Smooth Macro-Elements Based
on Clough-Tocher Triangle Splits

Peter Alfeld " and Larry L. Schumaker )

Abstract. Macro-elements of smoothness C'” on Clough-Tocher triangle splits
are constructed for all » > 0. These new elements are improvements on elements
constructed in [11] in that (disproving a conjecture made there) certain unneeded
degrees of freedom have been removed. Numerical experiments on Hermite
interpolation with the new elements are included.

§1. Introduction

A bivariate macro-element defined on a triangle 7' consists of a finite dimensional
linear space § defined on 7' and a set A of linear functionals forming a basis for the
dual of §.

It is common to choose the space & to be a space of polynomials or a space
of piecewise polynomials defined on some subtriangulation of 7. The members
of A, called the degrees of freedom, are usually taken to be point evaluations of
derivatives, although here we will also work with sets of linear functionals which
pick off certain spline coefficients.

A macro-element defines a local interpolation scheme. In particular, if f is
a sufficiently smooth function, then we can define the corresponding interpolant
as the unique function s € § such that As = Af for all A € A. We say that a
macro-element has smoothness C" provided that if the element is used to construct
an interpolating function locally on each triangle of a triangulation A, then the
resulting piecewise function is C'” continuous globally.

The first C" macro-elements were constructed using polynomials of degree
4r 4+ 1, see Remark 9.1. To get macro-elements using lower degree polynomials, it is
necessary to split the triangle. Here we focus on the case where T is split into three
subtriangles by connecting its vertices to some point v7 in the interior. We call the
resulting triangulation Tcr the Clough-Tocher (CT) split of T. The standard choice
for the interior vertex is the barycenter of T'.
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The classical Clough-Tocher macro element [5] is based on the triangulation
Ter and the 12-dimensional space of C! cubic splines on T, The 12 degrees of
freedom are chosen to be the values and gradients at the three vertices of T', along
with the first order perpendicular cross-boundary derivative at the midpoint of each
edge of T

Several authors have created smoother versions of this classical cubic CT-
element, see [3,7,8,11,14-15] based on certain superspline spaces. The best results
to date [11] used spaces with dimension

2 ~
‘ 43m +231m—|—()’ r = 2m,
dim := , (1.1)
43m>465m424

5 , r=2m+ 1.

which, of course, is also the number of degrees of freedom. It was conjectured there
that C" elements on the CT-split with a smaller number of degrees of freedom

could not be constructed. Here we show that this is not the case by constructing
C" macro-element spaces with

2
‘ 39m +233m—|—6’ r=2m,
dim :=

2 )
39m —|—g3m—|—24’ r=9%m + 1.

(1.2)

We accomplish this by working with spaces of supersplines defined by enforcing
certain individual smoothness conditions across the interior edges of T 7.

The paper is organized as follows. In Sect. 2 we review some well-known
Bernstein-Bézier notation, and establish a basic smoothness lemma. In Sect. 3 we
review minimal determining sets. The cases where r is even and odd are treated in
Sects. 4 and 5, respectively. Sect. 6 shows how our degrees of freedom translate into
nodal functionals, and Sect. 7 describes the application of our elements to Hermite
interpolation of scattered data. Numerical experiments can be found in Sect. 8,
and concluding remarks in Sect. 9.

§2. Preliminaries

Our starting point is [11], and we closely follow the notation used there. In this
section we review only the most essential notation and concepts.

We will make extensive use of well-known Bernstein-Bézier techniques. In
particular, we represent polynomials p of degree d on a triangle T := (uq, u2,u3) in

their B-form
p= Z cg;‘kB;ijka
i+j+k=d
where B;ijk are the Bernstein polynomials of degree d associated with T'. In particu-
lar, if (a, 3,7) are the barycentric coordinates of any point v € R? in terms of the

triangle 7', then

B, (u) = La’ﬂj k i+j+k=d (2.1)



As usual, we associate the coefficient c;‘gk with the domain point

T (tuy + Juz + kus)
ijk = d ;

1+ +k=d.
We will work with the usual rings and disks of domain points defined by

RI(uy) :={¢+ i=d—n},
D) = e+ i 2 d—n},
with similar definitions at the other vertices of T.

Suppose that T := (u1, uz, uz) and T := (u4, us, us) are two adjoining triangles
which share the edge e := (uz,u3). Let p and p be two polynomials of degree d
with B-coefficients c;j; and ¢;;; relative to T and T, respectively. Then it is well
known (cf. [4]) that p and p join with C" continuity across the edge e if and only if

6n,m—n,d—m = Z Ci,j—l—d—m,k—l—m—nBZ‘k(uél)a (22)
itjtk=n
form=0,...,d—nandn=0,...,r. Here B} are the Bernstein polynomials of

degree n on the triangle 7.

Assuming that the coefficients of p are known and that p joins p with C”
continuity, the smoothness conditions (2.2) can be used to compute the coeflicients
Cn,m—n,d—m Of p for 0 <n < r. They can also be used in situations where some of
the coefficients of both p and p are known and others are unknown. We need the
following lemma which shows how this works for computing coefficients on the ring

R (u) U RL (uy).

Lemma 2.1. Suppose T and T are as above, and that all coefficients c;;i, and ¢;ji
of the polynomials p and p are known except for

Cy = Cyd—m,m—v, v=~0+1,...,q,
(2.3)

Cv = Cy,m—v,d—m+ v=~0+1,...,q,

for some {,m,q,§ with 0 < ¢q,q, -1 <0 <4¢q,G, and g+ G — ¢ < m < d. Then these
coefficients are uniquely determined by the smoothness conditions

Cnmondem = Y Cijrd-mitm-nBlip(us),  L+1<n<qg+G—L (24)
i+jt+k=n

Proof: Let ¢ := (¢o41,-..,¢q,Co41,---,¢3)1 . Then (2.4) can be written in the form

Mc:=5b (2.5)



with
A T
e [2 4)

where I is the (§— () x (§— ¢) identity matrix, O is the (¢ — €) X (§ — {) zero matrix,

ij - . v 5 .
L+ g=1,...,9—1¢,

and

G\ evj g-trioj .
Bij = <£+j>a+]7q T =1, L
Here «, 3,7 are the barycentric coordinates of uy relative to T, i.e., uy = auy +
Pug + yus. The right-hand side is given by

b — Qy, 1 S v S ‘j - £7
Y {am—ay, §—C0+1<v<qg+§—20
where ,
Ay = Z ci,j—}-d—r—}-u—}-f—n,k—l—r—u—ﬁBf]—‘;V(u4)-
i+j+k={+v

Here the prime on the sum means that the sum is taken over all ¢, 7, k¥ such that
Ci j+d—r+v+l—n k+r—v—e¢ 18 Dot one of the coefficients defined in (2.3).

By the block structure, to prove that M is nonsingular, it suffices to examine B.
Let B be the matrix obtained by factoring a‘*7 /(¢ + j)! from the j-th column of B
for j =1,...,q—{. By the Toeplitz nature of E, we see that det(ﬁ) = Cyli-0(a=0)
for some constant C'. Since «,7 are nonzero, it remains to show that C' # 0.

We note that the matrix B is the Gram matrix corresponding to the functions
{:z:q'i"}?:_f, and the linear functionals {57D£+]}g;f, where 6, is point evaluation

at 7. Now if det(B) were zero, there would exist a nontrivial polynomial f =

?:_f a;x? satisfying D7 f(y) = 0 for j = 1,...,¢ — (. But then ¢ = D" f
would be a nontrivial polynomial of degree ¢+ ¢ — 2¢ — 1 which vanishes § — ¢ times
at 0 and ¢ — ¢ times at . This is impossible, and we conclude that C' cannot be
zero. [

Various weaker versions of Lemma 2.1 can be found in the literature — for
example, see Lemma 3.3 of [6] in the special case where ¢ = ¢. We now illustrate
the lemma for the case ¢ = —1, (which is the only case we use here).

Example 2.2. Let d=10,m =8, ¢q=2,§=3, and { = —1 in Lemma 2.1.

Discussion: Fig. 1 shows the domain points of two adjoining triangles. We as-
sume that we know the coefficients of p and p corresponding to open disks, and
that we want to compute the coefficients cz96, ¢127, co2g of p and €352, ¢262, €172, Cos2
of p which correspond to the domain points marked with black boxes. By the

lemma, these seven coefficients on RY (u2)U RY (u5) are uniquely determined by the
C°,...,C"% smoothness conditions listed in (2.4). O
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Fig. 1. The B-net for Example 2.2.

§3. Minimal determining sets

Let SY(A) be the space of continuous splines of degree d on the triangulation A,
and let Dy A be the union of the sets of domain points associated with each triangle
of A. Then it is well known that each spline in S}(A) is uniquely determined by
its set of B-coefficients {c¢}eep, o, Where the coefficients of the polynomial s|7 are
precisely {c¢}eep, anT-

In this paper we are interested in subspaces S of S9(A) which satisfy additional
smoothness conditions. In addition to the usual C” smoothness conditions across
edges and C? smoothness conditions at vertices, we shall also make use of special
individual smoothness conditions. B

Suppose that T := (uy,uz,u3) and T := (ua4, us, uz) are two adjoining triangles
which share the edge e := (uz,us3). Let ¢;;x and é;;x be the coeflicients of the B-
representations of sy and sz, respectively. Then for any n < m < d, let

Tm,edS = gn,m—n,d—m - Z Ci,j—l—d—m,k—l—m—nBlnjk(uAl), (31)
itjtk=n

where B} are the Bernstein polynomials of degree n on the triangle T. In terms
of these linear functionals, the conditions (2.2) for C'™ smoothness across the edge
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e can be restated as
T .s=0, 0<m<d-—n, 0<n<r.

If s is a spline in §Y(A ) which satisfies additional smoothness conditions beyond
C? continuity, then clearly we cannot independently choose all of its coefficients
{ce}eep, n. We recall that a determining set for a spline space § C SJ(A) is a
subset M of the set of domain points Dg A such that if s € § and ¢ = 0 for all
£ € M, then ¢ = 0 for all { € Dy a, t.e., s = 0. The set M is called a minimal
determining set (MDS) for § if there is no smaller determining set. It is known that
M is a MDS for § if and only if every spline s € § is uniquely determined by its
set of B-coeflicients {cg}ee .

A MDS M is called stable provided that for each 8 > 0 there is a constant Ky
such that ||s]|lec < Kp||¢|/oo, where ||¢|| := maxgeas |ce¢| whenever A is a triangula-
tion whose smallest angle is at least 6.

We conclude this section with some additional notation. If v is a vertex of A,
the sets R,,(v) and D,,(v) are defined to be the unions of the rings RL (v) and
disks DL (v), respectively, taken over all triangles T attached to v. Given a triangle
T and a point vy inside the triangle, we define the associated Clough-Tocher split to
consist of the three triangles T := (v, vi,vig1) for ¢« = 1,2, 3, where we identify
vy = v1. We write e; for the edge (v;,vr) for i =1,2,3.

84. The case r =2m

In this section we construct C'" macro-elements for even r associated with the
Clough-Tocher split Tor of a triangle 7. Our starting point is the space of super-
splines

Samo2mIm I Top) i={s € C*™(T) : s|lp € Paall T € A, s € C*™(v;)

4.1
for 1<:<3,and s € C5m+1(vT)}, (1)

where v is the center point of the split and Py is the space of polynomials of degree
d. As usual, C*(v) means that all polynomials on triangles sharing the vertex v
have common derivatives up to order p at that vertex.

Theorem 4.1. Fix r = 2m, and let §;(Tcr) be the linear subspace of all splines

s in ngflmﬁm—'_l(TCT) satistfying the following set of additional smoothness condi-
tions:

Tamiltlitis=0, 1<j<i, 1<i<m-—1, (4.2)

Tamiiitis =0, 1<j<i, 1<i<m-—1, (4.3)

titis =0, 1<j<m-i+1l, 1<i<m, (4.4)

titis =0, 1<j<m—i, 1<i<m-L1. (4.5)
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Then
39m? +33m + 6

dim §;(Ter) = 5 ,

(4.6)

and the following set M, of domain points is a stable MDS for S;(Tcr):

1) DIV (v;) fori =1,2,3,

2) L€ ameiits & amjstamb for j =1,...,2m and i = 1,2,3.
Proof: First we show that M, is a determining set. Suppose that we set the
coefficients ¢¢ of s € §;(Tor) to zero for all £ € M,. Then we claim that all other
coefficients must be zero. We begin by using Lemma 2.1 to solve for the unset
coefficients corresponding to domain points on the rings Rsm+i(v1) and Rgpmyi(v2)
for ¢ = 1,...,m. On each ring this involves solving the nonsingular system of
2(m + 1) — 1 homogeneous equations corresponding to the lemma. Note that the
spline satisfies all of the smoothness conditions (2.4) required for the lemma, since
either they are already implicit in the super-smoothness of the space, or have been
explicitly enforced in the definition of S,(Tcr).

We next compute unset coefficients on the ring Rym41(v1). This involves
solving a (4m + 1) x (4m + 1) system with zero right-hand side. Then we do
the ring Rym+1(v2) which involves solving a 4m x 4m system since Rym,41(v1) and
Rym+1(v2) overlap in one point. We continue alternating between rings around vy
and vy. In particular, for each ¢ = 2,...,m we do the ring Rym,+i(v1) followed by
the ring Rym+i(v2). The first of these involves solving a (4m+1) x (4m+ 1) system,
and the second involves solving a 4m x 4m system.

Next we successively compute undetermined coefficients on each of the rings
Rspmti(vs) fore=1,...,3m+1. Each of these involves solving a (2m+1) x (2m+1)
system with zero right-hand side. Finally, the remaining coefficients in T can be
computed from the smoothness conditions across the edge (v, vr). We have shown
that all coefficients of s must be zero, and thus that M, is a determining set for
Sr(TCT)-

To show that M, is a minimal determining set, we show that its cardinality
is equal to the dimension of &,.(Tcr). It is easy to check that #.M, is equal to
the number in (4.6). Now consider the superspline space Sg::ffl—i_l(TCT). By
Theorem 2.2 in [16], the dimension of this space is (46m? + 34m + 6)/2. Our space
S:(Ter) is the subspace which satisfies the 2m? — m special conditions (4.2)—(4.5)
and the supersmoothness C*™(v;) for i = 1,2,3. Enforcing this supersmoothness
requires an additional 3(m? 4+ m)/2 conditions, and thus

46m? +34m+6  4m? —2m ?)(m2 +m)

2
: . _ . < dier(TCT) < 39m —|—33m—|—6‘

2

Since the expression on the left equals the one on the right, we conclude that it is
equal to the dimension of §,(T¢7). This proves M, is a MDS.
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Fig. 2. The C? macro-element Sy(Teor).

Finally, we claim that the MDS M, is stable. This follows from the fact that
once we set the coeflicients of a spline s € S,(T¢r), the remaining unset coeflicients
can be computed in the order described above either directly from smoothness con-
ditions (known to be a stable process) or from Lemma 2.1. The latter computation
involves solving a non-singular linear system whose determinant (and thus the con-
stant I of stability) depends only the barycentric coordinates of vy. O

The solution of systems of linear equations required in the above construction
can be simplified by precomputing the inverses of the relevant matrices. These
explicit inverses can be used to give explicit formulae for all of the computed co-
efficients in terms of the coefficients which have been set. However, in practice,
it 1s generally easier to compute the right-hand sides of the systems using the
de Casteljau algorithm, and then multiply by the precomputed inverses.

Example 4.2. Let r = 2m with m = 1. In this case the macro-element space
S2(Ter) is the subspace of 572’3’6(TCT) which satisfies the additional smoothness

condition T55 o -
€1

Discussion: By Theorem 4.1, the dimension of Sa(T¢r) is 39, and a MDS M, is
given by

1) DI (v;) for i = 1,2, 3,
[i] [i] [i] .
2) §E373, 553’2, and §§2’3, for . =1,2,3.

This MDS is illustrated in Fig. 2, where the points in 1) are marked with black
disks while those in 2) are marked with black squares. The tip of the smoothness
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Fig. 3. The C* macro-element Sa(Tor).

condition 72 is marked with a bracket. Note that the smoothness conditions

5,e
7'53’618 =0 E’Lrid T54’618 = 0 are automatically satisfied due to the supersmooth-
ness C%(vr). The steps of the computation are indicated by straight lines drawn
through domain points in Fig. 2. First we compute the marked coefficients on
R4(v1), then on the rings R4(v2), Rs(v1), and Rs(vz). Next the coefficients on
rings R4(vs), R5(vs), Re(vs) are computed, followed by the last remaining coeffi-

cient in the bottom triangle. O

The analogous diagram for our C* macro-element is shown in Fig. 3.

85. The case r =2m +1

In this section we construct C'" macro-elements on T¢r for odd r. Here we start
with the space of supersplines

SamPmALImIN oy .= {s € C*™ TN T) 2 slp € Pgall T € A, s € C*™H (vy)

for 1 <i <3, and s € C°"2(vp)},
(5.1)

where vr 1s the center point of the split.

Theorem 5.1. Fixr = 2m+1, andlet S;(Tcr) be the linear subspace of all splines

s in ngi;’3m+l’5m+2(TCT) that satisfy the following set of additional smoothness
conditions:
ramtlHti =0,  1<j<i, 1<i<m, (5.2)



ramtlHtI =0,  1<j<i, 1<i<m, (5.3)
et tls =0, 1<j<m-i+1, 1<i<m, 5.4)
romtttls =0, 1<j<m-i, 1<i<m-1. (5.5)
Then
39m? + 63m -+ 24
dim 8 (Ter) = m” +65m + _ (5.6)

2
Moreover, the following set M, of domain points is a stable MDS:

1) DIV () fori = 1,2,3,
[i] [i] . .
2) {5;‘1:3m+1,3m—j+27---75;‘1:3m—j+2,3m+1} fory=1,....2m+ 1 andi=1,2,3.

Proof: First we show that M, is a determining set. Suppose that we set the
coefficients ¢¢ of s € §p(Tor) to zero for all £ € M,. Then we claim that all other
coefficients must be zero. First we use Lemma 2.1 to solve for the unset coefficients
corresponding to domain points on the rings R3m+it2(v1) and Rsm4ita(ve) for
i =0,...,m. Each step involves solving a (2m + 2¢ 4+ 1) X (2m + 2: + 1) system
with zero right-hand side.

We now use the lemma to find the unset coefficients on the ring Rym3(v1).
This involves solving a (4m + 2) X (4m + 2) system. Then we use the lemma to
compute the unset coefficients on the ring Rym3(v2) by solving a (dm—+1)x(4m+1)
system. We continue alternating between rings around v; and ve. In particular,
for each ¢ = 2,...,m we use the lemma on ring Ram+it+2(v1) and then on the ring
Rym+i+2(v2). The first of these involves solving a (4m + 2) x (4m + 2) nonsingular
system, and the second involves solving a (4m + 1) X (4m + 1) nonsingular system.

Now we successively compute undetermined coefficients on each of the rings
Rspmtivi(vs) for 2 = 1,...,3m + 2. Each of these involves solving a (2m + 1) X
(2m+1) system. Finally, the remaining coefficients in T can be computed from the
smoothness conditions across the edge (v, vr). We have shown that all coefficients
of s must be zero, and thus M, is a determining set.

To show that M, is a minimal determining set, we now show that its cardinality
is equal to the dimension of §.(Ter). It is easy to check that #.M, is equal to
the number in (5.6). Now consider the superspline space S§$I§’5m+2(TCT). By
Theorem 2.2 in [16], the dimension of this space is (46m? 4+ 68m +24)/2. Our space
S/(Ter) is the subspace which satisfies the 2m? 4+ m special conditions (5.2)—(5.5)
and the supersmoothness C*™%1(v;) for i = 1,2, 3. Enforcing this supersmoothness
requires an additional 3(m? + m)/2 conditions, and thus

46m? + 68m +24  4m? + 2m 3(m2 +m)
2 2 2

39m? + 63m + 24
5 .

<dim S, (Ter) <

Since the expression on the left equals the one on the right, we conclude that it is
equal to the dimension of §;(Tcr), and M, is a MDS. Its stability follows exactly
as in the even case. O
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Fig. 4. The C® macro-element Ss(Tor).

As in the even case, we can get explicit formulae for the computed coefficients
in terms of the coefficients which have been set by finding the explicit inverses of the
matrices arising in Lemma 2.1. Alternatively, we can solve the linear systems by
computing the needed right-hand sides using the de Casteljau algorithm and then
multiplying by the inverses.

Example 5.2. Letr = 2m+1 withm = 1. Then the macro-element space Ss(Tcr)

is the subspace of 593’4’7(TCT) which satisfies the additional smoothness conditions

5 5 6
T6 ers T6,en” and T7 ey

Discussion: By Theorem 5.1, the dimension of S3(Tcr) is 66, and the set M,
consisting of the points

1) DT (v;) for i = 1,2, 3,
[i] [i] [i] [i] [i] [i] .
2) 5{4,47 554,37 52T,3,47 5;{,4,27 5:’?,3,37 :’?,2,47 for:=1,2,3

is a MDS. This set is illustrated in Fig. 4, where as in the even case, the points in
1) are marked with black disks, and points in 2) are marked with black squares.
The tips of the special smoothness conditions are marked with brackets. O

The analogous diagram for our C° macro-element is shown in Fig. 5.
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Fig. 5. The C° macro-element Ss(Tor).

§6. Nodal degrees of freedom

It is common in the finite-element literature to describe the degrees of freedom of
macro-elements in terms of derivatives. In this section we show that there is a
natural way to do this for the macro elements introduced in Sects. 4 and 5. Let D,
and D, be the usual partial derivatives. Let ¢; be point evaluation at . If e is one
of the edges of T', we denote the derivative normal to that edge by D.. Let

j (J+1—10)vg + tvp4q

= , , r=1,...,7, k=1,2,3, 6.1
Mk, 1 j (6.1)
and
3m, r = 2m,
Pr ::{ (6.2)
Im+1, r=2m-+1.

Theorem 6.1. Let S, (Tcr) be the spline space defined in Theorems 4.1 and 5.1 for
r even and odd, respectively. Then any spline s € S,(Tcr) is uniquely determined
by the following set of data:

1) {60, D¢ DS }o<atp<p,, fori=1,2.3,
2) {5nj D(”k;”k+1>}{:17 fory=1,....,rand k =1,2,3.
k,i

Proof: It is well known (see [9] for explicit formulae) that setting this nodal data
is equivalent to setting the B-coefficients listed in Theorems 4.1 and 5.1. O
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§7. Hermite interpolation of scattered data

In this section we briefly examine the use of our macro-elements for interpolation of
Hermite data at a set of scattered points V := {(z;,v:)}/_,. Our aim is to construct
a C'7 spline which interpolates this data.

We begin by triangulating the data points. Let A be a triangulation with
vertices at the points of V. For many applications, this might be the Delaunay
triangulation. Let Aecr be the triangulation obtained from A by splitting each
triangle in A about its centroid, and let

Sr(Acr) ={s€C"(Q): s|r € S:(Ter) for all T € A}, (7.1)

where €2 is the union of the triangles of A.

Theorem 7.1. For all m > 0,

<3m—|—2)v + <2m+1)E, r = 2m7

dim S, (Aer) = CrEY 4+ CmENE, r=2m 41,

(7.2)

where V and E are the number of vertices and edges of /\, respectively.

Proof: We consider only the case r = 2m as the case r = 2m + 1 is similar. Let
M, be the following set of domain points:

1) for each vertex v of A, choose a triangle T' of Acr attached to v and include
Dg(v),

2) for each edge e = (vy,v3) of A, let T = (v,vy,v2) be a triangle of Acr con-
taining the edge e. Then include the points {5;7’:3m’3m_]-+1, e 76;1:3m—j+1,3m}
fory=1,...,2mand ¢+ = 1,2, 3.

The cardinality of M, is precisely the number in (7.2). Now setting the coefficients
ce of s for £ € M,, we can use the smoothness conditions to uniquely determine
all remaining coefficients in the disks Dsy41(v;). Then the remaining coefficients
in each triangle can be uniquely computed as in the proofs of Theorem 4.1 and 5.1.
This shows that M, is a MDS, and the proof is complete. O

We are now ready to solve the Hermite interpolation problem.

Theorem 7.2. For any function f which is sufficiently smooth so that the needed
derivatives exist, there is a unique spline s € S,(A¢r) such that

DZDZS(xl7yl):DZDZf(xlayl)7 0§V‘|‘/~L§Pr7 Z.:17"'7na

and ‘ ‘ | |
Dis(nl,)=Dif(nl,), 1<i<j, 1<j<r

for all edges e of /\, where ng’i and p, are defined in (6.1), (6.2).

Proof: For each triangle T of /A, the interpolant s can be constructed locally since
the given data uniquely determines the nodal data of Theorem 6.1. O
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The Hermite interpolant of Theorem 7.2 is exact for polynomials of degree

{Gm—l—l, r=2m,

(7.3)
6m+3, r=2m-+ 1.

Coupling this with the stability of the construction and using the Bramble-Hilbert
lemma as in [11], it is easy to establish the following error bound which shows that
for sufficiently smooth functions, the Hermite interpolant provides optimal order
approximation.

Theorem 7.3. Suppose f lies in the Sobolev space WEFY(Q) for some p, < k < d,,
and let s be the interpolating spline of Theorem 7.2. Then

IDE DY (f = $)lloe < KA i 00 (7.4)

for 0 < a+ 3 < k, where |A| is the mesh size of A (i.e., the diameter of the largest
triangle), | f|k+1,p Is the usual Sobolev semi-norm, and p, is defined in (6.2). If () is
convex, then the constant K depends only on r and on the smallest angle O in /\.

If Q is nonconvex, it also depends on the Lipschitz constant Lsq associated with
the boundary of 2.

Although we did not need a basis to solve the Hermite interpolation problem,
for other applications it is useful to observe that the space §;(Acr) has a convenient
stable local basis. For each & € M, let B¢ be the unique spline in &, (A¢7) such
that

/\nt = (55’7), neM,, (75)

where A, is the linear functional which picks off the B-coefficient corresponding to
the domain point n. In view of (7.5), the splines { B¢ }¢ec a4, are linearly independent,
and thus form a basis for S,(A¢r). It is easy to see that the Bg have local support.
In particular,

1) If £ is a point as in item 1) of Theorem 7.1, then supp(Bg) is contained in the
union of all triangles of /A sharing the vertex v.

2) If € is a point as in item 2) of Theorem 7.1, then supp(B¢) is contained in

77U T, where e is the edge between T and T. (If e is a boundary edge of a
triangle T', then the support is simply 7). By the stability of the construction,
there is a constant K depending only on the smallest angle in A such that

| Belloo < K for all £ € M,.

§8. Numerical results

To test the performance of our higher smoothness macro-elements on Clough-Tocher
splits, we used them to perform Hermite interpolation of some given functions on
scattered data. Here we report just one suite of simple tests which examines the
convergence order of the methods.
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All tests are performed on the unit square £ := [0, 1] x [0, 1]. For data points
we choose the sets

Du = {(l/nlla.]/nll)7 0 g Z7-] S n"}7

where n, = 2¥. This is a set of (n, + 1)2 gridded data points. We choose A, to
be the associated type-I triangulation (also called the three-direction mesh). It is
a Delaunay triangulation of these data, and it is easy to see that |A,| = 2'/2277.
As a test function we take the standard Franke function

3 _(e=2% (9y-2)? _(e+1)2  (oy+1)
49 10 ]

floy) =S [ =

i ES_M_W _ le_(gr_4)2_(9y_7)2

5

on the unit square. For each choice of r = 1, 2, 3, 4 we perform Hermite interpolation
at the points of D), for v = 1,...,5. The corresponding tables show the number ND
of data values used, the maximum error measured on approximately 10° uniformly
distributed points in €2, and the estimated rates of convergence. All computations
were performed in quadruple precision on an SGI. Table 4 stops at v = 4 since for
the C* element, the error is already smaller than quadruple precision (1073?).

ND Error Rate
43 5.191826E-01
131 7.864189E-02 2.722872
451 2.000073E-02 1.975244
1667 1.982802E-03 3.334439
6403 1.403019E-04 3.820934
25091 9.574896E-06 3.873134

Tab. 1. Performance of the C'!' element.

ND Error Rate
138 1.809348E-01
418 3.853874E-02 2.231089
1434 4.398925E-04 6.453015
5290 4.005142E-06 6.779153
20298 1.885962E-08 7.730409
79498 7.824640E-11 7.913061

Tab. 2. Performance of the C'? element.
The results confirm the theory. In particular, for an element constructed from
polynomials of degree d we expect the convergence rate to be d + 1. Since the C'!,

C?, C? and C* elements are of degrees 3, 7, 9, and 13, we should get rates of 4, 8,
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ND Error Rate
231 1.367869E-01
711 1.365725E-02 3.324191

2463 4.412828E-05 8.273748
9135 1.159296E-07 8.572311
35151 1.357903E-10 9.737653
13787 1.542725E-13 9.781683

Tab. 8. Performance of the C'® element.

ND Error Rate

412 2.833822E-01
1260 1.451828E-03 7.608735
4348 9.271893E-07 10.612712
16092 1.323868E-10 12.773889
61852 1.106321E-14 13.546701
242460 4.077150E-19 14.727850

Tab. 4. Performance of the C'* element.

10, and 14. Note that for a given number of data, the higher smoothness elements
give significantly smaller errors. For example, with about 20,000 data, errors are
on the order 1078, 107!, 10718, and 10722,

In connection with this experiment, we note that although the Franke function
looks quite harmless, its higher order derivatives are very large at some points in
the unit square. For example, the sixth derivative DS f which is needed for the C'*
element exceeds 107 at some points.

§89. Remarks

Remark 9.1. Macro-elements based on polynomials were constructed in [18-21].

As observed in [17], when used globally, they correspond to the superspline spaces
ST (D).

Remark 9.2. The java code of the first author for examining determining sets
for superspline spaces was the key tool in discovering the macro-elements described
in this paper. The code is described in [1], and can be used or downloaded from
http://www.math.utah.edu/~alfeld. That web site also contains code that can
be used to generate colored versions of our figures for any r, as well as a detailed
documentation of the MDS code.

Remark 9.3. As shown in [11], it is not possible to construct C™ macro-elements
on the CT-split using splines of lower degree than those considered here, and it is
not possible to enforce lower supersmoothness at the vertices of 7.
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Remark 9.4. It is of course possible to construct smooth macro-elements using
lower degree splines provided we work with more complicated triangle splits. For
macro-elements on Powell-Sabin splits, see [2,12].

Remark 9.5. It is also possible to create macro-elements with even fewer degrees
of freedom by the process of condensation. This amounts to further restricting
the spline space (usually by forcing certain cross-derivatives along edges of the
triangle T' to be of lower degree than they naturally are). The main problem with
this strategy is that it produces elements which no longer have the capability of
reproducing the full polynomial space, and thus have reduced approximation power.

Remark 9.6. As an aid to comparing our macro-elements to each other and to
other elements in the literature, we list their essential properties for r = 1,...,10.
In particular, for each value of r, we tabulate the corresponding polynomial degree
d, the highest derivative D needed to construct the element, the number of degrees
of freedom N of the element, and the number of B-coefficients n of the element.

r d D N n

1 3 1 12 19

2 7 3 39 85

3 9 4 63 136
4 13 6 114 274
5 15 7 153 361
6 19 9 228 571
7 21 10 282 694
8 25 12 381 1489
9 27 13 450 1135
10 31 15 573 2110

Remark 9.7. The construction described here is not unique in the sense that
there are other choices of the extra smoothness conditions which also lead to macro-
elements based on the degrees of freedom used here.

Remark 9.8. When m = 0, Theorem 5.1 describes the classical C'' Clough-
Tocher macro element first constructed in [5]. As observed by various people,
it is automatically C? at vy, even though this was not enforced in the original
construction.

Remark 9.9. The java code mentioned in Remark 9.2 not only checks whether
a given set of domain points is a MDS, but also produces the equations needed
to compute all unset coefficients from those that have been set. This allows the
custom design of macro-elements on arbitrary splits. We have written a program to
produce FORTRAN code for any such custom-designed element, and are currently
conducting tests to compare various possible elements with a given smoothness.
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Remark 9.10. Frequently in practice one has to interpolate given values at scat-
tered data points where no derivative information is provided. In this case, macro-
element methods can still be applied, but the needed derivatives (or the equivalent
set of B-coefficients) have to be estimated from the data. A number of ad hoc meth-
ods are available in the literature for first derivatives; we are currently examining
the problem for higher derivatives.

Remark 9.11. Theorem 7.3 describes the approximation power of the spaces
Sr(Acr) measured in the uniform norm. Analogous results hold for the p-norms,
and can be proved using the quasi-interpolation operators () defined by

Quf:= > XewfBe

geEM,

where B¢ are the dual basis splines of Sect. 6 and A¢ i are the linear functionals

defined in Sect. 10 of [10].
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