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Abstract. A domain decomposition method for solving large bivariate scat-
tered data fitting problems with bivariate minimal energy, discrete least-squares,
and penalized least-squares splines is described. The method is based on split-
ting the domain into smaller domains, solving the associated smaller fitting prob-
lems, and combining the coefficients to get a global fit. Explicit error bounds
are established for how well our locally constructed spline fits approximate the
global fits. Some numerical examples are given to illustrate the effectiveness of
the method.

§1. Introduction

Suppose f is a smooth function defined on a domain Ω in IR2 with polygonal
boundary. Given the values {fi := f(xi, yi)}nd

i=1 of f at some set of scattered points
in Ω, we consider the problem of computing a function s that interpolates the
data, or in the case of noisy data or large sets of data, approximates rather than
interpolates f . There are many methods for solving this problem, but here we will
focus on three methods based on bivariate splines, namely,

• the minimal energy (ME) method,
• the discrete least-squares (DLS) method,
• the penalized least-squares (PLS) method.

These three variational methods have been extensively studied in the litera-
ture, see [1,6–8,12], and references therein. It is well known that all three do a
good job of fitting smooth functions. But they are global methods, which means
that the coefficients of a fitting spline are computed from a single linear system
of equations which can be very large if the dimension of the spline space is large.
This would appear to limit the applicability of variational spline methods to mod-
erately sized problems. However, as we shall show in this paper, it is possible to
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efficiently compute ME-, DLS-, and PLS-splines, even with spline spaces of very
large dimension.

Suppose that △ is a triangulation of Ω, and that S(△) is a spline space defined
on △. Throughout this paper we assume that S(△) has a stable local minimal
determining set M, see Sect. 4 or the book [10]. This means that each spline
s ∈ S(△) is uniquely determined by a set of coefficients {cξ}ξ∈M, where each cξ is
associated with a unique (domain) point ξ of △.

The idea of our method is simple. Instead of finding all of the coefficients
{cξ}ξ∈M at once, this algorithm reduces the problem to a collection of smaller
problems. To state our algorithm formally, we need some additional notation. If ω
is a subset of Ω, we set star0(ω) = ω̄, and recursively define

starℓ(ω) :=
⋃

{T ∈ △ : T ∩ starℓ−1(ω) 6= ∅},

for all ℓ ≥ 1.

Algorithm 1.1. (Domain Decomposition Method)

1) Choose a decomposition of Ω into disjoint connected sets {Ωi}m
i=1.

2) Choose k > 0. For each i = 1, . . . , m, let sk
i ∈ S(△)|Ωk

i
be the spline fit based

on data in Ωk
i := stark(Ωi). Let {cki,ξ} be the set of all coefficients of sk

i .

3) For each i = 1, . . . , m, set

cξ = cki,ξ, all ξ ∈ M∩ Ωi.

We call a spline s produced by this algorithm a domain decomposition (DDC)
spline. We emphasize that this domain decomposition method is very different
from domain decomposition methods used in classical numerical methods for partial
differential equations and in the application of radial basis functions to scattered
data fitting and meshless methods for PDE’s, see Remark 1. As we shall see, our
method

• is easy to implement,
• allows the solution of very large data fitting problems,
• with appropriately chosen m and k, produces a spline which is very close to

the globally defined spline,
• is amenable to parallel processing,
• produces a spline s in the space S(△), i.e., with the same smoothness as the

global fit,
• does not make use of blending functions.

The paper is organized as follows. In Sect. 2 we review the basics of minimal
energy, discrete least-squares, and penalized least-squares spline fitting. Then in
Sect. 3 we present some numerical experiments to illustrate the performance of our
domain decomposition method. There we also explore the following questions:
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• how does the time required to compute a domain-decomposition spline s com-
pare with that required for finding a global spline fit sg from S(△)?

• how does ‖s− sg‖ behave as we choose different decompositions and different
values for the parameter k?

• how well does the shape of s match that of sg?

In Sect. 4 we review some Bernstein–Bézier tools needed to analyze our method and
present two lemmas needed later. In Sect. 5 we show that for the variational spline
methods described in the following section, ‖s− sg‖ = O(σk) for some 0 < σ < 1.
We conclude the paper with remarks and references.

§2. Three Variational Spline Fitting Methods

Given d > r ≥ 1 and a triangulation △ of a domain Ω ∈ IR2, let

Sr
d(△) := {s ∈ Cr(Ω) : s|T ∈ Pd, all T ∈ △}

be the associated space of bivariate splines of smoothness r and degree d. Here Pd

is the
(

d+2
2

)

dimensional space of bivariate polynomials of degree d. Such spaces,
along with various subspaces of so-called supersplines, have been intensely studied
in the literature, see the book [10] and references therein. There are many spline-
based methods for interpolation and approximation. Here we are interested in three
particular methods.

2.1. Minimal energy interpolating splines

Suppose we are given values {fi}nd

i=1 associated with a set of nd ≥ 3 abscissae
A := {(xi, yi)}nd

i=1 in the plane. The problem is to construct a smooth function s
that interpolates this data in the sense that

s(xi, yi) = fi, i = 1, . . . , nd.

To solve this problem, suppose △ is a triangulation with vertices at the points of
A. Let S(△) be a spline space defined on △ with dimension n ≥ nd, and let

Λ(f) = {s ∈ S(△) : s(xi, yi) = fi, i = 1, · · · , nd}.

Let

E(s) =

∫

Ω

[(sxx)2 + 2(sxy)
2 + (syy)2]dxdy (2.1)

be the well-known thin-plate energy of s. Then the minimal energy (ME) interpolat-
ing spline is the function sE in Λ such that

E(sE) = min
s∈Λ(f)

E(s). (2.2)
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Assuming Λ(f) is nonempty, it is well known (see e.g. [1,7,12]) that there exists
a unique ME-spline characterized by the property

〈sE , g〉E = 0, all g ∈ Λ(0), (2.3)

where

〈φ, ψ〉E =

∫

Ω

[φxxψxx + 2φxyψxy + φyyψyy]dxdy. (2.4)

Moreover, its Bernstein–Bézier coefficients can be computed by solving an appro-
priate linear system of equations. For details on two different approaches to this
computation, see [1] and [12].

Assuming the data come from a smooth function, i.e.,

fi = f(xi, yi), i = 1, . . . , nd, (2.5)

it is possible to give an error bound for how well the corresponding minimal energy
interpolating spline se approximates f . To state the result, suppose the triangula-
tion △ is β-uniform, i.e.,

|△|
ρ△

≤ β <∞, (2.6)

where |△| is the length of the longest edge in △, and ρ△ is the minimum of the
inradii of the triangles of △. Let θ△ be the smallest angle in △. Then it was shown
in Theorem 6.2 of [7] that for all f ∈W 2

∞(Ω),

‖f − sE‖Ω ≤ C|△|2|f |2,Ω, (2.7)

where ‖ · ‖Ω is the supremum norm on Ω, and | · |2,Ω is the corresponding Sobolev
semi-norm. C is a constant depending only on d, ℓ, β and θ△ if Ω is convex. If
Ω is nonconvex, the constant C may also depend on the Lipschitz constant of the
boundary of Ω.

Now suppose sk
E is a DDC minimal energy spline computed using Algorithm 1.1

with parameter k ≥ ℓ. Then since the analog of (2.7) holds for each subdomain Ωi

of Ω, we have

‖sE − sk
E‖Ω ≤ C|△|2|f |2,Ω. (2.8)

This shows that the DDC minimal energy spline sk
E interpolating a given function

f is close to the global minimal energy spline sE whenever f is smooth and |△| is
small. The estimate (2.8) does not depend on k, and so gives no information on how
the difference behaves with increasing k. In Sect. 5.1 we show that ‖sE − sk

E‖Ω =
O(σk) with 0 < σ < 1.
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2.2. Discrete least-squares splines

When the set of data is very large or the measurements {fi}nd

i=1 are noisy, it is
often better to construct an approximation from a spline space S(△) of dimension
n < nd. Some or all of the vertices of △ may be at points in A := {(xi, yi)}nd

i=1,
but they may also be completely different. The solution of the variational problem
of minimizing

‖s− f‖2
A :=

nd
∑

j=1

[s(xj, yj) − fj ]
2

over all s in S(△) is called the discrete least-squares spline sL. It is well known, see
e.g. [1,12] that if S(△) satisfies the property

s(xi, yi) = 0, i = 1, . . . , nd, implies s ≡ 0, (2.9)

then there is a unique discrete least-squares spline sL fitting the data. It is charac-
terized by the property

〈sL − f, g〉A = 0, all g ∈ S(△), (2.10)

where

〈φ, ψ〉A :=

nd
∑

i=1

φ(xi, yi)ψ(xi, yi). (2.11)

The Bernstein–Bézier coefficients of sL can be computed by solving an appropriate
linear system of equations. For details on two different approaches to this compu-
tation, see [1] and [12].

Assuming the data come from a smooth function, it is possible to give an error
bound for how well the least-squares spline sL approximates f . To state the result,
suppose as before that the triangulation △ is β-uniform. In addition, suppose that
the data is sufficiently dense that for some constant K1 > 0,

K1‖s‖T ≤
(

∑

(xj ,yj)∈T

s(xj, yj)
2
)1/2

, for all s ∈ S(△) and all T ∈ △. (2.12)

Let
K2 := max

T∈△
#(A ∩ T ).

Then for all f ∈Wm+1
∞ (Ω) with 0 ≤ m ≤ d,

‖f − sL‖Ω ≤ C|△|m+1|f |m+1,Ω, (2.13)

see the remark following Theorem 8.1 in [6]. If Ω is convex, the constant C depends
only on d, ℓ, β,K2/K1 and θ△. If Ω is nonconvex, C may also depend on the
Lipschitz constant of the boundary of Ω.
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Now suppose sk
L is a DDC least-squares spline computed using Algorithm 1.1

with parameter k ≥ ℓ. Then the same error bound holds for each subdomain Ωi of
Ω, and combining with (2.13) gives

‖sL − sk
L‖Ω ≤ C|△|m+1|f |m+1,Ω. (2.14)

This shows that the DDC least-squares spline sk
L fitting measurements of a given

function f is close to the global minimal energy spline sL whenever f is smooth and
|△| is small. The estimate (2.14) does not depend on k, and so gives no information
on how the difference behaves with increasing k. In Sect. 5.2 we show that it is
O(σk) with 0 < σ < 1.

2.3. Penalized least-squares splines

Suppose A := {xi, yi}nd

i=1 and S(△) are as in the previous subsections. Fix λ ≥ 0.
Then given data values {fi}nd

i=1, the corresponding penalized least-squares (PLS)
spline is defined to be the spline sλ in S(△) that minimizes

Eλ(s) := ‖s− f‖A + λE(s),

where E(s) is defined in (2.1). It is well known, cf. [1,12] that if S is a spline space
such that (2.9) holds, then there exists a unique PLS-spline sλ minimizing Eλ(s)
over s ∈ S(△). Moreover, sλ is characterized by

〈sλ − f, s〉A + λ〈sλ, s〉E = 0, all s ∈ S(△). (2.15)

As with the other two methods, the Bernstein–Bézier coefficients of sλ can be
computed by solving an appropriate linear system of equations. For details on two
different approaches to this computation, see [1] and [12]. It is known [8] that for
all f ∈Wm+1

Ω with 0 ≤ m ≤ d,

‖f − sλ‖Ω ≤ C
(

|△|m+1|f |m+1,Ω + λ|f |2,Ω

)

. (2.16)

for λ sufficiently small compared to |△|. The constant C depends only on d, ℓ, β, θ△,
K2/K2 and the area of Ω. If Ω is nonconvex, C may also depend on the Lipschitz
constant of the boundary of Ω.

Now suppose sk
λ is a DDC penalized least-squares spline computed using Al-

gorithm 1.1 with parameter k ≥ ℓ. Then since the analog of (2.16) holds for each
subdomain Ωi of Ω, we have

‖sλ − sk
λ‖Ω ≤ C

(

|△|m+1|f |m+1,Ω + λ|f |2,Ω

)

. (2.17)

This shows that the DDC penalized least-squares spline sk
λ fitting a given function

f is close to the global penalized least-squares spline sλ whenever f is smooth and
|△| is small. The estimate (2.17) does not depend on k, and so gives no information
on how the difference behaves with increasing k. In Sect. 5.3 we show that it is
O(σk) with 0 < σ < 1.
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Fig. 1. A minimal determining set for S
1,2
5 (△).

§3. Numerical Examples

In this section we illustrate the domain decomposition method by applying it to
compute minimal energy and discrete least-squares fits of scattered data. All of our
examples are based on the superspline space

S1,2
5 (△) := {s ∈ S1

5 (△) : s ∈ C2(v) for all vertices v ∈ △}.

Here s ∈ C2(v) means that all polynomial pieces of s on triangles sharing the vertex
v have common derivatives up to order 2 at v. It is well known that the dimension
of this space is 6nV +nE , where nV , nE are the number of vertices and edges of △,
respectively. The computations in this section are based on the algorithms in [12]
which make use of a stable local minimal determining set M for S1,2

5 (△) and the
associated stable local M-bases defined in [10]. Fig. 1 shows a minimal determining
set for S1,2

5 (△), where points in the set are marked with black dots and triangles.

3.1. Example 1

Let H be the unit square, and let

F (x, y) = 0.75 exp(−0.25(9x− 2)2 − 0.25(9y − 2)2)

+ 0.75 exp(−(9x+ 1)2/49 − (9y + 1)/10)

+ 0.5 exp(−0.25(9x− 7)2 − 0.25(9y − 3)2)

− 0.2 exp(−(9x− 4)2 − (9y − 7)2)

(3.1)

be the well-known Franke function defined on H, see Fig. 2. Let △1087 be the
triangulation shown in Fig. 3, This triangulation has 1087 vertices, 3130 edges,
and 2044 triangles. The dimension of the space S1,2

5 (△1087) is 9652, and the total
number of Bernstein–Bézier coefficients of a spline in this space is 25,871.

First we compute the minimal energy spline fit sE of f from S1,2
5 (△1087). This

requires solving a linear system of 8565 equations with 322,989 nonzero entries.
Although the largest element in the corresponding matrix is O(107), its condition
number is of order O(104). For comparison purposes we computed the maximum

7



Fig. 2. The Franke function.

Fig. 3. A triangulation of 1087 vertices.

error e∞ over a 160 × 160 grid, along with the RMS error e2 over the same grid.
These errors are shown in the first line of Tab. 1, along with the computational
time in seconds.

To explore the performance of our domain-decomposition technique, we com-
puted approximations of sE by decomposing Ω into squares {Ωi}m2

i=1 of width 1/m.
In Tab. 1 we list the results, where k is the parameter controlling the size of the
sets Ωk

i in Algorithm 1.1. In addition to the errors e∞ and e2 measuring how well
sE fits f , we also tabulate the maximum difference ec

∞ between the coefficients of
our DDC spline and the coefficients of the global minimal energy spline sE . We
also compute the RMS difference ec

2 for the coefficients, and list the computational
time in seconds. We now comment on these results.
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m k e∞ e2 ec
∞ ec

2 time
1 0 9.1(−4) 7.7(−5) 25
4 1 3.0(−3) 2.1(−4) 8.5(−3) 9.1(−5) 9
4 2 9.3(−4) 8.6(−5) 3.4(−3) 1.9(−5) 15
4 3 9.1(−4) 7.8(−5) 3.4(−4) 3.0(−6) 21
4 4 9.1(−4) 7.7(−5) 5.4(−5) 4.4(−7) 30
8 1 3.1(−3) 2.7(−4) 8.6(−3) 1.6(−4) 7
8 2 9.2(−4) 9.4(−5) 1.9(−3) 3.5(−5) 16
8 3 9.1(−4) 7.8(−5) 3.4(−4) 7.0(−6) 29
8 4 9.1(−4) 7.7(−5) 8.9(−5) 1.3(−7) 50

Tab. 1. DDC minimal energy fits to Franke’s function from S
1,2
5 (△1087).

• Accuracy of fit: The table shows that in this experiment, the DDC splines with
k = 1 do not fit f as well as the minimal energy spline, but as soon as k ≥ 2,
the errors are virtually identical. From the standpoint of accuracy of fit, there
is no need to use values of k larger than 2 or 3.

• Accuracy of coefficients: The table shows that the DDC fits also provide very
good approximations of the coefficients of the global minimal energy spline sE .
Both ec

∞ and ec
2 decrease as k increases, as predicted by the theoretical results

in Sect. 5.1.

• Time: The main use of the DDC algorithm is to make it possible to solve large
variational spline problems which could not be solved at all without using the
method. For small problems, it often takes more time to solve for a DDC
minimal energy spline than for the global minimal energy spline itself. For
this moderately sized problem, we see that some of the DDC splines took less
time to compute than the global fit, even for the same accuracy. For example,
the DDC spline with m = 8 and k = 2 delivers virtually the same accuracy
as the global minimal energy spline, but in only about one-half the computing
time. For larger problems, the time required to compute DDC minimal energy
splines is substantially less than for the global splines, see Example 2.

• Condition numbers: Since the entries in the matrix of the linear systems depend
on integrals of squares of second derivatives over triangles, when the triangles
are of size O(h), the entries are of size O(h−4) and even larger if triangles are
very thin. In this example the largest entries are on the order O(107). For
very regular triangulations (for example type-I triangulations), the condition
numbers of the matrices are of size O(103), independent of how many triangles
there are. For less regular triangulations, they can be much larger. However,
for the matrices associated with the triangulations in Fig. 4, they are of order
O(104).

9



Fig. 4. stark(Ω64) for k = 1, 2, 3.

• Shape of stark: Fig. 4 shows stark(Ω64) for k = 1, 2, 3, where Ω64 := [.875, 1]×
[.875, 1], shown in dark grey in the figure. The white triangles are the triangles
added to form the stars.

• Shape of the surface: We have compared 3D plots of the global minimal energy
fit of f with the DDC-minimal energy fits for the parameters in Tab. 1. For
k = 1 we noticed slight deviations in shape, but for all higher values of k we
got excellent shapes.

3.2. Example 2

We repeat Example 1 with a type-I triangulation of the unit square with 4225
vertices. This triangulation includes 12,416 edges, and 8,192 triangles. The dimen-
sion of the space S1,2

5 (△4225) is 37,776, and the total number of Bernstein–Bézier
coefficients of a spline in this space is 103,041. We again fit the Franke function.

First we compute the minimal energy spline fit sE of f from S1,2(△4225). This
requires solving a linear system of 33,541 equations with 1,282,073 nonzero entries.
Although the largest element in this matrix is O(107), its condition number is
O(104). Our program took 326 seconds to compute s. For comparison purposes,
we computed the maximum error e∞ over a 160 × 160 grid, along with the RMS
error e2 over this grid. These errors are shown in the first line of Tab. 2, along with
the computational time (in seconds).

We computed approximations of sE using the same decompositions of Ω as
in Example 1 based on m2 squares of width 1/m. In Tab. 2 we list the results.
Here we see that using the DDC method results in substantial time savings. We
also see that the errors ec

∞ and ec
2 behave like O(σk) with σ ≈ 1/4, confirming the

theoretical results in Sect. 5.2.

3.3. Example 3

In this example we work with elevation heights measured at 15,585 points in the
Black Forest of Germany. The corresponding DeLaunay triangulation △BF is
shown in Fig. 5, although the triangulation is so fine in many areas that it is
impossible to see the individual triangles without zooming in. This triangulation
has 47,333 edges and 31,449 triangles. The dimension of the space S1,2

5 (△BF ) is
142,643, and the total number of Bernstein–Bézier coefficients of a spline in this
space is 393,911.
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m k e∞ e2 ec
∞ ec

2 time
1 0 1.2(−4) 7.6(−6) 326
8 1 9.9(−4) 4.7(−5) 2.2(−3) 2.3(−5) 37
8 2 2.9(−4) 1.5(−5) 6.8(−4) 5.7(−6) 65
8 3 1.8(−4) 9.9(−6) 1.7(−4) 1.4(−6) 97
16 1 9.8(−4) 6.9(−5) 2.3(−3) 4.4(−5) 29
16 2 2.9(−4) 1.9(−5) 7.6(−4) 1.0(−5) 66
16 3 1.8(−4) 1.0(−5) 1.6(−4) 2.5(−6) 128

Tab. 2. DDC minimal energy fits to Franke’s function from S
1,2
5 (△4225).

The computation of the minimal energy spline fit sE would require solving a
linear system of 126,758 equations, which is beyond the capability of our software.
So instead we computed a DDC approximation of the minimal energy spline using
the decomposition of Example 1 based on 100 squares. The computation took 288
seconds, and Fig. 6 shows the resulting surface.

3.4. Example 4

In this example we again work on the unit square H. This time we approximate
Franke’s function by least squares based on measured data at 62,500 grid points in
H. We approximate from the space S1

2 (△1087), where △1087 is the same triangula-
tion as in Example 1, see Fig. 3. We choose this triangulation since it is big enough
to illustrate how the domain decomposition method works, but small enough so
that we can compute the global least square spline for comparison purposes. This
function can of course be fit very well with much smaller spline spaces and much less
data. For example with a type-I triangulation with 81 vertices and 1089 grid data,
the errors for the least-squares spline fit are e∞ = 5.2(−4) and e2 = 5.0(−5). The
results of our experiments are shown in Tab. 3. Note that the times of computation
for least-squares splines are significantly greater than for the minimal energy splines
reported on in Tab. 1. This is due to the fact that a large part of the computation
is taken up with finding the triangles containing the various data points. These
times can be reduced by incorporating standard techniques for reducing the time
required for these search operations.

• Accuracy of fit: The table shows that in this experiment the DDC least-squares
splines with k = 1 do not fit f quite as well as the global least-squares spline,
but with increasing k they come very close. As with the minimal energy case,
it appears that a good choice might be k = 2.

• Accuracy of coefficients: The table shows that the DDC fits also provide very
good approximations of the coefficients of the global least-squares spline. Both
ec
∞ and ec

2 decrease as k increases. Indeed, for m = 4, the error of ec
∞ behaves

like O(σk) with σ ≈ 1/4, while for m = 8, σ ≈ 2. There is a similar effect for
e2, confirming the theoretical results in Sect. 5.2.
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Fig. 5. Triangulation of 15585 points in the Black Forest.

Fig. 6. The minimal energy interpolant of the Black Forest data.

• Time: The main use of the DDC algorithm is to make it possible to solve large
variational spline problems which could not be solved at all without using the
method. For small problems, it can take more time to solve for a DDC least-
squares spline than for the global least-squares spline itself. However, even for
this moderately sized problem, we see that most of the DDC splines took less
time to compute for nearly the same accuracy.

12



m k e∞ e2 ec
∞ ec

2 time
1 0 4.5(−7) 2.3(−8) 42
4 1 4.7(−6) 7.1(−8) 1.9(−5) 2.1(−8) 44
4 2 3.8(−6) 5.3(−8) 5.6(−6) 1.0(−8) 62
4 3 9.9(−7) 3.2(−8) 1.7(−6) 5.5(−9) 82
8 1 5.5(−6) 1.1(−7) 2.0(−5) 4.3(−8) 48
8 2 3.8(−6) 8.0(−8) 1.1(−5) 2.2(−8) 93
8 3 1.7(−6) 6.8(−8) 3.9(−6) 1.7(−8) 151
10 2 2.5(−6) 9.8(−8) 5.3(−6) 2.8(−8) 113

Tab. 3. DDC least-squares fits to Franke’s function from S
1,2
5 (△BF ).

• Condition numbers: The condition numbers of the Gram matrix arising in
discrete least-squares fitting with splines is dependent on a number of things.
The size of β (which reflects whether there are skinny triangles in △) plays a
role, but not as large a role as in the minimal energy case (since here we are
not working with second derivatives). What seems more critical in the least-
squares case is the distribution of data over the triangles – if there are triangles
with barely enough data to insure a nonsingular system, the condition number
tends to be high. For this particular example, the condition numbers of the
matrices arising in the subproblems lie in the range of 105 to 106.

• Shape of the surface: We have compared 3D plots of the global least-squares fit
of f with the DDC-least-squares fits for the parameters in Tab. 3. For k = 1
we noticed slight deviations in shape, but for all higher values of k we got
excellent shapes.

§4. Analytical Tools

In this section we set the stage for the proofs in Sect. 5 of our main results.

4.1. Bernstein–Bézier techniques

We make use of the Bernstein–Bézier representation of splines. Given d and △,
let Dd,△ := ∪T∈△Dd,T be the corresponding set of domain points, where for each
T := 〈v1, v2, v3〉,

Dd,T :=
{

ξT
ijk :=

iv1 + jv2 + kv3
d

}

i+j+k=d
.

Then every spline s ∈ S0
d(△) is uniquely determined by its set of coefficients

{cξ}ξ∈Dd,△
, and

s|T :=
∑

ξ∈Dd,T

cξB
T
ξ ,

13



where {BT
ξ } are the Bernstein basis polynomials associated with the triangle T .

Suppose now that S(△) is a subspace of S0
d(△). Then a set M ⊆ Dd,△ of

domain points is called a minimal determining set (MDS) for S(△) provided it is the
smallest set of domain points such that the corresponding coefficients {cξ}ξ∈M can
be set independently, and all other coefficients of s can be consistently determined
from smoothness conditions, i.e., in such a way that all smoothness conditions are
satisfied, see p. 136 of [10]. The dimension of S(△) is then equal to the cardinality
of M. Clearly, M = Dd,△ is a minimal determining set for S0

d(△), and thus the

dimension of S0
d(△) is nV +(d−1)nE +

(

d−1
2

)

nT , where nV , nE, nT are the number
of vertices, edges, and triangles of △.

For each η ∈ Dd,△ \M, let Γη be the smallest subset of M such that cη can
be computed from the coefficients {cξ}ξ∈Γη

by smoothness conditions. Then M is
called ℓ-local provided there exists an integer ℓ not depending on △ such that

Γη ⊆ starℓ(Tη), all η ∈ Dd,△ \M, (4.1)

where Tη is a triangle containing η. M is said to be stable provided there exists
a constant K3 depending only on ℓ and the smallest angle in the triangulation △
such that

|cη| ≤ K3 max
ξ∈Γη

|cξ|, all η ∈ Dd,△ \M. (4.2)

Suppose M is a stable local MDS for S(△). For each ξ ∈ M, let ψξ be the
spline in S(△) such that cξ = 1 while cη = 0 for all other η ∈ M. Then the splines
{ψξ}ξ∈M are clearly linearly independent and form a basis for S(△). This basis
is called the M-basis for S(△), see Sect. 5.8 of [10]. It is stable and ℓ-local in the
sense that for all ξ ∈ M,

‖ψξ‖Ω ≤ K4, (4.3)

and
suppψξ ⊆ starℓ(Tξ), (4.4)

where Tξ is a triangle containing ξ. Here ℓ is the integer constant in (4.1), and the
constant K4 depends only on ℓ and the smallest angle in △.

There are many spaces with stable local bases. For example, the spaces S0
d(△)

have stable local bases with ℓ = 1. The same is true for the superspline spaces
Sr,2r

4r+1(△) for all r ≥ 1. There are also several families of macro-element spaces
defined for all r ≥ 1 with the same property, see [10].

4.2. Two lemmas

For convenience we recall a lemma from [3].

Lemma 4.1. Suppose a0, a1, · · · , are nonnegative numbers such that

γ
∑

j≥ν

aj ≤ aν , for all ν = 0, 1, 2, · · · , (4.5)

14



for some 0 < γ < 1. Then aν ≤ 1
γσ

νa0, where σ := 1 − γ.

We now establish a key lemma whose proof is modelled on the proof of Theo-
rem 3.1 in [6]. Let W be a space of spline functions defined on a triangulation △ of
Ω with inner product 〈f, g〉W and norm ‖f‖2

W := 〈f, f〉W . Suppose that {Bξ}ξ∈M

is a 1-local basis for W such that for some constants C1, C2,

C1

∑

ξ∈M

|cξ|2 ≤
∥

∥

∑

ξ∈M

cξBξ

∥

∥

2

W
≤ C2

∑

ξ∈M

|cξ|2. (4.6)

for all coefficient vectors c := {cξ}ξ∈M.

Lemma 4.2. Let ω be a cluster of triangles in △, and let T ∈ ω. Then there exists
constants 0 < σ < 1 and C depending only on the ratio C2/C1 such that if g is a
function in W with

〈g, w〉W = 0, for all w ∈ W with supp(w) ⊆ stark(ω), (4.7)

for some k ≥ 1, then
‖g · χT ‖W ≤ Cσk‖g‖W . (4.8)

Proof: For each ν ≥ 0, let

Mω
ν := {ξ ∈ M : supp(Bξ) ⊆ starν(IR2 \ stark(ω))}.

Define N ω
0 := Mω

0 , and let N ω
ν := Mω

ν \Mω
ν−1, for ν ≥ 1. Given g :=

∑

ξ∈M cξBξ,
let

gν :=
∑

ξ∈Mω
ν

cξBξ, uν := g − gν , aν :=
∑

ξ∈Nω
ν

c2ξ .

By (4.6),
∑

j≥ν+1

aj =
∑

ξ 6∈Mω
ν

c2ξ ≤ ‖uν‖2
W

C1
, (4.9)

while (4.7) implies 〈g, uν〉W = 0. Since supp(uν) ∩ ⋃

ξ∈Mω
ν−1

supp(Bξ) = ∅ for

ν ≥ 1, it follows that

‖uν‖2
W = 〈g − gν , uν〉W = −〈gν , uν〉W

= −〈
∑

ξ∈Nω
ν

cξBξ, uν〉W ≤ ‖
∑

ξ∈Nω
ν

cξBξ‖W ‖uν‖W .
(4.10)

Dividing by ‖uν‖W and squaring, then using (4.6), we get

‖uν‖2
W ≤ ‖

∑

ξ∈Nω
ν

cξBξ‖2
W ≤ C2aν .
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Combining (4.9) and (4.10) gives

∑

j≥ν

aj ≤ C1 + C2

C1
aν , ν ≥ 1. (4.11)

Then applying Lemma 4.1 gives

aν ≤ (C1 + C2)

C1
σν−1a1,

with σ := C2/(C1 + C2). On the other hand,

a1 ≤
∑

j≥0

aj =
∑

ξ∈M

c2ξ ≤ 1

C1
‖g‖2

W .

Now let q be the smallest integer such that there is a basis function Bξ in Mω
q with

T ⊆ supp(Bξ). Then by (4.6),

‖g · χT ‖2
W = ‖

∑

Bξ|T 6=0

cξBξ‖2
W ≤ C2

∑

ξ 6∈Mω
q−1

c2ξ = C2

∑

j≥q

aj

≤ C2

C1

(C1 + C2

C1

)2

σq−1‖g‖2
W .

Since q ≥ k + 1, we have (4.8).

§5. Dependence of the Errors on the Parameter k

In this section we examine the difference between global splines and their DDC
approximations as a function of the parameter k. We give separate results for ME,
DLS, and PLS splines. Throughout the section we assume that △ is a β-uniform
triangulation, and that S(△) is an associated spline space with a stable local M-
basis.

5.1. Minimal energy interpolating splines

Given a set of measurements {fi}nd

i=1 of a function f at the vertices of a triangulation
△, let sE be the corresponding minimal energy interpolating spline. Let sk

E be the
DDC minimal energy spline computed using Algorithm 1.1 with parameter k. In
(2.8) we showed that if f ∈ W 2

∞(Ω), then ‖sE − sk
E‖Ω = O(|△|2). In this section

we discuss the dependence of this difference on k.

Theorem 5.1. There exists σ ∈ (0, 1) such that for all f ∈W 2
∞(Ω),

‖Dα
xD

β
y (sE − sk

E)‖Ω ≤ Cσk|△|1−α−β|f |2,Ω, (5.1)
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for all 0 ≤ α+β ≤ 1. When Ω is convex, C is a constant depending only on d, ℓ, β, θ△
and the area of Ω. When Ω is nonconvex, C also depends on the Lipschitz constant
of the boundary of Ω.

Proof: Let Ωi be one of the subdomains in Algorithm 1.1. In view of the way in
which sE is defined, it suffices to estimate ‖sE − sk

E‖Ωi
. Let △k

i be the subtrian-
gulation obtained by restricting △ to Ωk

i := stark(Ωi). Fix k ≥ 1. We make use of
Lemma 4.2 applied to

W = {s ∈ S(△)|Ωk
i

: s(v) = 0, all vertices v of △k
i },

with the inner product

〈φ, ψ〉E,Ωk
i

:=

∫

Ωk
i

[φxxψxx + 2φxyψxy + φyyψyy]dxdy. (5.2)

Let sE,Ωk
i

:= sE |Ωk
i

be the global minimal energy interpolant of f restricted to Ωk
i ,

and let sk
E,i be the minimal energy interpolant of f in the space S(△)|Ωk

i
. Let

{Bξ}ξ∈Mik
be a stable 1-local basis for S(△)|Ωk

i
. It was shown in Corollary 5.3 of

[7] that

C1|△|−2
∑

ξ∈Mk
i

|cξ|2 ≤
∥

∥

∑

ξ∈Mk
i

cξBξ

∥

∥

E,Ωk
i

≤ C2|△|−2
∑

ξ∈Mk
i

|cξ|2, (5.3)

where C1 and C2 depend only on d, ℓ and β. Writing g := sE,Ωk
i
− sk

E,i ∈ W, and
using the characterization of minimal energy splines, we have

〈g, Bξ〉E,Ωk
i

= 0, all Bξ with supp(Bξ) ⊆ Ωk
i . (5.4)

Now suppose T is a triangle in Ωi where |g| takes its maximum. Since g is a
polynomial on T , we can use Lemma 6.1 of [7] and Theorem 1.1 of [10] to get

‖g‖Ωi
= ‖g‖T ≤ 12|T |2 |g|2,∞,T ≤ C3|△||g|2,2,T ≤ C3|△|‖g·χT ‖E,Ωk

i
, (5.5)

where C3 depends only on d. In view of (5.3) and (5.4), we can apply Lemma 4.2
to get

‖g·χT ‖E,Ωk
i
≤ C4σ

k‖g‖E,Ωk
i
≤ C4A

1/2σk|g|2,∞,Ωk
i
, (5.6)

where A is the area of Ωk
i . Note that C4 does not depend on |△| since the constant

in Lemma 4.2 depends on the ratio C2|△|−2/C1|△|−2. Now let τ be a triangle
where |g|2,∞,Ωi

takes its maximum. Then using the Markov inequality, we have

|g|2,∞,Ωi
= |g|2,∞,τ ≤ C5

|τ |2 ‖g‖τ ≤ C5

|τ |2
(

‖f − sE‖τ + ‖f − sk
E,i‖τ

)

. (5.7)

Combining the inequalities (5.5)–(5.7) with the error bound (2.7), we get (5.1) for
α = β = 0. To get the result for derivatives, we apply the Markov inequality on a
triangle where ‖Dα

xD
β
y g‖Ω takes its maximum value.
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5.2. Discrete least-squares splines

Given a set of measurements {fi}nd

i=1 of a function f and a triangulation △, let sL

be the discrete least-squares spline fit of f from S(△). Let sk
L be the DDC least-

squares spline produced by Algorithm 1.1 with parameter k. In (2.14) we showed
that if f ∈ Wm+1

∞ (Ω), then ‖sL − sk
L‖Ω = O(|△|m+1). In this section we discuss

the dependence of this difference on k. The following result gives results for the
derivatives of the difference. As is customary in spline theory, the norm here is to
be interpreted as the maximum of the supremum norms over the triangles in △
since the splines sL and sk

L may not have derivatives at every point in Ω.

Theorem 5.2. There exists σ ∈ (0, 1) such that if f ∈ Wm+1
∞ (Ω) with 0 ≤ m ≤ d,

then
‖Dα

xD
β
y (sL − sk

L)‖Ω ≤ Cσk|△|m−α−β|f |m+1,Ω. (5.8)

for all 0 ≤ α + β ≤ m. When Ω is convex, C is a constant depending only on
d, ℓ, β,K1, K2 and θ△. When Ω is nonconvex, C also depends on the Lipschitz
constant of the boundary of Ω.

Proof: Let Ωi be one of the subdomains in Algorithm 1.1. In view of the way in
which sL is defined, it suffices to estimate the norm of sL − sk

L on Ωi. Let △k
i be

the subtriangulation obtained by restricting △ to Ωk
i := stark(Ωi). Fix k ≥ 1. We

make use of Lemma 4.2 applied to W = S(△)|Ωk
i

with the inner product

〈φ, ψ〉Ak
i

:=
∑

(xi,yi)∈Ωk
i

φ(xi, yi)ψ(xi, yi). (5.9)

Let sL,Ωk
i

:= sL|Ωk
i

be the restriction to Ωk
i of the global least-squares spline fit

sL of f from S(△), and let sk
L,i be the least-squares spline fit of f from the space

S(△)|Ωk
i
. Let {Bξ}ξ∈Mik

be a stable 1-local basis for S(△)|Ωk
i
. It was shown in

Lemma 5.1 of [6] that

C1

∑

ξ∈Mk
i

|cξ|2 ≤
∥

∥

∑

ξ∈Mk
i

cξBξ

∥

∥

Ak
i

≤ C2

∑

ξ∈Mk
i

|cξ|2, (5.10)

Writing g := sL,Ωk
i
− sk

L,i ∈ W, and using the characterization of least-squares
splines, we have

〈g, Bξ〉Ak
i

= 0, all Bξ with supp(Bξ) ⊆ Ωk
i . (5.11)

Now suppose T is a triangle in Ωi where |g| takes its maximum. Then using
(2.12) and Lemma 4.2 we get

‖g‖Ωi
= ‖g‖T ≤ 1

K1
‖g·χT ‖Ak

i
≤ C3

K1
σk‖g‖Ak

i
≤ C3

√
NK2

K1
σk‖g‖Ωk

i
, (5.12)
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where N is the number of triangles in Ωk
i . Note that

√
N ≤ C4/|△|, where C4

depends on the area of Ωk
i and the constant β. On the other hand,

‖g‖Ωk
i
≤ ‖f − sL‖Ωk

i
+ ‖f − sk

L,i‖Ωk
i
. (5.13)

Combining the last two inequalities with the error bound (2.13), we get (5.8) for
α = β = 0. To get the result for the derivative Dα

xD
β
y , we apply the Markov

inequality to a triangle where ‖Dα
xD

β
y g‖Ω takes its maximum.

5.3. Penalized least-squares splines

Given a set of measurements {fi}nd

i=1 of a function f and a triangulation △, let sλ

be the penalized least-squares spline fit of f from S(△) with smoothing parameter
λ > 0. Let sk

λ be the DDC penalized least-squares spline produced by Algorithm 1.1
with parameter k. In (2.17) we showed that if f ∈ Wm+1

∞ (Ω), then ‖sλ − sk
λ‖Ω =

O(|△|m+1) + O(λ). In this section we discuss the dependence of this difference on
k.

Theorem 5.3. There exists σ ∈ (0, 1) such that if f ∈ Wm+1
∞ (Ω) with 1 ≤ m ≤ d,

then

‖sλ − sk
λ‖Ω ≤ Cσk

(

1 +

√
λ

|△|
)

(|△|m|f |m+1,Ω +
λ

|△| |f |2,Ω). (5.14)

if λ is sufficiently small compared to |△|. When Ω is convex, C is a constant
depending only on d, ℓ, β,K1, K2, θ△ and the area of Ω. When Ω is nonconvex, C
also depends on the Lipschitz constant of the boundary of Ω.

Proof: Let Ωi be one of the subdomains in Algorithm 1.1. In view of the way in
which sλ is defined, it suffices to estimate the norm of sλ − sk

λ on Ωi. Let △k
i be

the subtriangulation obtained by restricting △ to Ωk
i := stark(Ωi). Fix k ≥ 1. We

make use of Lemma 4.2 applied to W := S(△)|Ωk
i

with the inner product

〈φ, ψ〉λ := 〈φ, ψ〉Ak
i

+ λ〈φ, ψ〉E,Ωk
i
, (5.15)

where the inner-products in this definition are as in (5.2) and (5.9). Let sλ,Ωk
i

:=

sλ|Ωk
i

be the restriction to Ωk
i of the global penalized least-squares spline fit sλ of f

from S(△), and let sk
λ,i be the penalized least-squares spline fit of f from the space

S(△)|Ωk
i

using data in Ωk
i . Let {Bξ}ξ∈Mik

be a stable 1-local basis for S(△)|Ωk
i

as

in the proof of Theorem 5.2. Combining (5.3) and (5.10), we see that

C1

(

1 +
λ

|△|2
)

∑

ξ∈Mk
i

|cξ|2 ≤
∥

∥

∑

ξ∈Mk
i

cξBξ

∥

∥

λ
≤ C2

(

1 +
λ

|△|2
)

∑

ξ∈Mk
i

|cξ|2. (5.16)

Writing g := sλ,Ωk
i
− sk

λ,i ∈ W, and using the characterization of penalized least-
squares splines, we have

〈g, Bξ〉λ = 0, all Bξ with supp(Bξ) ⊆ Ωk
i . (5.17)
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Now suppose T is a triangle in Ωi where |g| takes its maximum. Then by
(2.12),

‖g‖T ≤ 1

K1
‖g·χT ‖Ak

i
≤ 1

K1

(

‖g·χT ‖2
Ak

i

+ λ‖g·χT ‖2
E,Ωk

i

)1/2
=

1

K1
‖g·χT ‖λ.

Using Lemma 4.2, we get

‖g‖T ≤ C3

K1
σk‖g‖λ ≤ C3

K1
σk

(

‖g‖2
Ak

i

+ λ‖g‖2
E,Ωk

i

)1/2 ≤ C3

K1
σk

(

‖g‖Ak
i

+
√
λ‖g‖E,Ωk

i

)

,

where C3 depends only on the ratio C2/C1. Following the proofs of Theorems 5.1
and 5.2, we see that

‖g‖E,Ωk
i
≤ C4

|△|2 ‖g‖Ωk
i
, ‖g‖Ak

i
≤ C5

|△|‖g‖Ωk
i
,

which gives

‖g‖T ≤ C6σ
k
( 1

|△| +

√
λ

|△|2
)

‖g‖Ωk
i
.

Now
‖g‖Ωk

i
≤ ‖f − sλ‖Ωk

i
+ ‖f − sk

λ,i‖Ωk
i
,

and using (2.16) we get (5.14).

§6. Remarks

Remark 1. Domain decomposition methods have been studied for more than 150
years in the literature on the numerical solution of boundary value problems, going
back at least to Schwarz’s alternating method, see e.g. [11]. For a comprehensive
treatment and an extensive list of references, see [13]. The idea of domain decom-
position has recently been adapted to the problem of fitting scattered data with
radial basis functions, see [2], as well as to meshless methods (based on radial basis
functions) for solving boundary-value problems, see [4] and the book [5].

Remark 2. Many authors have tried to solve global fitting problems by dividing
the domain into subdomains, computing fits on each subdomain, and then blending
the resulting surface patches together with some kind of blending functions. In
most of these methods the use of blending functions changes the form of the final
approximant and produces a fit which may not be close to the global fit. Our domain
decomposition method is not based on blending functions, and our theorems insure
that the DDC-spline is close to the global fit.

Remark 3. As observed in [12], in computation with M-bases it is important to
exercise some care in choosing the minimal determining set M. Thus, for example
in Fig. 1, for each vertex v, the six black dots should be chosen in the triangle with
largest angle at v. This means that the minimal determining sets for the subspaces
S(△k

i ) may not be subsets of the minimal determining set for the full space.
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Remark 4. For convenience, the results of Sect. 5 assume that we are working
with a spline space with a 1-local stable basis. However, the same analysis can be
carried out with spline spaces with ℓ-local stable bases under the assumption that
k ≥ ℓ.

Remark 5. The computations reported here were done on a Macintosh G5 com-
puter using Fortran. The codes have not been optimized for storage or compu-
tational speed. We report computational times to give a feeling for how quickly
domain-decomposition spline fits can be computed, and to provide a basis for com-
paring various algorithms. Since the local fits in the DDC method can be computed
independently, the actual run times can be greatly reduced by working on a multi-
processor machine (or on a cluster).
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