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A C? Trivariate Macro-Element Based on the
Worsey-Farin Split of a Tetrahedron

Peter Alfeld V and Larry L. Schumaker 2

Abstract. A C? trivariate macro-element is constructed based on the Worsey-
Farin split of a tetrahedron into twelve subtetrahedra. The element uses super-
splines of degree nine, and provides optimal order approximation of smooth
functions.

§1. Introduction

This paper is a companion to our recent paper [5] in which we constructed a C?
trivariate macro-element based on Clough-Tocher splits of a tetrahedron using poly-
nomials of degree thirteen on the subtetrahedra. The purpose of this paper is to
describe an alternative C? macro-element which works with polynomials of degree
nine instead. To be able to use the lower degree polynomials, we have to work with
a more complicated split. Here we choose the Worsey-Farin split [23]. It divides
a tetrahedron into twelve subtetrahedra, as compared with the four subtetrahedra
involved in a Clough-Tocher split.

We recall [5] that a trivariate macro-element defined on a tetrahedron T consists
of a pair (S,A), where S is a space of splines (piecewise polynomial functions)
defined on a partition of T' into subtetrahedra, and A := {\;}?_, is a set of linear
functionals which define values and derivatives of a spline s at certain points in 7" in
such a way that for any given values z;, there is a unique spline s € § with \;s = z;
for + = 1,...,n. These functionals are called the nodal degrees of freedom of the
element. A macro-element has smoothness C" provided that if the element is used
to construct an interpolating spline locally on each tetrahedron of a tetrahedral
partition A, then the resulting piecewise function is C" continuous globally. Our
aim here is to construct a C? macro-element.

The paper is organized as follows. In Sect. 2 we present some background ma-
terial and notation. The construction of our macro-element for a single tetrahedron
is presented in Sect. 3, where we also give a minimal determining set for the space
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and calculate its dimension. In Sect. 4 we collect several lemmas concerning bi-
variate spline spaces which are used in our construction. The macro-element space
for a Worsey-Farin refinement of an arbitrary tetrahedral partition is discussed in
Sect. 5, where again we give a dimension statement and an explicit minimal deter-
mining set. Sect. 6 is devoted to the construction of a nodal determining set for
our macro-element space, and an associated Hermite interpolation operator along
with an error bound for it. We conclude the paper with a number of remarks.

§2. Preliminaries
Throughout the paper, we write ”Pg for the (d;.Lj ) dimensional linear space of poly-
nomials of degree d in j variables. Given a tetrahedral partition A of a polyhedral

domain €2, we define
SH(A):={s€C"(Q):s|r € P3, forall T € A}.

In dealing with polynomials and splines, we will make use of well-known
Bernstein—Bézier methods as used for example in [1-7,11-24]. As usual, given
a tetrahedron T := (vy,vs,v3,v4) and a polynomial p of degree d, we denote the

B—cogfﬁcients of p by c;T';-’,fl and associate them with the domain points 55’,2 =
(mﬂw;k%“”), where i + j + k + | = d. We write Dr 4 for the set of all domain
points associated with T. We say that the domain point 53;’& has distance d — i

from the vertex vy, with similar definitions for the other vertices. We say that 51.7;’,3
is at a distance 7 + j from the edge e := (v3,v4), with similar definitions for the

other edges of T. If A is a tetrahedral partition of a set £}, we write Dp 4 for
the collection of all domain points associated with tetrahedra in /A, where common
points in neighboring tetrahedra are not repeated. Given { € Dr 4, we denote the
associated Bernstein polynomial by Bg’d.

Given p > 0, we refer to the set D,(v) of all domain points which are within
a distance p from v as the ball of radius p around v. Similarly, we refer to the set
R,(v) of all domain points which are at a distance p from v as the shell of radius p
around v. If e is an edge of A, we define the tube of radius p around e to be the set
of domain points whose distance to e is at most p.

If Fis a face of a tetrahedron T, then the domain points in Dp 4 which lie
on F' associated with a trivariate polynomial on T can be considered to be the
domain points of a bivariate polynomial of degree d defined on the triangle F. If
F := (v1,vq,v3) is such a face, we write Dp 4 for this set of domain points. As
usual, we call the set of points D,(v1) in Dr 4 within a distance p from v; the disk
of radius p around v;. Similarly, the set of points R,(v1) in Dr 4 at a distance p from
vy is called the ring of radius p around v;. We use the same notation for disks/balls
and shells/rings, but the meaning will be clear from the context.

Suppose S is a linear subspace of SY(A), and suppose M is a subset of Da 4.
Then M is said to be a determining set for S provided that if s € § and its B-
coefficients satisfy c¢ = 0 for all £ € M, then s = 0. It is called a minimal
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determining set (MDS) for S provided there is no smaller determining set. It is well
known that M is a MDS for S if and only if setting the coefficients {c¢}¢ecar of
a spline in S uniquely determines all coefficients of s. It is also known that the
cardinality of any minimal determining set for S equals the dimension of S.

Now suppose N is a collection of linear functionals A, where As is defined by
a combination of values or derivatives of s at a point 7, in Q. Then N is said
to be a nodal determining set (NDS) for S provided that if s € S and As = 0 for
all A\ € N, then s = 0. It is called a nodal minimal determining set (NMDS) for S
provided that there is no smaller NDS, or equivalently, for each set of real numbers
{2} ren, there exists a unique s € S such that As = z,, for all A € NV.

§3. The Basic Macro-element on one Tetrahedron

Given a tetrahedron T' := (v, vq, v3, v4), let v, be a point in the interior of T'. In this
section we take v, to be an arbitrary point in 7', but to obtain a C? macro-element
space on a general tetrahedral partition, we need to be more careful in the selection
of the v,, see Sect. 5 below. In addition, for each face F' of T, let vp be a point
in the interior of F'. For tetrahedral partitions with more than one tetrahedron,
we will also have to choose these points in a special way. Suppose now that we
connect v, to each vertex v of T' and to each point v, , and we connect each v, to
the vertices of the face in which it lies. Then T is split into 12 subtetrahedra. This
split was used in [23] to construct a C' piecewise cubic trivariate macro-element.
We refer to it as the Worsey-Farin split and denote it by Twr. We write Vp, Er,
and Fr for the sets of vertices, edges, and faces of T'. Let £F be the set of four
edges connecting v.. to the face points v, , and for each F := (vy,vs,v3) € Fr, let
Er be the set of three oriented edges (v;,v,), i = 1,2,3. We write F2 for the set
of 12 faces of Ay of the form (v,,v,,v), where v € Vp.

We need some additional notation before introducing our basic macro-element.
Suppose t := (v,.,v,,v1,v2) and t := (v,.,v,,vs,v3) are two tetrahedra in Ty p
which share the face F := (v,,v,,v2) € F. Let ciji and ¢, be the coefficients
of the B-representations of s|; and s|;, respectively. Then we define the linear
functionals v, and p, by

— = t,5
V.8 1= Cp 1,35~ E Co,i+1,j,k+3B; 1, (v3),
i+j+k=5
3.1)n
- - (31
fpS = C1,035 — ¢1,i,5,k+3B 5 (v3),
i+i+hk=5

where ij‘;’c are the Bernstein polynomials of degree 5 with respect to the triangle
(vp,v1,v2). Note that v, s involves coefficients of s on the shell Rg(v,.), while p, s
involves coefficients of s on the shell Rg(v,.).

We now introduce our basic macro-element space as the following space of
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supersplines defined on Ty p:

So(Twr) :={s € C*(T) : s|; € P3 for all t € Ty,
s € C3(e), for all e € &r,
s € C"(e), forall e € &S,
v,8=p,s=0, forall F € F2
s € C4(v), forallv € Vy,
s€ C(vy)}-

(3.2)STWF

As usual, if v is a vertex of Ty, then s € C”(v) means that all polynomial pieces
of s defined on tetrahedra sharing the vertex v have common derivatives up to order
p at v. If e is an edge of Ty, then s € C*(e) means that all subpolynomials of
s defined on tetrahedra sharing the edge e have common derivatives up to order p
on e.

Before proceeding, we first make some remarks about our fairly complicated
definition of Sy(Twr). The construction is the result of a considerable amount of
experimentation with the first author’s java code for working with trivariate splines,
see Remark 6. In creating S2(Tw ), we had two aims in mind: to create a macro-
element which will be globally C? smooth, and to minimize the complexity and
number of degrees of freedom. First, we observe that we are forced to impose the
C* supersmoothness at the vertices of T, since otherwise we could not make macro-
elements on adjoining tetrahedra join with C? smoothness, see Remark 4. Since
derivatives up to order 4 at the vertices are not allowed to interfere (or equivalently,
balls of radius 4 around the vertices are not allowed to overlap), this forces us to
use polynomials of degree (at least) nine. The additional supersmoothness in the
definition of Sy(Twr) has been imposed in order to remove unnecessary degrees
of freedom from our macro-element. While other choices are possible, we found
that this choice is the most symmetric while at the same time providing stable
computations.

For each vertex v of T', let T, be one of the tetrahedra in Ty r attached to v.
For each edge e := (u,v) of T, let T, be one of the two tetrahedra containing e, and
let E3(e) denote the set of domain points in the tube of radius 3 around e which
do not lie in the balls D4(u) or D4(v). Finally, for each face F := (vq, v, v3) of T,
let Tr; = (v, U, Vi, Vig1), @ = 1,2, 3, where we set vy := v;.

wr Theorem 3.1. The space Sy(Tw r) has dimension 292. Moreover,

M:=|J M,u | MU | Mr UMy (3.3)wrmas

vEVr e€lr FeFr

is a minimal determining set for Sy(Tw r), where
1) M,U = D4(’U) N T’u;
2) Me = Eg(e) N Te,
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i geTra (Tr2 (Trs
3) Mp := {52430’ 24305 52430
4) Mr := D3(v,)NT,_.

Proof: We shall show that M is a minimal determining set for Sy(TwF), which
in turn implies that the dimension of So(TwF) is just the cardinality of M. The
cardinalities of the sets M,, M., Mg, My are 35, 20, 3, and 20, respectively.
Since T has four vertices, six edges, and four faces, it follows that the dimension of
So(Twr) is 4 x35+6 x 20+ 4 x 3+ 20 = 292.

To show that M is a minimal determining set for So(Tw ), we need to show
that setting the coefficients {c¢}eem of a spline s € So(Twr) uniquely determines
all other coefficients of s. First, for each vertex v € Vr, the C* smoothness at v
implies that all coefficients corresponding to domain points in Dy(v) are uniquely
determined. Moreover, for each edge e € £, the C3 smoothness around e implies
that the coefficients of s in the tube of radius 3 around e are uniquely determined.

We now examine the coefficients corresponding to domain points on the shell
Ry(v,), i.e., on the outer faces of Tyyp. Let F' := (v1,v9,v3) be a face of this
shell. We can consider the coefficients of s corresponding to the domain points on
F, see Fig. 1 (left), as the coefficients of a bivariate spline g := s|r in the space
S2(For) defined in (4.2) below, where Fer is the Clough-Tocher split of F' into
three subtriangles. By the above, it is clear that all coefficients of g corresponding to
the domain points marked with dots or triangles in Fig. 1 (left) are already uniquely
determined. But then by Lemma 4.1 below, all other coefficients of g are uniquely
determined. Repeating this argument for each face of Rg(v..), we conclude that the
coefficients of s are uniquely determined for all domain points on the shell Rg(v.,.).

Now consider the coefficients of s corresponding to domain points lying on
the shell Rg(v..). For each face F := (vy, vy, v3) of this shell, we can consider the
B-coefficients of s corresponding to domain points on F, see Fig. 1 (right), to be
the coefficients of a bivariate spline g in the space S2(For) defined in (4.5) below.
It is clear from the above that all coefficients of g corresponding to domain points
marked with dots or triangles in Fig. 1 (right) are already uniquely determined.
But then by Lemma 4.2 below, all other coefficients of g are uniquely determined.
Repeating this argument for each face of Rg(v,.), we conclude that the coefficients
of s are uniquely determined for all domain points on the shell Rg(v,,).

Next we consider the shell R7(v..). Let F be a face of this shell. We can consider
the coefficients of s corresponding to domain points on F' to be the coefficients
of a bivariate spline g in S2(Tor) N C7(Ter), which means that g is actually a
polynomial of degree 7. All coefficients corresponding to domain points marked
with dots or triangles in Fig. 2 are already uniquely determined. In addition, those
corresponding to @ are also uniquely determined as those points are in M. It
now follows from Lemma 4.3 below that all other coefficients of ¢ are uniquely
determined. Repeating this argument for each face of R7(v,.), we conclude that all
coefficients of s corresponding to domain points on the shell Rr(v,) are uniquely
determined.

To show that the coefficients of s corresponding to the remaining domain points

3
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WF1 Fig. 2. Domain points of So(Ty ) on a face of Ry (v ).

in Ty F are uniquely determined, we note that by the C” smoothness at v.., we may
consider the B-coefficients of s corresponding to domain points in the ball D7(v,.)
as those of a trivariate polynomial g of degree 7 considered as a spline in S2(t,,,.),
where t,,. is the Worsey-Farin split of the tetrahedron ¢ whose vertices are the
vertices of D7(v..). By the above, g is uniquely determined on the faces of t. Now
setting the coefficients {c¢}ecam, is equivalent to setting the derivatives of g up
to order 3 at the point v,. But then Lemma 3.2 below shows that this combined
information uniquely determines g. O

van Lemma 3.2. Suppose g € P3 and let {c¢}¢ep, , be its set of B-coefficients relative
to a tetrahedron t. Suppose we are given values for the coefficients corresponding
to the set of domain points lying on the faces of t. Let w be any point in the interior
of t. Then the remaining coefficients of g are uniquely determined by the values of

{D%g(w)}al<s-

Proof: The set of domain points in D; 7 which do not lie on the faces of ¢ is

6
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.= {fszl : 1,7, k,0 > 1}. The cardinality of this set is 20. Now the equations
Dg(w) = 24, la] <3,

provide a linear system of 20 equations for the {c¢}eer. We claim that this system
is nonsingular. To see this, we show that if g is zero on the faces of t and z, = 0
for all |a| < 3, then g = 0. The fact that g vanishes on faces implies that it can be
written as g = £1£20344q, where q € P3, and where for ¢ = 1,2, 3, £; is a nontrivial
linear polynomial which vanishes on the ¢-th face of ¢t. But now the condition
Deg(w) = 0 for || < 3 implies D*q(w) = 0 for |a| < 3, which implies ¢ = 0, which
in turn implies that g = 0. O

§4. Some Bivariate Lemmas

In this section we establish some properties of certain bivariate spline spaces defined
on the well-known Clough-Tocher split of a triangle F' := (v1, v2,v3) in R?. Given
v, in the interior of F', we connect it to all three vertices of F' to split it into three
subtriangles F; := (v,,v;,v;11). Let e; := (v;,v;41) and &; := (v;,v,), i = 1,2,3,
where v4 := v1. Note that in this section we do not make any special assumptions
about the location of v,., just that it be in the interior of F'. For d > 2, let

Si(Fer) :=={s € C*(F) : s|p, € P2,i=1,2,3}.
Given 1 < I < 3, suppose {c;jr} and {G;jr} are the coefficients of s € S3(For)

relative to Fj_1 and Fj respectively, where we identify v4 = v1. Then we define the
linear functional 7", , by

~ l,n
Tllr,bm,ds = cm_nvd_m7n - Z CZ+m_n,],k+d—mB7’.’]k(vl+1)7 (4.1)tau
i+j+k=n

where Bf;,; are the Bernstein polynomials of degree n relative the triangle Fj_;.

Note that 7/, ; describes an individual C™ smoothness condition involving the
coefficients on ring R, (v;).

Lemma 4.1. Let

S2(For) :={s € S2(For) N C"(v,) : s € C*(v,)
and 1 95 = 0,1 =1,2,3},

Then dim 82 (Fgr) = 63, and the set
3
My =] (Mo, U M,,)
=1

7
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is a minimal determining set for S2(For), where
1) M, := D4(v) Nt,, where t, is some triangle of For attached to v,

2) M. is the set of domain points whose distance to e := (u,v) is at most 3, and
which do not lie in the disks D4(u) or D4(v).

Proof: Points in the sets M, are marked with small triangles in Fig. 1 (left),
while points in the disks D4(v) are marked with dots. By Theorem 2.2 in [19],
dim S2(For) N C7(v,) = 75. To get the subspace S2(For), for each [ = 1,2,3 we
have to enforce three extra smoothness conditions at the vertex v; to get C*(v;)
as well as the special smoothness condition corresponding to 7'5679. It follows that
dim S82(For) > 63. Since the cardinality of Mg is 63, to show that My is a minimal
determining set for S2(For) and dim S2(For) = 63, it suffices to show that if s is
a spline in 592 (Fer) whose coefficients satisfy ¢ = 0 for all £ € My, then s = 0. By
the definition of My, it is clear that all coefficients marked with dots or triangles
in Fig. 1(left) are zero. We now examine the coefficients corresponding to the
remaining domain points.

First consider the ring R5(v1). All coefficients corresponding to domain points
on this ring are already zero except for the three corresponding to domain points
within a distance 1 of the edge €;. To compute these three coefficients, we proceed
as in Lemma 3.3 of [9] and Lemma 2.1 of [4]. The C7 smoothness at v, implies
that s satisfies individual C?, C?, and C? continuity conditions on ring Rs(v1), i.e.,
1595 = 0 for n =1,2,3. This leads to a linear system of equations with matrix

a9 al —1
Mz := | 2a2a; a2 0 |, (4.3)ms
3a2a2 a} 0

where (a1, aq,a3) are the barycentric coordinates of vz relative to the triangle Fj.
This matrix is nonsingular since its determinant is —a2a‘1L and ai,as are both
nonzero. Coefficients on the rings R5(v2) and Rs(v3) can be computed in a similar
way.

Now consider the ring Rg(v1). At this point, all coefficients corresponding to
domain points on the ring Rg(v;) are determined to be zero except for the five
corresponding to domain points within a distance 2 of &,. Now the C” smoothness
at v, implies that s satisfies individual C! through C* smoothness conditions on
ring Rg(v1). Coupling this with the special smoothness condition 7'15,6,93 =0, we

are led to the system of equations 77’ s = 0 for n = 1,...,5. The matrix of this
system is
( 0 a9 a1 -1 0
a3  2a3a; a? 0 -1
My := | 3a3a1 3azai af 0 (4.4)ms
6a2a? 4azad ai 0
\10a§a‘;’ Sazat a} 0
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This is a nonsingular matrix since its determinant is equal to —a3a}. Coefficients on
the rings Re(v2) and Rg(v3) can be computed in a similar way. Now all remaining
coefficients of s can be computed from the smoothness conditions by solving similar
nonsingular 5 x 5 systems. We conclude that all coefficients of s must be zero, which
completes the proof of the lemma. O

Lemma 4.2. Let

S2(For) :={s € S2(For) N C"(v,): s € C3(v,) (45)rs
and Tl5,5,88 =0,1=1,2,3}. .
Then dim S2(Fer) = 48, and the set
3
=J My, uM.,)
=1

is a minimal determining set for S2(For), where
1) M, := D3(v) Nt,, where t, is some triangle of For attached to v,

2) M, is the set of domain points whose distance to e := (u,v) is at most 2, and
which do not lie in the disks D3(u) or D3(v).

Proof: The proof is very similar to proof of Lemma 4.1, so we can be brief. By
Theorem 2.2 in [19], dim S2(For) N C7(v,) = 54. To get the subspace SZ(For),
for each [ = 1,2, 3, we have to enforce one extra smoothness condition at the vertex
vy to get C3(v;) along with the special smoothness condition corresponding to Tl55 g
It follows that dim S2(Fer) > 48. Since the cardinality of Mg is 48, to show that

it is a minimal determining set for S2(For) and dim S2(Fer) = 48, it suffices to
show that if c¢ = 0 for all £ € Mg, then s = 0. We already know that all coefficients
of s corresponding to domain points marked with dots or triangles in Fig. 1 (right)
are zero. But then the remaining coeflicients can be computed from the same linear
systems as in Lemma 4.1. O

Lemma 4.3. The set

3
Mz = Mp 0 [ (M, UM,,)
i=1
is a minimal determining set for P2 = S2(Twr) N C"(TwF), where
1) M, := Dy(v) Nt,, where t, is some triangle of For attached to v,

2) M, is the set of domain points whose distance to e := (u,v) is at most 1, and
which do not lie in the disks Dy(u) or Dy(v).

9
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Proof: Points in Mg are marked with @ in Fig. 2, while points in M, are marked
with small triangles. Points in the disks Dy (v) are marked with dots. The dimension
of P2 is 36 and the cardinality of M is also 36. Thus, it suffices to show that M
is a determining set. Suppose s € P2, and ¢¢ = 0 for all £ € M. This means that
the B-coefficients of s corresponding to all marked domain points in Fig. 2 (left) are
zero. First, we note that the coefficients corresponding to the 3 remaining domain
points on R3(v1) can be computed from a nonsingular 3 x 3 linear system with the
matrix M3 given in (4.3). The same holds for the rings R3(v2) and R3(vs). Now
consider R4(v1). There are 4 unknown coefficients corresponding to the unmarked
points on this ring, and they can be computed from a system of 4 equations with
matrix

0 a9 —1 0
a% 20007 0 —1

M4 =
: 2 2
3asa1  3agay

6a2a? 4dasa?

The determinant of this matrix is —6afa3 # 0. We can repeat this for the other
two vertices vy, v3. The remaining coefficients of s are then determined exactly as
in Lemmas 4.1 and 4.2. O

§5. The Macro-element Space Sy(Awr)

We now show that the construction of the previous section can be used to define a
C? macro-element space defined on a general tetrahedral partition, provided that
the split points v, and v, are chosen appropriately. Suppose A is an arbitrary
tetrahedral partition of a polyhedral domain 2, and that the points v, are chosen
so that for any pair of tetrahedra sharing a common face F', the line connecting the
center points passes through the interior of F'. This can be insured, for example, by
taking v, to be the centers of the inscribed balls in each tetrahedron T, see [23]. We
now take Aw r to be the refined partition obtained by applying the Worsey-Farin
split to each tetrahedron in A, where for every face F' shared by two tetrahedra T
and 7', the split point v, on F' is taken to be the intersection of F' with the line
connecting v, and v,.

Let V, £, and F be the sets of vertices, edges, and faces of A\, respectively.
Let V, E, F be the cardinalities of these sets, and denote the number of tetrahedra
in A by Np. We write 7 = Jpca Fp, where F is defined in Sect. 3. Let
E¢ 1= Upen €F, where EF is also defined in Sect. 3. We now define the following

10
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macro-element space:

So(Awr) :={s€C*(Q):s|; € P§ allt € Awr,
s€ C3(e), forallee €,
s€ C"(e), forall e € £°,
Vo8 = pu,s=0, forall F € F°,
s€ C4v), forallv eV,
s€C"(v,), forall T € A}.

(5.1)SWF

To define a MDS for Sy (Aw r) we need some more notation. For each vertex v
of A, let T, be one of the tetrahedra in Ay p attached to v. For each edge e := (u, v)
of A, let T, be one of the tetrahedra containing e, and let F5(e) denote the set of
domain points in the tube of radius 3 around e which do not lie in the balls Dy (u)
or Dy(v). Finally, for each face F := (v1,vq,v3) of A, let Tr; := (vy, Vs, V4, Vig1),
i =1,2,3, where v,. is the split point of some tetrahedron in A containing F' (if F’
is a boundary face, there is just one such tetrahedron — otherwise, there are two).

wrmas Theorem 5.1. The space Sy(Awpr) has dimension 35V + 20E + 3F + 20Nyp.
Moreover, the set

M= U M, U U MU U MpU U M (5.2)wrmas

veY ecf FeF TeEN

is a minimal determining set for Sy(Aw F), where
1) My :=D4(v) N T,,

2) Me = Eg(e) N Te,

o (e¢Tr (Tr2 Tr3
3) Mp = {5243(» 24307 52430

4) Mr = D3(v,)NT,, .

Proof: We shall show that M is a MDS for So(Awr). This implies that the
dimension of So(Aw ) is just the cardinality of M, which is easily seen to be equal
to the given formula.

To show that M is a minimal determining set for So(Twr), we need to show
that if s € So(Twr), then we can set the coefficients {c¢}¢ca to arbitrary values,
and all other coefficients will be uniquely determined. First, since the balls D4 (v)
do not overlap, it is clear that we can set all of the coefficients corresponding to
the sets M, to arbitrary values, and then by the C* smoothness at vertices, all
other coefficients corresponding to domain points in balls D4(v) will be uniquely
determined. Similarly, since the sets FE3(e) do not overlap each other or any of
the balls D4(v), we can set all of the coefficients corresponding to the sets M. to
arbitrary values, and then by the C® smoothness around edges, all other coefficients
corresponding to domain points in the sets F3(v) will be uniquely determined.

Now we can use Lemma 4.1 to compute coefficients corresponding to the re-
maining domain points on the faces of the shells Rg(v, ) for all T. For interior faces
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F', this means computing the same coefficients twice, once for each tetrahedron
sharing F'. But we will get the same values since these coefficients are computed in
the same way using only known coeflicients associated with domain points on F'.

We can now use Lemma 4.2 to uniquely compute coefficients corresponding
to the remaining domain points on the faces of the shells Rg(v, ) for all T. But
now we have to check that if T := (v, v1, v2,v3) and T := (v, v1,v2,v3) are two
tetrahedra sharing a face F' := (v1, va, v3), then these computed coeflicients satisfy
all C! smoothness conditions across F. Note that the split point v, lies on the
line from v, to v,. Let g := s|7 and g := s|5. Consider the typical subtriangle
f = (v,,v1,v2) of For. By the geometry, each of the C! smoothness conditions
involving coefficients associated with domain points in f reduces to a relationship
of the form

b= sc+rd,

where (7, s,0,0) are the barycentric coordinates of v,. with respect to the tetrahe-
dron <’UT, v,,v1,Vz). Here b is a coefficient of g corresponding to a domain point &,
in ¢ which lies at a distance 1 from F, i.e., in Fg := Rg(v,.) N F, see Fig. 1 (right).
Similarly, d is a coefficient of g corresponding to a domain point g in t which lies
at a distance 1 from F, i.e., in Fg := Rg(v_.)NF. The coefficient c is a coefficient of
g corresponding to the domain point on F' which lies on the straight line between
& and &;. Let T'g be the set of n := 66 domain points in Fig. 1 (right) marked with
either a dot or a triangle. Let {b;}I_; and {d;}?_; be the corresponding coefficients
of g and g, respectively, and let {c;}7_; be the coeflicients of g corresponding to
the associated domain points on F, see Fig. 1 (left). Then by the smoothness of s
at vertices and around edges, it is clear that all C'' continuity conditions with tips
at points in I'g are satisfied, i.e.,

b; = sc; + rd;, i=1,...,n. (5.3)ain

Now let ¢ be any other domain point in Fig. 1 (right), and let b, ¢, d be the coefhi-
cients entering into the C! smoothness condition with a tip at £&. Then in view of
Lemma 4.2, b can be computed as a linear combination of the bq,...,b,, i.e., there
exist {a;}™_; such that

b - Zazb,. (5.4)asum
=1

Since Fg, and Fs are just scaled versions of Fy := F it follows that (5.4) also holds
with b’s replaced by either ¢’s or d’s. But then using (5.3), we have

b bl"'bn a1
[]., —S, —T'] C = []_’ -, —7‘] C1**"Cp — 0’
d di---d, a,

which shows that the C'' smoothness condition with tip at £ and involving b, ¢, d is
also satisfied.
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Now for each face of F', we set the coefficients corresponding to Mpg. These
sets are clearly separated from each other, and from the sets D4(v) and E3(e). If F
is an interior face of /A, then there are two tetrahedra 7" and T sharing the face F,
and M lies in just one of them, say T. Next we use the C? smoothness conditions
to uniquely determine the coefficients for the corresponding points in 7. Now we
can use Lemma 4.3 to compute the coefficients of s corresponding to the remaining
domain points on faces F' of the shells R7(v,.) for all T. We now check that these
computed coefficients satisfy all C? smoothness conditions across F. Each domain
point in F%, see Fig. 2, is the tip of a C? smoothness condition. Assuming a,b,c,d, e
are the coefficients on Fy, Fg, Fy, ﬁ’g, F7, the typical condition has the form

a = s2c+ 2rsd + e,

where r, s are as before. By construction, these smoothness conditions are satisfied
for all points ¢ marked with dots, triangles, or & in Fig. 2. There are n = 45 such
points. Writing {a;, b;, ¢;, d;, e; }?_; for the associated coefficients, we have

a; = s2¢; + 2rsd; + r2e;, 1=1,...,n.

Now if ¢ is any other point in F7, then by Lemmas 4.1-4.3, there are «; such that

a ai---Qp o
2 2 c 2 2 C1+°Cp .

1, —s*, —2rs, —r7] =[1, —s*, —2rs, —r] : =0,
d dy---d, :
e el...en an

which shows that the C? smoothness condition with tip at £ and involving b, ¢, d is
also satisfied.

To complete the proof, we now apply Lemma 3.2 to uniquely compute the
coefficients of s corresponding to the remaining domain points in the balls D7 (v,.)
forallT. O

§6. A Nodal MDS and Hermite Interpolation

In this section we show how to construct a nodal minimal determining set for the
macro-element space of the previous section, and then use it to solve a certain
Hermite interpolation problem. First we need some additional notation.

Given any multi-index « = (a1, a9, a3), we write D for the partial derivative
Dgr Dy Dgt. For each edge e := (u,v) of a tetrahedron T' € A, suppose X, is the
plane perpendicular to e at the point u. We endow X, with Cartesian coordinate
axes whose origin lies at the point w. Then for any multi-index 8 = (f1, f2),
we define D? to be the corresponding derivative. It corresponds to a directional
derivative of order |3| := 1 + B2 in a direction lying in X.. Associated with e we

13
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also need notation for the following sets of equally spaced points in the interior of
e:
(t—j+1u+jv

3 .:]_,...,., 6.1ea
T j é (6.1)et

i
ne,j T

for all z > 0.

For each face F := (v1,vy,v3) of A, let D, be the directional derivative asso-
ciated with a unit normal vector to F', and let Dg; be the directional derivatives
associated with the vectors (v;,v,) for i = 1,2,3, where as before v, is the split
point in the face F.

If  is a point in IR, we write ey for the point-evaluation functional associated
with 7, so that for any trivariate function, e, f := f(n).

nodal Theorem 6.1. The set

N = U N, U U N U U Np U U Nt (6.2)wrnodat

veV ecf FeF TeA

is a nodal minimal determining set for So(Aw ), where
1) Ny = {e,D}ai<4;
2) Ne = Uizy Ujea{en: DEYisi=ss
3) Np = {EviD%D%‘,i ?:1;
4) Nt :={ey, D*}|a)<s-

Proof: It is easy to see that the cardinality of the set A/ matches the dimension
of S3(Awr) as given in Theorem 5.1. We already know that the set M defined
in that theorem is a MDS for So(Awr). Thus, to show that N is a NMDS, it
suffices to show that if s € So(Awr), then setting the values {As}rca determines
all coefficients in the set {c¢}ecm-

For each v € V, we can compute the coefficients in M,, from the values of the
derivatives D®s(v) corresponding to N,. Then for each edge e € £, the coefficients
in M, can be computed from the derivatives of s corresponding to N,. We now
use Lemmas 4.1 and 4.2 as in the proof of Theorem 3.1 to compute all remaining
coefficients corresponding to domain points on the shells Rg(v,) and Rg(v,) of
tetrahedra in A.

Now fix F' € F, and consider the set Mp. It consists of the three domain
points {.527;36, Z:gg, "21}?;36}, where Tp; are three tetrahedra in Awp lying on one
side of F' and sharing the face F. These domain points are marked with & in
Fig. 2 (left). To compute the coefficient corresponding to 5;&6, we first solve a 3 x 3
system of equations with associated matrix M3 as in (4.3) to get the coefficients
corresponding to the unmarked domain points on R3(v1) in Fig. 2 (left). Then the

coefficient corresponding to f;fz,;é can be computed from the value of the derivative
D%D%,is(vl). The coefficients corresponding to the other two points in Mg can be
computed in a similar way. Now we can use Lemma 4.3 to compute the coefficients
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of s corresponding to the remaining domain points on shells R7(v,). Finally, as
shown in the proof of Theorem 3.1, for each tetrahedron T in A, we can use the
values {As}renr, to compute the coefficients c¢ of s for { € Mp. O

Theorem 6.1 shows that for any function f € C°(Q), there is a unique spline
s € Sa(Awr) solving the Hermite interpolation problem

As = \f, for all A € NV,

or equivalently,
1) D%s(v) = D*f(v), for all |a] <4 and all v € V,
2) DBs(ni ;) =DEf(nt;), for all |B| =i with 1 < j <iand 1 <i <3, and for all
edges e of A\,
3) D%D}7is(vi) = D%D}%,if(ﬁ), i=1,2,3, for each face F := (v1, va, v3) of A,
4) D*s(v,) = D*f(v,) for all |a| < 3 and all tetrahedra T' € A.

The nodal functionals described in (6.2) involve some derivatives of order higher
than 2, even though s is only C? globally. However, s is in C*(v) at vertices and in
C3(e) around edges, and so the third and fourth derivatives appearing in N, and
N, are well defined. But it is not in C%(v) at a vertex v, and so if F is an interior
face, then the derivatives in Nz are applied to just one of the polynomial pieces of
s which share F'

The mapping which takes functions f € C®(2) to this Hermite interpolat-
ing spline defines a linear operator Z,,, : C®(2) — Sa(Awr). The construction
guarantees that Z, . s = s for every spline s € So(Awp), and in particular for all
trivariate polynomials of degree 9. We now discuss error bounds for this interpo-
lation process, which in turn provides an estimate for the approximation power of
the space S2(Awr).

It is well known that the key to getting error bounds for these types of spline
interpolation operators is to show that the construction of the interpolating spline
is both local and stable. The localness of the operator is clear from the way in
which the B-coefficients of the interpolating spline s are computed. More precisely,
for every domain point &, the corresponding coefficient c¢ of s depends only on
values of f and its derivatives at points in star(7T"), where T € A is a tetrahedron
containing £. Concerning stability, we have

stability Lemma 6.2. Given a tetrahedral partition /\, let Awpr be a corresponding
Worsey-Farin partition, and let 0, be the smallest angle between any two edges
in Awr sharing a vertex. Then

i,QTﬂ (6-3)stab1eWF

6
ce| <CD[Qrl|f
i=0

where Q is the union of the tetrahedra in star(T'), and C is a constant depending
only on 0, .
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Proof: To see that (6.3) holds, we review the computation of the coefficients of
s as described in the proof of Theorem 6.1. For domain points in balls of the
form Dy4(v), where v is a vertex of A, (6.3) follows from the well-known connection
between B-coefficients in such a ball and derivatives at v. Then in the next step
we compute coefficients in the sets M, from the derivatives corresponding to N.
This involves solving some systems of equations whose stability depends on @, ,..
Now Lemmas 4.1 and 4.2 are used to compute coefficients corresponding to domain
points on shells Rg(v,.) and Rg(v,). This involves solving linear systems with
matrices M3 and M5 whose inverses are bounded by a constant depending on 6, ..
Next we go to the shells R;(v..). After solving a 3 x 3 systems for the coefficients
on the 3-rings around the vertices of a face F' of such a shell, we compute the
coefficients in Mg from the derivatives of s associated with N (this is where 6th
derivatives come in). The bound (6.3) also holds for these coefficients. Now the
coefficients corresponding to the remaining coefficients on the shells R7(v,) are
computed from Lemma 4.3, which involves solving systems with matrices M4 and
Ms. Next, we use Lemma 3.2 to solve for the remaining 20 coefficients of s| D7 (v,,)
(written as single polynomial). The matrix Masy of this system depends only on
the barycentric coordinates (a1, a2, as, as) of v, which are all bounded away from
zero by a constant depending on 6, ,. This insures that the inverse of My is also
bounded by a constant depending on 6, ,. These coefficients are then converted
to the final coefficients of s on D7(v..) by subdivision about the point v_., which is
known to be stable. O

Given a tetrahedral partition A, we write |A| for the diameter of the largest
tetrahedron in A.

wrerror Theorem 6.3. There exists a constant K depending only on 6, such that for
every f € C™T1(Q) with 5 <m <9,

”Da(f - IWFf)”Q S K|A‘m+1_|a||f|m+1,§27 (6.4)Wand
for all |a| < m.

Proof: Since the proof is similar to the proof of Theorem 3.3 in [5] and Theorem 6.2

in [20] (see also [17,18] for similar arguments in the bivariate case), we can be brief.
Fix T € A, and let f € C™T1(Q). Fix o with |a| < m. By Lemma 4.3.8 of [8],
there exists a polynomial ¢ := q¢ 7 € P§ such that

ID*(f = Dllew <I(f = Dljatar < K1lQ|™ 1 i1, (6.5)whitney
where Qr is the union of the tetrahedra in star(T). Since Z,,,.p = p for all p € Pg,

ID*(f = Ly )llr < 1D*(f = )7 + DLy, (f — @)l

It suffices to estimate the second quantity. Applying the Markov inequality [22] to
each of the polynomials Z, . (f — q)|r;, where Ty, ..., Ty are the tetrahedra in the
WEF-split of T', we have

||‘DaIWF(f_q)||Tj < K2|A|_|a|||IWF(f_q)||Tj’

16



bivariate

trivariate

slice

necessary

c2wf(.tex) (as of July 30, 2004) TEX’ed at 8:52 on 30 July 2004

where K is a constant depending only on 0, .. Let c¢ be the B-coefficients of the
polynomial Z, . (f — q)|r; relative to the tetrahedron T;. Then combining (6.3)
with the fact that the Bernstein basis polynomials form a partition of unity, it is
easy to see that

7:79'1"'

6
1 Zyr(f —)llT; < Kz max [ce| < Kg ) |Qr|'|f —q
£€DT; a =0

Taking the maximum over j and combining this with (6.5) gives

| Zww (f = Dllr < Ks|A™ flont1,00

which gives
ID*(f = Ly w )l < Kol A1 Fli1, 04

Finally, we take the maximum over all tetrahedra T in A to get (6.4). O

§7. Remarks

Remark 1. In the bivariate setting, C™ macro-elements on various splits have been
studied by several authors, see e.g. [3,4,13,14], and references therein.

Remark 2. C" trivariate polynomial macro-elements defined on nonsplit tetrahe-
dra were constructed in [16] using polynomials of degree 8+ 1. If used to construct
a Hermite interpolant associated with a general tetrahedral partition, they produce
a superspline with C?" supersmoothness around edges, and C*" supersmoothness
at vertices. For r = 2, these elements make use of polynomials of degree 17.

Remark 3. C! trivariate macro-elements were constructed on the WF-split using
splines of degree 3 in [23]. Stability issues and the approximation power were not
addressed. For other C! trivariate macro-elements, see [1,24].

Remark 4. By examining slices through Ty r, it can be shown that it is not possi-
ble to construct C? macro-elements on the WF-split using splines with smoothness
less than 3 around the edges or smoothness 4 at the vertices. This in turn implies
that the minimal degree possible is nine.

Remark 5. In Sect. 5 we have shown that our local construction of a macro-
element on a single tetrahedron given in Theorem 3.1 leads to a C? macro-element
space for general tetrahedral partitions provided for each interior face F', we choose
the split point v, on F' to lie on the line connecting the interior split points v, and
v, of the two tetrahedra 7" and T which share the face F. This geometry causes
the smoothness conditions across F' to be essentially univariate in nature. Tests
using the java program have shown that without this condition, we do not get C?
continuity.
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Remark 6. The java code of the first author for examining piecewise polynomial
functions on tetrahedral partitions was a key tool in developing the macro-elements
described in this paper. The code uses residual arithmetic to compute the dimension
of trivariate spline spaces, find minimal determining sets, and solve the smoothness
equations. It can be downloaded from http://www.math.utah.edu/~pa/3DMDS,
along with associated documentation.

af Remark 7. We have also used the java code to explore the possibility of im-

larger

condense

quasi

c3

Lai

posing additional smoothness conditions on our superspline space Sa(Twr) to get
a space of dimension 272 which is uniquely determined by the domain points of
Theorem 3.1, minus the set My. This would give us a C? macro-element which
is defined by natural degrees of freedom only, i.e., information on the boundary of
the tetrahedron T' that is necessary to ensure the global smoothness and local con-
struction. However, we have not been able to find a symmetric way to do this,
and expect that if it can be done at all, it would require imposing various individ-
ual smoothness conditions of the form (4.1). A similar approach was successful in
the bivariate case, cf. [3,4] where we used it to get natural degrees of freedom for
bivariate macro-element spaces.

Remark 8. We can remove the special smoothness conditions involving v and p
in the definition (3.2) of the space Sz2(Twr) to get an alternative macro-element
space which has 9 degrees of freedom per face rather than 3, and thus has a total
of 316 degrees of freedom rather than 292. The proof that this alternative element
is C? proceeds along the same lines as the proof of Theorem 5.1, and the global
space has dimension 35V + 20E + 9F + 20Nt. The corresponding nodal basis (and
associated Hermite interpolation operator) requires derivatives up to order 4 only,
rather than the order 6 required for the element described here.

Remark 9. It is possible to create macro-elements with fewer degrees of freedom
by the process of condensation. This amounts to further restricting the spline space
by forcing cross-derivatives along edges or through faces of the tetrahedron T to
be of reduced degree. The main problem with this strategy is that it produces
elements which no longer have the capability of reproducing the full polynomial
space, and thus have reduced approximation power.

Remark 10. In this paper we have given error bounds for Hermite interpola-
tion with our macro element in the uniform norm. Analogous results hold for
the p-norms, and can be proved using appropriate quasi-interpolation operators,
cf. Sect. 10 of [12] for the bivariate case.

Remark 11. Using the java code mentioned in Remark 6, one can easily check
that there is a similar C® macro element on the WF-split of a tetrahedron which
uses splines of degree 13 which are C® around the vertices, C° around the edges,
C? at the centroid v,., and C? along edges connecting vr to points vp. This space
has dimension 984, with 916 natural degrees of freedom, see Remark 7.

Remark 12. We have recently learned [10] that Ming-Jun Lai and Alain Le
Méhauté have independently studied C" macro-elements based on the WF split.
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Remark 13. Using the java software, we have also designed C? macro-elements
based on a trivariate analog of the double Clough-Tocher split of a tetrahedron
which is obtained by first applying the CT-split, and then applying it again to each
of the resulting four subtetrahedra. We report on this element in [6].

Remark 14. Tt has recently been shown, see [15], that if incenters are used to con-
struct the bivariate Powell-Sabin element, then the stability of the element depends
only on the smallest angle in the original triangulation before applying the Powell-
Sabin splits. We conjecture that the analogous statement holds here — namely,
that the stability of our element depends only on the smallest angle in the original
tetrahedral partition A rather than on the smallest angle 0, ,. in Ay p. This is an
important distinction, since even though we are using incenters, theoretically the
angles in the Clough-Tocher splits of the faces could be arbitrarily small. We are
still working on this conjecture.

Acknowledgments. We would like to thank Ming-Jun Lai for useful discussions.
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