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Abstract.  Macro-elements of arbitrary smoothness are constructed on
Clough-Tocher triangle splits. These elements can be used for solving boundary-
value problems or for interpolation of Hermite data, and are shown to be optimal
with respect to spline degree. We believe they are also optimal with respect to
the number of degrees of freedom. The construction provides local bases for
certain superspline spaces defined over Clough-Tocher refinements of arbitrary
triangulations. These bases are shown to be stable as a function of the small-
est angle in the triangulation, which in turn implies that the associated spline
spaces have optimal order approximation power.

§1. Introduction

Let A be triangulation of a polygonal domain € in IR?. In this paper we are
interested in polynomial spline spaces of the form

SjA):={seC"(Q): slrePgforall T € A}

where d > r > 0 are given integers and Py is the space of bivariate polynomials of
degree d. A basis {B;}"_, for a spline space S is called a stable local basis provided
that there exist constants £, K1, Ky depending only on the smallest angle in A such
that

1) for each 1 <7 < n, there is a vertex v; of A for which supp(B;) C Starf(vi),

2) for all choices of the coefficient vector ¢ = (¢, ..., ¢p),
Killello < 1) eiBilloo < Kollellos. (1.1)
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Here star’(v) is defined to be the set of all triangles surrounding a vertex v,
and star®(v) is defined to be the union of the star’(w), where w are vertices of
star®~!(v).

It is known that if a space of splines § of degree d contains Py and has a stable
local basis, then it provides optimal order approximations of smooth functions, see
Remark 8.2. These spaces are of particular importance in applications, such as
data fitting or the solution of boundary-value problems.

Finding stable local bases for spline spaces SJ(A) is a nontrivial task for r > 0,
and for general triangulations can only be done when d > 3r 4 2, see Remark 8.3.
The first constructions were for very special superspline subspaces of Sj(A), and
can be found in [2,10]. A construction for arbitrary spline spaces Sj(A) and corre-
sponding superspline subspaces was discovered only very recently, see [4].

To get stable bases for spline spaces with d < 3r + 2. we have to restrict
ourselves to classes of triangulations with a special structure. In this paper we
work with Clough-Tocher triangulations Ac7 which are obtained from an arbitrary
triangulation A by splitting each triangle into three subtriangles, see Sect. 2.

The main result of this paper is an explicit construction of stable local bases
for the super-spline spaces

Som(Der) = Semii™ ™" (Do),

SZm—I—l(ACT) = 86277nn-—||:31’3m+175m+2(ACT),

(1.2)

where in general

851,7”2,7”3(ACT) — {3 c Sgl(ACT) 8 E Crz(v) for all v € V,

(1.3)
s € C"(v) for all v € W}

for all m > 0. Here V is the set of vertices of the original triangulation A, and
W is the set of centers which have been inserted to form Acp. This is a classical
superspline space with variable smoothness at vertices. As a byproduct of the
construction, we obtain certain useful macro-elements which can be used in the
numerical solution of boundary-value problems, and to solve Hermite interpolation
problems. These macro elements are improvements on existing elements obtained
in [7-8,12-13], see Sect. 6.

The paper is organized as follows. In Sect. 2 we present several preliminary
ideas. The cases r = 2m and r = 2m + 1 are treated in Sects. 3 and 4, respec-
tively. In Sect. 5 we show how our constructions yield useful new macro-elements
for all choices of smoothness r, and in Sect. 6 we compare them with previously
available macro-elements. In Sect. 7 we show that our choices of degrees and super-
smoothness are optimal in a certain sense. We conclude in Sect. 8 with several
remarks.



§2. Preliminaries
We begin by definining what we mean by a Clough-Tocher triangulation.

Definition 2.1. Given a triangulation A of a set 2, the Clough-Tocher refinement
of A is the triangulation obtained by connecting the barycentric center vy of each
triangle T in A to the three vertices of T.

In the special case where this refinement process is applied to a single triangle
T := (v1,v2,v3) with incenter v, we call the resulting Clough-Tocher refinement a
Clough-Tocher cell. We denote such a cell by A,. Since the Clough-Tocher split
of a triangle T' is defined using its barycentric center, it is clear that the smallest
angle in A¢cr is equal to one-half of the smallest angle in T

To construct stable local bases, we make use of Bernstein-Bézier techniques as
in [1,2,4,5,10]. For any given d and triangulation A, let

Dy n = U Dy,

be the set of domain points, where

(101 + jva + kvs)

Dar = {& = yi

, 1+ +k=d},

and T := (v1,v2,v3). We recall that if M is a minimal determining set of domain
points for a linear space S C S7(A), then there exists a corresponding set { B¢ }ee
of dual splines satisfying

ABe =8¢, allpe M. (2.1)

Then the splines {B¢}¢caq are linearly independent and form a basis for §. The
trick is to choose § and M carefully to insure that this basis is stable and local.

We close this section by recalling some additional standard notation. Given a
triangle T := (v1,v2,v3), the ring of radius n around v; is defined by

R:‘f(vl) = {fgk : i =d—n},
and the disk of radius n around vy is defined by
DI (vy) = {f?;k :1>d—n}.

We have similar definitions at the other vertices of T'. If v is a vertex of a triangu-
lation A, we define

Ra(v) := | RI(v),
Dn(v) = UDZ(U)a

where the union is taken over all triangles attached to v.
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83. The case r = 2m

In this section we work with the spaces
Som(Dcr) = Semii™ " (Aer).

To describe a minimal determining set whose corresponding set of dual splines
form a stable local basis for Sz (AcT), we first examine the space Sz;n(A,) on a
Clough-Tocher cell A,. Suppose the boundary vertices of the cell are vy, v, v3 in
counterclockwise order, and let 70 := (v,vi,vi41) for 1 =1,2,3.

Theorem 3.1. Let M be the union of the following sets of domain points:
1) DI(v;) fori = 1,2,3,
2) {5]’37” N ]+1,...,§]3m i1, ampforg=1,....2mandi=1,2,3,
3) Dfuia(v).

Then M is a minimal determining set for Sapm(A,), and the corresponding dual
basis { B¢ }¢em is a stable basis for Sym(Ay). Moreover,

43m? 4+ 31m + 6

(3.1)

Proof: We first show that M is a minimal determining set. Suppose s is a spline
in Sam(A,) whose B-coefficients corresponding to points in M are set to prescribed
values. We now show that all of its remaining B-coefficients associated with do-
main points on A, are uniquely and stably determined. Clearly, the coefficients
corresponding to domain points in the disks D3, (v;) can be uniquely and stably
computed from those corresponding to domain points in item 1) by the classical
smoothness conditions.

We now show how to compute the coefficients corresponding to the remaining
domain points in the disk Dj,41(v). By the super-smoothness at v, these coefhi-
cients can be regarded as the coefficients of a polynomial p of degree 5m + 1 on the
triangle T := = {uy,uz,uz}, where u; := .fm 5m+1,0 for 1 = 1,2,3. The coefficients
which have already been set or computed determine the derivatives D?Dg p(u;) for
0<a+p<2mand:=1,2,3. For each edge e; of f, the prescribed information
also determines the cross derivatives of p of order « at x +m equally spaced points
in the interior of ¢; for 0 < k¥ < m. We also note that setting the data in 3) uniquely
determines the derivatives D?Dgp(v) for0<a+ < 2m—2.

Suppose we now represent p as a single polynomial in B-form on the triangle
T. The above derivative information uniquely determines the corresponding B-
coefficients {¢;jk}itj+k=5m+1 1n the disks Dyp(u;) and in the set By := {éjr &
Dym(u1)U Dy (uz): 0 <: < m} and the two analogous sets Ey and F3 along the
other two edges. At this point we can uniquely compute the coefficients ¢;; of p for
1,7,k > m+1 from the derivatives D?Dgp(v) for 0 < a+ 3 < 2m —2. The stability
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of this computation is governed by the smallest angle of T, which is bounded below

by the smallest angle of A. We can now convert the coefficients of p to coefficients

of s in the disk Ds,+1(v) by subdivision using the stable de Casteljau algorithm.
Finally, to compute the dimension of Sz, (A, ), we observe that

pus|(757)+ (750 ()

which reduces to the number in (3.1). O

We now illustrate Theorem 3.1 with three examples.

Fig. 1. The macro-element S?’S’G(ACT).

Example 3.2. The stable local MDS of Theorem 3.1 for 872’3’6(ACT) is shown
in Fig. 1. It contains 40 domain points. There are 10 points in each of the disks
Ds(v;) (marked with dark circles), three points associated with each edge (marked
with dark squares), and one at the incenter (marked with a dark diamond).

Discussion: We have shaded the disks D3(v;) and Dg(v). The unmarked coefli-
cients in the disks D3 (v;) are computed from the usual smoothness conditions. The
remaining coefficients in Dg(v) are then computed by the method described in the
proof of Theorem 3.1. O
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Fig. 2. The macro-element Si’f’u(ACT).

Example 3.3. The stable local MDS of Theorem 3.1 for Sf§6’11(ACT) is shown
in Fig. 2. It contains 120 domain points. There are 28 points in each of the disks
Ds(v;) (marked with dark circles), 10 points associated with each edge (marked
with dark squares), and 6 at the incenter (marked with a dark diamond).

Discussion: We have shaded the disks Dg(v;) and Dq1(v). The unmarked coeffi-
cients in the disks Dg(v;) are computed from the usual smoothness conditions. The
remaining coefficients in Dqq(v) are then computed by the method described in the
proof of Theorem 3.1. O

Example 3.4. The stable local MDS of Theorem 3.1 for Sfég’m(ACT) is shown
in Fig. 3. It contains 243 domain points. There are 55 points in each of the disks
Dy(v;) (marked with dark circles), 21 points associated with each edge (marked
with dark squares), and 15 at the incenter (marked with a dark diamond).

Discussion: We have shaded the disks Dg(v;) and Dqg(v). The unmarked coefhi-
cients in the disks Dg(v;) are computed from the usual smoothness conditions. The
remaining coefficients in Dq4(v) are then computed by the method described in the
proof of Theorem 3.1. O



Fig. 8. The macro-element Sfég’lﬁ(ACT).

We can now use the construction of Theorem 3.1 to create a stable local basis
for Som(A).
Theorem 3.5. Let M be the following set of domain points:
1) for each vertex v of A, choose a triangle T' of Acr attached to v and include
Dy (v),

2) for each edge e = (vy,v2) of A, let T = (v,vy,v2) be a triangle of Acr con-
T

taining the edge e. Then include the points {&; 3, 3m—jt15--- 76;1:3m—j—|—1,3m}
fory=1,....2m and = 1,23,

3) for each triangle T := (v1,v2,v3) of A include D%F,S]_Z(w) where w is the
barycenter of T and T := (v, vy, v,).

Then M is a minimal determining set for Sz, (A\), and the corresponding dual basis
{B¢}ecm forms a stable star-supported basis for Sy, (A ). Moreover,

dim Sym(A) = <3m2+ 2) Vi (2’”; 1>E + @") N, (3.2)

where V, E, N are the number of vertices, edges, and triangles in /.

Proof: Following the arguments used in the proof of Theorem 3.1, it is easy to
verify that M is a minimal determining set, and that the construction of a dual
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basis can be carried out in a stable way. It is also easy to see that each dual basis
spline has support on star(v) for some vertex v. To get the dimension, we simply
count the number of points in M. 0O

84. The case r =2m + 1

In this section we work with the superspline spaces
Samt1(A) i= Semily " T (Acr).

Theorem 4.1. Let M be the union of the following sets of domain points:
1) DIV () fori = 1,2,3,
2) L€ it amejrzs & am 42 ameay forj =1,...,2m+ 1 and i = 1,2,3,
3) Dinla(v).

Then M is a minimal determining set for Szpm+1(A\y), and the corresponding dual
basis { B¢ }¢em is a stable basis for Sym41(Ay ). Moreover,

. 43m? + 65m + 24
dim 82m+1(Av) == > .

(4.1)

Proof: The proof is very similar to the proof of Theorem 3.1. Suppose s is a
spline in Szm41(Ay) whose B-coefficients corresponding to points in M are set to
prescribed values. We now show that all of its remaining B-coefficients associated
with domain points on A, are uniquely and stably determined. First the data in
1) is used to uniquely compute all coefficients corresponding to domain points in
the disks Dspt1(vi).

To compute the remaining coefficients of s, we consider it to be a polynomial
p of degree 5m + 2 on the triangle T := (u1,uq,us) with u; := 5521’5,”_1_2’0 for
t = 1,2,3. By what we have already computed, we have uniquely determined the
derivatives D?Dgp(ui) for 0 < a+f < 2m and ¢ = 1,2,3. For each edge ¢; of

T, the prescribed information also determines the cross derivatives of p of order &

at Kk + m + 1 equally spaced points in the interior of e; for 0 < k < m. We also

note that setting the data in 3) uniquely determines the derivatives D?Dgp(v) for

0 < a+ 3 <2m — 1. This information uniquely and stably determines all of the

coeflicients of p. We can then stably convert them to coefficients of s by subdivision.
The dimension of Sym41(Ay) is given by

e )

which reduces to the number in (4.1). O

#./M:?)

We now illustrate Theorem 4.1 with three examples.
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Fig. 4. The macro-element 53’4’7(ACT).

Example 4.2. The stable local MDS of Theorem 4.1 for 53’4’7(ACT) is shown in
Fig. 4. It contains 66 domain points. There are 15 points in each of the disks D4 (v;)
(marked with dark circles), 6 points associated with each edge (marked with dark
squares), and 3 at the incenter (marked with a dark diamond).

Discussion: We have shaded the disks D4(v;) and D7(v). The unmarked coefhi-
cients in the disks D4 (v;) are computed from the usual smoothness conditions. The
remaining coefficients in D7(v) are then computed by the method described in the
proof of Theorem 4.1. O

Example 4.3. The stable local MDS of Theorem 3.1 for 81557’12(ACT) is shown
in Fig. 5. It contains 163 domain points. There are 36 points in each of the disks
D7(v;) (marked with dark circles), 15 points associated with each edge (marked
with dark squares), and 10 at the incenter (marked with a dark diamond).

Discussion: We have shaded the disks D7(v;) and Dq2(v). The unmarked coeffi-
cients in the disks D7 (v;) are computed from the usual smoothness conditions. The
remaining coefficients in Dq2(v) are then computed by the method described in the
proof of Theorem 4.1. O



Fig. 5. The macro-element 5557’12(ACT)-

Fig. 6. The macro-element 527110’17(ACT)-
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Example 4.4. The stable local MDS of Theorem 3.1 for S;ilo’”(ACT) is shown

in Fig. 6. It contains 303 domain points. There are 66 points in each of the disks
Dqy(vi) (marked with dark circles), 28 points associated with each edge (marked
with dark squares), and 21 at the incenter (marked with a dark diamond).

Discussion: We have shaded the disks Dq¢(v;) and Dy7(v). The unmarked coef-
ficients in the disks Dqg(v;) are computed from the usual smoothness conditions.
The remaining coefficients in Dy7(v) are then computed by the method described
in the proof of Theorem 4.1. O

We can now use the construction of Theorem 4.1 to create a stable local basis

for 82m+1(A).
Theorem 4.5. Let M be the following set of domain points:

1) for each vertex v of A, choose a triangle T' of Acr attached to v and include

ng+1(v)7
2) for each edge e = (v1,v3) of A, let T = (v, vy, v3) be a triangle of Acr contain-
ing the edge e. Then include the points {f}:3m+1’3m_j+2, . ,5;7’:3m_j+2’3m+1}

fory=1,....2m+ 1 and = 1,23,

3) for each triangle T := (vy,v2,v3) of A include D;S]_l(w) where w is the
barycenter of T and T := (v, vy, v,).

Then M is a minimal determining set for Sypmy1(A\), and the corresponding dual
basis { B¢ }¢em forms a stable star-supported basis for Sym+1(A). Moreover,

2m + 2 om + 1
dim Symgr(A) = (37"; 3>v + ( m; )E + ( m; )N. (4.2)

§5. Macro-elements

The constructions of minimal determining sets for superspline spaces S, (A,) on
the Clough-Tocher split A, of a single triangle T' given in Theorems 3.1 and 4.1
can be regarded as defining macro-elements. In the finite-element literature, such
macro-elements are typically defined in terms of nodal parameters, 7.¢e., derivatives.
Here we have described them in terms of minimal determining sets of B-coefficients,
but it is easy to translate to derivatives.

We give three examples. Given a triangle T = (vq,v2,v3), let A, be the
corresponding Clough-Tocher cell with center v and boundary vertices {vy,wy, ve,
w3y, v3, w3 } in counterclockwise order. We denote the perpendicular cross-derivative
across the edge (v;,viy1) by D;. For any 1 < j, let

< — L+ 1)v; + Lo, . .
Pig = U +, Joi + v+1, for{=1,...,7and ¢ =1,2,3.
J+1
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Example 5.1. Any element in the superspline space S1(Acr) is uniquely defined
by the following twelve data:

1) D?Dgs(vi) for0<a+p<2andi=1,2,3,

2) D;s(pi,) for i =1,2,3.
Discussion: It is well-known from the Bernstein-Bézier theory that specifying
the data in item 1) for an s € SJ(Ac7) is equivalent to setting the B-coefficients
of s corresponding to the domain points in the disks Dy(v;), ¢ = 1,2,3. Having

set these, then setting the derivatives in item 2) here is equivalent to setting the
coefficients in item 2) of Theorem 4.1. O

Example 5.2. Any element in the superspline space 572’3’6(Av) of Theorem 3.1 is
uniquely defined by the following set of 40 data (cf. Example 3.2 and Fig. 1):

1) the derivatives D?Dgs(vi) for0<a+p<3andi=1,23,

2) the derivatives Dljs(pgl), e ,D{s(p;-j), forj=1,2 and1=1,2,3,

3) the value s(w) at the barycenter w of AA,.

Example 5.3. Any element in the space 53’4’7(Av) of Theorem 4.5 is uniquely

defined by the following set of 66 data (cf. Example 4.2 and Fig. 4):
1) the derivatives D?Dgs(vi) for0<a+p3<4andi=1,2,3,
2) the derivatives D{S(pil), . ,Dljs(pij) forj=1,2,3 and:=1,2,3,
3) the derivatives D?Dgs(v) for0 <a+f<1.

§6. Comparison with earlier Clough-Tocher macro-elements

Macro-elements based on Clough-Tocher splits have been proposed in several earlier
papers. For r = 2, see [13]. For general r, see [7,8,12]. The following formulae
(which can easily verified using the above Bernstein-Bézier techniques) can be found
in [8,14]:
dim Sggfflm’?’m(ACT) = (51m2 +2Tm +6)/2,
‘ (6.1)
dim Sgt M HImI A ) = (51m? 4 69m + 24) /2.

The macro-elements constructed Sects. 3-4 have the following advantage over these
macro-elements:

e they use a smaller number of degrees of freedom.
Table 1 shows a comparison of the macro-elements in (6.1) with our new macro
elements for 1 < r < 10. The column d gives the degrees, and the columns n and

n give the number of degrees of freedom, where n is the number otained from (3.1)

and (4.1) while n is from (6.1).
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r d n n

2 7 40 42
3 9 66 72
4 13 120 132
5 15 163 183
6 19 243 273
7 21 303 345
8 25 409 465
9 27 486 558
10 31 618 708

Tab. 1. Comparison of macro elements.

§7. Optimality of the macro-elements

In this section we explore to what extent the spaces chosen in (1.2) are optimal
with respect to the degrees of the splines and the number of degrees of freedom of
the corresponding macro-elements.

Fix the smoothness r. By Theorem 10.1 of [11], a necessary condition for
constructing a macro-element on a Clough-Tocher cell is that we use splines with
super-smoothness

37“—1}

> (7.1)

>
pl—{ Sm+1l, ifr=2m+1

{ 3m, if r = 2m,
at each vertex v; of T.

This means that in order to construct a macro-element on the Clough-Tocher
cell, we have to include the disks D,; in the minimal determining set. In order to
insure that this data can be specified independently, we have to be sure that the
disks do not overlap, and it follows that we need

1 6m+1, if r=2m,
dEQF)r W+1:{ " rem (7.2)
2 6m + 3, if r=2m+ 1.

We now examine what values can be chosen for the super-smoothness p at the
center v of the cell A,. Let

S7P(A) ={s€Si(A,): s€C’(v)}.

By Lemma 3.2 of [5],

dim 857 (A,) = <p;—2> +6{<d_;+1) = (p_;HN +,
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where
d—r+1

o= Z (r+74+1—je)+
Jj=p—r+1
and e is the number of edges attached to the center vertex with different slopes.
For stability of dimension, we need ¢ = 0. Since e = 3 for the Clough-Tocher cell,
stability of dimension is guaranteed as soon as we enforce super-smoothness

3r 1 3m, if r = 2m,
pz[’” ]:{ (7.3)

2 3m+1, ifr=2m+1

at the barycentric center v of T'.

Clearly, it 1s advantageous to choose larger values of p if possible, since this
reduces the dimension of the corresponding super-spline space. However, we cannot
choose p too large, since it can lead to incompatible information on certain of the
rings Rj(v;). Suppose we choose p; and d as given in equations (7.1)—(7.2), and
that we enforce C? continuity at v. Now consider the domain points on the ring
R,.+1(v1) which lie inside the disk D,(v). It is easy to see that this is a set of
2(pi+1—d+p)+1points. Now setting derivatives up to order C" across the edges
of A, implies that r — d + p 4+ 1 of these points are determined at each end of this
arc. This leaves 2(p; —r)+1 points in the center of this arc which are undetermined.
But these points must satisfy p; +1—d+ p continuity conditions across edge (v, v),
which leads to an incompatibility unless 2(p; —r)4+1 > p;+1—d+ p, or equivalently

d+ p; —2r > p.
Then from (7.2) and (7.1) we conclude that we need
om+1, r=2m,
p< {
om+4+2, r=2m+ 1.

which is exactly what we have used in (1.2).

§8. Remarks

Remark 8.1. Clough-Tocher splits were introduced in [3].

Remark 8.2. It was shown in Sect. 10 of [10] that if a space of splines § of
degree d contains Py and has a stable local basis, then it provides optimal order
approximations of smooth functions. In particular, for every 0 < k < d, there exists
a quasi-interpolation operator (Q; such that for every function f € W}f""l(ﬂ),

1D DY (f = QuPllp < KIAFT 7 flisa, (8.1)
for 0 < a+ < k, where |A] is the mesh size of A (ie., the diameter of the largest
triangle), and |f|r41,p i1s the usual Sobolev semi-norm. If € is convex, then the
constant K depends only on d, p, k, and on the smallest angle 6 in A. If Q
is nonconvex, it also depends on the Lipschitz constant Lsq associated with the
boundary of €. In view of our construction of stable local bases for the spaces
Som(Act) and Sym41(Act) for general m > 0, we can conclude that all of these
spaces have full approximation power.
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Remark 8.3. For d < 3r + 2, it is known [6] that the spaces SJ(A) do not possess
optimal order approximation order for arbitrary triangulations. This means that
neither they (nor any subspace S containing Py) has a stable local basis.

Remark 8.4. Macro-elements and stable local bases can be constructed for several
other refinement methods. In [11] we do this for the well-known Powell-Sabin split.

Remark 8.5. We would like to thank Peter Alfeld for writing a beautiful JAVA
program which computes dimensions of spline spaces (in exact arithmetic) and
which can also be used for verifying minimal determining sets. We have made
extensive use of this software in preparing this paper and checking our results. It
can be accessed at http://www.math.utah/~alfeld/MDS/index.html.
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