrix of the system depends only on
barycentric coordinates, and is the same for all edges. Similarly, s is
uniquely defined on the edges of each of the other tetrahedra in the class
To, since by Lemma 3, two different tetrahedra in class 7y cannot touch
each other.

Since s € Cl(v) for every vertex v of A, it follows that all of the
B-coefficients c¢ of s corresponding to domain points £ in the balls D (v)
are uniquely determined for all type-0 vertices v of A. If £ is one of
these domain points and lies in the tetrahedron T', then (6) holds with
I Cstar(T).

Now suppose we have completed the computation of c¢ for all do-
main points £ in the balls D (v), where v is a vertex of the tetrahedra
Ti,...,T;_1, and let T := T; € T;. Then by the definition of 77, there
must be a vertex u of T where T touches at least one of the tetrahedra
in {Ty,...,T;—1}, and does not touch any of these tetrahedra anywhere
else. Let T, be the first such tetrahedron, which by the ordering must
be in Ty U 7;. Statement 2 of Lemma 3 implies T,, € 7. Thus, u must
be a type-0 vertex, and the B-coefficients {c¢}¢c DT (u) are already known.

We emphasize here that T can touch other tetrahedra T in class 77 at
u, but even if it does, the B-coefficients of s corresponding to & € DT (u)

do not depend on those associated with domain points in DT (u) since u
is a type-0 vertex. If e = (v, w) is an edge of T' which does not have u
as an endpoint, then according to Algorithm 5, P3 contains the points
v, 2vw U204y For these edges of T, the above argument shows that
the B-coefficients of s associated with the domain points on e are uniquely
determined by interpolation at these points. We now consider edges of the
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form e = (u,v). Then Algorithm 5 shows that Ps contains the point %22,
and no other points in the interior of e. Now we already know three of the
B-coefficients of the univariate polynomial s|., and the fourth B-coefficient
can be computed from the interpolation condition at %2” This is easily
seen to be a stable computation. Similarly, s is uniquely defined on the
edges of each of the other tetrahedra in the class 7.

Since s € C(v) for every vertex v of A, it follows that all of the
B-coefficients ¢¢ of s corresponding to domain points & in the balls D (v)
are uniquely determined for all type-1 vertices v of A. If ¢ is one of these
points and lies in the tetrahedron T, then (6) holds with T'¢ C star?(T').

Now suppose we have completed the computation of c¢ for all the
domain points in the balls D;(v), where v is a vertex of the tetrahedra
T1,...,Ti 1, and let T := T; := (v1,v3,v3,v4) € T2. Then by the defini-
tion of 73, there must be two vertices, say v1, vy, where T touches some
tetrahedra T, and T,, in {Ti,...,T;—1}, and T does not touch these
tetrahedra anywhere else. We may suppose T, and T;, are the first such
tetrahedra. Then statement 2 of Lemma 3 implies that these tetrahedra
must be in 7o U 77, and thus v; and v are either type-0 or type-1 vertices.
This means that the B-coefficients of s corresponding to domain points in
DT (v1) U DT (v) are already known. Thus, the B-coefficients of s|(y, 4,)
are already determined. Now by construction, the set P3 contains exactly
four points on the edge e := (v3,v4), and as before the B-coefficients of
s|e are uniquely determined. We now deal with the four remaining edges
of T. Each such edge e contains either v; or v, and s|. has just one un-
determined B-coefficient, which is uniquely determined by interpolation
at the one point in P; lying in the interior of e. Similarly, s is uniquely
defined on the edges of each of the other tetrahedra in the class 72, and
it follows that all of the B-coefficients c¢ of s corresponding to domain
points £ in the balls D; (w) are uniquely determined for all type-2 vertices
w of A. For these £, we see that (6) holds with T'¢ C star®(T'), where T is
the tetrahedron containing &.

A similar proof shows that the B-coefficients in the balls D;(v) sur-
rounding vertices of tetrahedra T := T; € T3 are uniquely determined by
interpolation at the points of P3. If £ € T is in one of these balls, it
follows that T'¢ C star*(T") and (6) holds. This completes the proof that
all B-coefficients of s corresponding to domain points in balls D; (v) sur-
rounding vertices v of A are uniquely determined in a local stable way
from the Lagrange data. Now by Theorem 4, all remaining B-coefficients
of s can be stably computed from these B-coefficients. In particular, if
§ € D3, lies in a tetrahedron T' := (v1,v2,v3,v4), then c¢ can be com-

puted from the B-coefficients in Ule DT (v;), and it follows that (6) holds
with T'¢ C star*(T). O

The proof of Theorem 6 shows that in the worst case, a B-coefficient
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Fig. 3. An example where I’y can be as large as star®(T) .

ce with § € Ds, Aoy p in a tetrahedron T of A depends only on the values
{zn}ner,, where I'¢ C star*(T). In Fig. 3 we show a part of a tetrahedral
partition to illustrate that this worst case behavior can occur. The num-
bers on top of each of the tetrahedra indicate the classes to which they
belong. Suppose £ is the domain point marked with a black dot in the
grey tetrahedron in class 74 on the right. We claim that the value of c;
depends on the value of z,, where 7 is a point in P3 marked with a white
dot lying in the tetrahedron on the left which is numbered zero. The ar-
rows indicate the direction of propagation, and the interpolation points in
P;5 on the edges of these tetrahedra are marked with grey dots. As is clear
from the proof of Theorem 6, the worst case of star*(T") only appears in
very particular constellations, and for most &, the set I'¢ is much smaller.

§5. C'!' Quadratic Splines on Worsey-Piper Refinements

Given an arbitrary tetrahedral partition A, let A, , be a tetrahedral
partition obtained from A by the following procedure:

1) for each tetrahedron T, choose a point v, in the interior of T' and
connect it to the four vertices of T',

2) for each triangular face F' of A\, choose a point v, in the interior of
the face and connect it to the three vertices of F' as well as to the
point v, for each tetrahedron 7" which shares the face F,

3) for each edge e of A, choose a point v, in the interior of e and connect
it to the point v, for all faces F' sharing the edge e, and the point v,
for each tetrahedron T sharing e.

We call A, a generic Worsey-Piper refinement of A. The Worsey-Piper
refinement of one tetrahedron results in 24 subtetrahedra. It is illustrated
in Fig. 4, where v, is shown (four times) as a black dot, the four (face)
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RS

Fig. 4. The Worsey-Piper split subdivides a tetrahedron T into 24 subtetrahe-
dra. First, the Worsey-Farin split is applied to 7. Then, the resulting
partition is further subdivided by connecting a point v, from the interior
of each edge e of T" with the splitting point v, as well as with the face
splitting points v, of the faces sharing e.

split points v, are shown as grey dots, and the six (edge) split points v,
are shown as white dots. Note that with this split, each face of T' has been
subjected to the well-known Powell-Sabin split into 6 triangles.

For our purposes, we cannot work with arbitrary generic Worsey-
Piper refinements. We say that a refinement A, of A is an admissible
Worsey-Piper split of A provided that:

WP

1) for each edge e of A, the point v, is coplanar with the points v, for
all tetrahedra T sharing the edge e, and also coplanar with the points
v, for all faces F' of A containing e,

2) for each interior face F' of A, the point v,, lies on the line joining the
points v, and v, associated with the two tetrahedra T, T sharing the
face F.

Throughout the remainder of this section we assume that A, . is
an admissible Worsey-Piper refinement of A. Worsey-Piper splits were
introduced in [26] as a means for constructing C' quadratic tetrahedral
macro-elements. Here we use the spline space Si(A,,,) to construct a
Lagrange interpolation pair solving Problem 1. It is known [26] that the
dimension of 83(A,,,) is 4n,,, where n, is the number of vertices of A,
In addition, it is shown in [26] that each spline s € S3(A,,,) is uniquely
determined by the values and the first derivatives at the vertices of A.
As is well known in Bernstein-Bézier theory, setting the value and the
first derivatives of a C! spline at vertex v of A is equivalent to setting
the B-coefficients associated with the domain points in DT (v) for some
tetrahedron 7, in A, with vertex v. It follows that the set M :=
Upey D17 (v) is a stable 1-local minimal determining set for S3(A,,,)
(see [12]).
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In order to solve the Lagrange interpolation problem, we now define a
point set P to go with 83 (A,, ). Suppose that T4, ..., T, is the ordering
of the tetrahedra induced by Algorithm 2. For each edge e of A, let v, be
the split point on e.

Algorithm 7.
1) Put all vertices of A\ in Ps,
2) fori=1,...,ng:
For each edge e := (u,v) of T;:

a) if neither u nor v are vertices of some tetrahedron T; with j < i,

put the points u—;ve and Ue;” into Py,

b) if u is a vertex of some tetrahedron T; with j < i but v is not,
put the point % into P,

c) if v is a vertex of some tetrahedron T; with j < i but u is not,

put the point % into Ps.

The cardinality of the set P, produced by Algorithm 7 is 4n,,, where n,,
is the number of vertices of A.

We are now ready to prove that P, and S3(A,,,) form a Lagrange
interpolation pair, and that the associated interpolation method is 4-local
and stable.

Theorem 8. Given any real numbers {z,}ncp,, there exists a unique
spline s € 8y(A,,,) such that s(n) = z, for all n € P,. Moreover, the
computation of the B-coefficients of s is a 4-local and stable process.

Proof: The proof is nearly the same as the proof of Theorem 6, except
that here the univariate interpolation schemes on the edges are slightly
different. For each edge e of A\, a spline s € Si(A,,) reduces to a
univariate quadratic C! spline on e which is defined by five B-coefficients
associated with the domain points on e. As we go through the tetrahedra
of A in the order defined by Algorithm 2, we have to solve three different
types of interpolation problems involving B-coefficients associated with
domain points on an edge e, namely, where 1) all five B-coefficients are
unknown, 2) three B-coefficients corresponding to domain points on a
subinterval of e are known, and 3) only the B-coefficient corresponding to
the domain point v, is unknown, where v, is the split point of e. Since
the matrices of the systems resulting from these interpolation processes
depend only on the barycentric coordinates of the split point v, this is a
stable process. Once all the B-coefficients corresponding to domain points
in the balls D;(v) are uniquely and locally determined for all vertices
v of A, the remaining B-coefficients are also stably determined, which
follows from the methods described in [12,23,26]. Arguing as in the proof
of Theorem 6, it follows that the computations are 4-local. The example
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given in Fig. 3 shows that worst case can occur, i.e., we cannot assert the
method is 3-local. O

§6. Bounds on the Error of Lagrange Interpolation

Let A be some initial tetrahedral partition of a volumetric domain €2, and

suppose P and S is a Lagrange interpolation pair with S C 8§} (A), where

A is a refinement of A. Then for every f € C(2), there is a unique spline
Zf € S such that

Zf(n)=f(m), mnePr

Clearly, this defines a linear projector Z mapping C(2) onto S. We now
give an error bound for f—Z f, under the assumption that the interpolation
method Z corresponding to P and S is stable and /-local as defined in
Sect. 2.

Let W2 (2) be the classical Sobolev space, and let

[flmoop =Y ID*fls (10)
|a|=m
for any compact subset B of 2, where D* := D' D32 Dg?, and ||.||s
denotes the infinity norm on B. Let |A| be the mesh size of A, i.e. the
maximum diameter of the tetrahedra in A.
The hypotheses of the following result hold for the Lagrange inter-
polation pairs described in Sects. 4 and 5 with £ = 4 and m = 2, where
d € {2,3}.

Theorem 9. Suppose 7 is the interpolation projector associated with a
Lagrange interpolation pair P and & which is £-local and stable for some
£. Suppose Ip = p for all p € Pz with m < d. Then there exists a
constant K depending only on ¢ and the smallest angle in /A such that for
any 0 <m < m,

If = Zflle < KIA™ flntre; (11)
for all f in the Sobolev space W 1(Q).

Proof: Since the proof is similar to the proof of Theorem 6.2 in [21] (see
also [13,14] for similar arguments in the bivariate case), we can be brief.
Let f € WtH(Q), fix T € A and choose T € A such that T C T. By
Lemma 4.3.8 of [7], there exists a polynomial ¢ := ¢ 1 € Pp, such that

1f = dller < KilQr ™| Flmt1,00,005 (12)

where Q7 is the union of the tetrahedra in star’(T"). Since Zp = p for all
P € P,
If =Zfllg < If —allg + IZ(F — )l
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It suffices to estimate the second quantity. The fact that the Bernstein
basis polynomials form a partition of unity coupled with the locality and
stability of Z gives

IZ(f = 9)llz < max |cg| < Kollf — glle,,
€Dy 4

where ¢! are the B-coefficients of the polynomial Z(f — g)|#. Combining

this with (12) and the fact that [Qrp| < (24 + 1)|AJ, we have

||I(.f - Q)”’f < K3|A‘m+1|f|m+1,QT’

and hence
If = Zfll7 < Kal A flms1,00-

Taking the maximum over all tetrahedra T in A gives (11). O

§7. Remarks

Remark 1. Lagrange interpolation using bivariate polynomial splines on
triangulations has been considered in a series of papers, see [13—-19]. Our
most recent paper [14] deals with the general case of arbitrary smoothness
and initial triangulations.

Remark 2. The trivariate Lagrange interpolation problem can be easily
solved if we are willing to use C° splines, since all we need is to provide
enough Lagrange data to uniquely determine a spline on each tetrahedron
while insuring all polynomial pieces sharing a vertex v, an edge e and a
triangular face F' of A have the same B-coefficients associated with domain
points on v, e and F, respectively. However, it is much harder to solve the
Lagrange interpolation problem using splines with higher smoothness.

Remark 3. The first C! Lagrange interpolation method based on trivari-
ate splines on tetrahedral partitions can be found in [21]. It is based on
quintic C* splines on certain uniform type tetrahedral partitions.

Remark 4. Trivariate splines have attracted considerable attention re-
cently. For results on the structure of trivariate splines, see [5,6,8,9,12].
For constructions of macro-element methods, see [1-4,10,12,21-26].

Remark 5. Our interpolation methods can be extended to splines on
admissible partitions of domains in R*. This can be done by coupling
appropriate generalizations of our algorithms with macro-element results
in [23-25]. In this case, it turns out that the B-coeflicients c¢ of the
quadratic and cubic splines are bounded by the values which are interpo-
lated at points in star®**!(T'), where T is the k + 1 simplex of the given
partition which contains the associated domain point &.
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Remark 6. Due to their small polynomial degree, quadratic and cubic
trivariate splines are important for contouring three-dimensional data, also
called iso-surfacing. Standard methods in volume visualization are based
on trilinear approaches (tensor product splines), i.e. continuous piecewise
cubics. On the other hand, it is often important to involve smoothness
conditions for higher visual quality of the reconstructed objects (e.g. iso-
surfaces). This topic has been discussed in [15,20].

Remark 7. It is known that constructing well-behaved tetrahedral par-
titions of given points in R? is non-trivial. Currently available methods
in computational geometry are able to solve this problem with algorith-
mic complexity O(n?log(n)), where n is the number of given data points.
Once a tetrahedral partition A has been constructed, the proposed inter-
polation methods have linear algorithmic complexity.

Remark 8. As noted in [26], the construction of admissible Worsey-
Piper refinements of a given initial tetrahedral partition A seems to be a
quite difficult problem. For this reason, in practice we expect the method
discussed in Sect. 4 is likely to be more useful.
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