A C? Trivariate Double-Clough-Tocher

Macro-Element

Peter Alfeld and Larry L. Schumaker

Abstract. A C? trivariate macro-element is constructed based on
the double-Clough-Tocher split of a tetrahedron into sixteen subte-
trahedra. The element uses supersplines of degree nine, and provides
optimal order approximation of smooth functions.

§1. Introduction

This paper is a companion to our recent papers [6,7] in which we con-
structed C? trivariate macro-elements based on the Clough-Tocher and
Worsey-Farin splits of a tetrahedron. The Clough-Tocher split involves
four subtetrahedra, and the corresponding element makes use of super-
splines of degree 13. The Worsey-Farin split involves twelve subtetrahe-
dra, but admits the construction of a macro-element using supersplines
of degree 9. The purpose of this paper is to describe another C? macro-
element which works with polynomials of degree 9, but which is based on
the double-Clough-Tocher split (see Sect. 3 below) which involves sixteen
tetrahedra. While our construction here involves more subtetrahedra than
the Worsey-Farin split, out new element has fewer degrees of freedom and
does not require splitting faces of tetrahedra, thereby avoiding potential
problems with stability.

We recall [6,7] that a trivariate macro-element defined on a tetrahe-
dron T consists of a pair (S,A), where S is space of splines (piecewise
polynomial functions) defined on a partition of T into subtetrahedra, and
A = {\;}™, is a set of linear functionals which define values and deriva-
tives of a spline s at certain points in 7" in such a way that for any given
values z;, there is a unique spline s € § with \;s = z; for+ = 1,...,n.
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These functionals are called the nodal degrees of freedom of the element.
We say that a macro-element has smoothness C" provided that if the ele-
ment is used to construct an interpolating spline locally on each tetrahe-
dron of a tetrahedral partition A, then the resulting piecewise function is
C™ continuous globally. Our aim here is to construct a C? macro-element.

The paper is organized as follows. In Sect. 2 we present some back-
ground material and notation. The construction of our macro-element for
a single tetrahedron is presented in Sect. 3, where we identify the dimen-
sion of the resulting macro-element space and give a minimal determining
set for it. The macro-element space for a double-Clough-Tocher refine-
ment of an arbitrary tetrahedral partition is discussed in Sect. 4, where
we give a dimension statement and an explicit minimal determining set.
Sect. 5 is devoted to the construction of a nodal determining set for our
macro-element space, and the study of an associated Hermite interpola-
tion operator, including an error bound. We conclude the paper with a
number of remarks.

§2. Preliminaries

Throughout the paper, we follow the notation of our earlier papers [6,7],
but for completeness repeat some of the key ideas. We write P for the
(d;.rj ) dimensional linear space of polynomials of degree d in j variables.
In dealing with polynomials and splines, we will make use of well-known
Bernstein-Bézier methods as described for example in [1-7,9-13,15,16].
As usual, given a tetrahedron T := (vy, vy, v3,v4) and a polynomial p of

degree d, we denote the B-coeflicients of p by c;T’;.’,fl and associate them

with the domain points & = (v tgvathvstlvs) where i+ j+ k41 = d.
We write Dr 4 for the set of all domain points associated with 7. We

say that the domain point 55’,:3 has distance d — ¢ from the vertex v1, with

similar definitions for the other vertices. We say that Eg;’,fl is at a distance
i + j from the edge e := (v3,v4), with similar definitions for the other

edges of T. If A is a tetrahedral partition of a set £, we write Da 4 for
the collection of all domain points associated with tetrahedra in A, where
common points in neighboring tetrahedra are not repeated.

Given p > 0, we refer to the set D,(v) of all domain points which are
within a distance p from v as the ball of radius p around v. Similarly, we
refer to the set R,(v) of all domain points which are at a distance p from
v as the shell of radius p around v. If e is an edge of A, we define the tube
of radius p around e to be the set of domain points whose distance to e is
at most p.

Suppose S is a linear subspace of S9(A), and suppose M is a subset
of Da.q. Then M is said to be a determining set for & provided that if
s € § and its B-coeflicients satisfy c¢ = 0 for all { € M, then s = 0. It is
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called a minimal determining set (MDS) for S provided there is no smaller
determining set. It is well known that M is a MDS for § if and only if
setting the coefficients {c¢}eear of a spline in S uniquely determines all
coefficients of s. Now suppose N is a collection of linear functionals ),
where As is defined by a combination of values or derivatives of s at a
point 7 in . Then N is said to be a nodal determining set (NDS) for S
provided that if s € S and As = 0 for all A € N, then s = 0. Tt is called
a nodal minimal determining set (NMDS) for & provided that there is no
smaller NDS, or equivalently, for each set of real numbers {zx}renr, there
exists a unique s € S such that As = z) for all A € V.

§3. The Basic Macro-element on one Tetrahedron

Given a tetrahedron T := (v1, v2,v3,v4), let v, := (v1 +v2 +v3 +v4)/4 be
the barycenter of T'. Then connecting v, to the vertices v; of T results in

a partition of T' into four subtetrahedra 711, ..., Ts. This gives the classical
Clough-Tocher split of T' used in [2,6]. Now for each ¢ = 1,...,4, let v},
be the barycenter of T;. For each i = 1,...,4, we now connect v} to the

vertices of T; to split T; into four smaller tetrahedra. This results in a
partition of 7' into 16 subtetrahedra. In analogy to a similar partition of
triangles used in [1], we call this partition the double-Clough-Tocher split
of T' and denote it by Tpor.

We write Vr, £7, and Fr for the sets of vertices, edges, and faces of
T. Let V& be the set of four subcenters v’ of the DCT-split of T'. Let Fr.
be the set of 6 faces of Tpor of the form (v,,v;,v;), i.e., whose vertices
include v,, and two of the vertices of T'.

We now introduce our basic macro-element space as a space of super-
splines defined on Tper:

So(Tpor) :={s € C*(T) : s|; € P§ all t € Tper,
s € C*(v), forallv € Vr,
s€C(v,), (1)
s € C¥(v), for all v € V&,
s € C3(F), for all F € FlL}.

As usual, if v is a vertex of Tpor, then s € CP(v) means that all polyno-
mial pieces of s defined on tetrahedra sharing the vertex v have common
derivatives up to order p at v. If e is an edge of Tpor, then s € C¥(e)
means that all polynomial pieces of s defined on tetrahedra sharing the
edge e have common derivatives up to order p on e. Similarly, if F' is
a face of Tper, then s € CH(F) means that all polynomial pieces of s
defined on tetrahedra sharing the face F' have common derivatives up to
order 4 on F'.
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Before proceeding, we first make some remarks about our fairly com-
plicated definition of So(Tpcr). The construction is the result of a con-
siderable amount of experimentation with the first author’s java code for
working with trivariate splines, see Remark 7. In creating So(Tpcor), we
had two aims in mind: to create a macro-element which will be glob-
ally C? smooth, and to minimize the complexity and number of degrees
of freedom. First, we observe that we are forced to impose the C* su-
persmoothness at the vertices of T since otherwise we could not make
macro-elements on adjoining tetrahedra join with C? smoothness, see Re-
mark 6. Since derivatives up to order 4 at the vertices are not allowed
to interfere (or equivalently, balls of radius 4 around the vertices are not
allowed to overlap), this forces us to use polynomials of degree (at least)
nine. The additional supersmoothness in the definition of Sa(Tpcor) has
been imposed in order to remove unnecessary degrees of freedom from our
macro-element. After checking all possible variations of supersmoothness
at vertices, around edges, and across faces, we found that the present
space has the minimal number of degrees of freedom achievable without
resorting to imposing individual special smoothness conditions.

For each vertex v of Tpor, let T, be one of the tetrahedra in Tper
attached to v. For each edge e := (u,v) of T, let T, be one of the four
tetrahedra containing e, and let Fy(e) denote the set of domain points in
the tube of radius 2 around e which do not lie in the disks D4 (u) or D4 (v).
Finally, for each face F' := (vy,vq,v3) of T, let T := (w, vy, v2,v3) with
w € Vi be the tetrahedron in Tper containing F'.

The results of this paper are based on the following

Theorem 1. The space So(Tper) has dimension 280. Moreover,

M:=|J M,u | MU | MEUMEUME] UMz (2)

veEVr e€lr FeFr
is a minimal determining set for Sy(TpcT), where
1) My := D4(v) N Ty,
2) M, = Ey(e) N Ty,
3) MY = {&dss ),
4) ML= {&ly 0,5k >2,}
5) M3 i= {655+ 6,5,k > I\ {6175 &arsr > Gaant }
6) Mp = Ui:1 [Dy(v%) ﬂTv;]'

Proof: We have verified that dim Sy(Tper) = 280 and that M is a
MDS using the java program described in Remark 7, working in exact
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arithmetic. As a check on the MDS computation, we can compute the
cardinality of M. The cardinalities of the sets M,, M¢, M%, Mh MZ,
and M7 are 35, 8, 1, 6, 12, and 16, respectively. Since T has 4 vertices, 6
edges, and 4 faces, we find that #M = 4x35+6x8+4x (14+6+12)+16 =
280. O

§4. The Macro-element Space Sy(ApcT)

We now show that the construction of the previous section can be used
to define a C'? macro-element space starting with an arbitrary tetrahedral
partition A of a polyhedral domain €2. Let Apgor be the refined partition
obtained by applying the double-Clough-Tocher split to each tetrahedron
in A. Let V, £, and F be the sets of vertices, edges, and faces of A,
respectively. We write n,,, n,, n, for the cardinalities of these sets. We
denote the number of tetrahedra in A by n,. Let

Fl.= U FF, Ve = U Vr,

TenN TeN

where F}. and V5 are as in Sect. 3. We are now ready to define a DCT-
macro-element space defined on Apgr:

So(Aper) :=={s € C*(Q): s € P§ all t € Apor,
s € C*v), forallv eV,
s€C'(v,), forall T € A, (3)
s € C8(v), for allv € V©,
s € C3(F), forall F € F'}.

To define a MDS for S;(Aper) we need some more notation. For
each vertex v of Apcr, let T}, be one of the tetrahedra in A por attached
to v. For each edge e := (u,v) of A, let T, be one of the tetrahedra in
Aper containing e, and let E5(e) denote the set of domain points in the
tube of radius 2 around e which do not lie in the balls D4(u) or Dy(v).
Finally, for each face F of T, let T := (w, v1,v2,v3) be a tetrahedron in
Aper containing F.

Theorem 2. The space S2(Aper) has dimension 35n,, +8n, + 19n, +
16n,, and the set

M= M,uUM.u | MEUMpUME] U [ Mr ()

veV ec& FeF TeA

is a minimal determining set for So(ApcT), where
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1) My := Dy(v)NT,,
2) M. := E3(e)N Ty,
) My = {fé,Fs’g )
4) My ={&50 0,5,k > 2}
5) M3 = {&500 ¢ i, 4,k > 1P\ {3075, Eatst Eami 1
6) Mz := Ui, [Di(v}) N Ty .

Proof: We shall show that M is a MDS for So(Aper). This implies that
the dimension of Sa(Apcr) is just the cardinality of M, which is easily
seen to be equal to the given formula.

To show that M is a minimal determining set for So(Apcr), we need
to show that if s € So(Apcr), then we can set the coefficients {ce}ecm
to arbitrary values, and all other coefficients will be uniquely determined.
First, since the balls D4(v) do not overlap, it is clear that we can set all of
the coefficients corresponding to the sets M,, to arbitrary values, and then
by the C* smoothness at vertices, all other coefficients corresponding to
domain points in balls D4(v) will be uniquely determined. Similarly, since
the sets E3(e) do not overlap each other or any of the balls Dy(v), we can
set all of the coefficients corresponding to the sets M. to arbitrary values,
and then by the C? smoothness of s, all other coefficients corresponding
to domain points in the sets E(e) will be uniquely determined.

Now let F' be a face of a tetrahedron T' € A, and let Tr € ApcT be
the tetrahedron associated with F in the definition of M%, M1}, and M%.
Suppose we set the coefficients of s|r, corresponding to M%UMEUMZ.
Suppose now that F' is an interior face of A, and let TF be the other
tetrahedron in Apcr which shares the face F'. Then the coefficients of
s| o corresponding to domain points in 7" which lie within a distance of

3

2 of F are uniquely determined from the C? smoothness across F. In
particular, this uniquely determines the coefficients of S‘fp corresponding

to domain points in the analogous set M% U ./T/l}w U ./T/T% associated with
Tr.

For each tetrahedron T in Ape7, we have now uniquely determined
all of the coeflicients of s corresponding to domain points in the minimal
determining set of Theorem 1 for s|7. Thus s is uniquely determined on
each T', and thus everywhere. 0O

§5. A Nodal MDS and Hermite Interpolation

In this section we show how to construct a nodal minimal determining
set for the macro-element space of the previous section, and then use it
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to solve a certain Hermite interpolation problem. First we need some
additional notation.

Given any multi-index o = (a1, ag, a3), we write D® for the partial
derivative Dt D2 D3, For each edge e := (u,v) of a tetrahedron T' € A,
suppose X, is the plane perpendicular to e at the point u. We endow
X, with Cartesian coordinate axes whose origin lies at the point u. Then
for any multi-index 8 = (81, B2), we define D? to be the corresponding
derivative. It represents a directional derivative of order || := 81 + B2 in
a direction lying in X.. Associated with e we also need notation for the
following equally spaced points in the interior of e:

(i—j7+1Du+jv
1+1

ni,j = , yee sy (5)

for all i > 0. Given a point 7 € R?, we write ey for the point-evaluation
functional associated with 7, so that for any trivariate function, e, f :=

f(n)

For each face F := (v1,va,v3) of A, let D,, be the directional deriva-
tive associated with a unit normal vector to F', and let

F, ..
A}? = {gzyks : 2,],1{? 2 2}7

F,7 . .. F77 F77 F’7
A2 = {&ijk 24,0,k > 13\ {€115,&1815 €511 )

(6)

where 55.’: = % We emphasize that all of these points are on
the face F', and are not inside any tetrahedron. Note that there are 6
points in AL and twelve points in AZ%.

Theorem 3. The set

Ne=JMulJMu | WNoUNRUNEJU U Ne  (7)

vey ec& FeF TeA

is a stable nodal minimal determining set for So(ApcT), where
1) Ny == {eyD}qj<4,
2) Ne = Uiz Ujzi{en D2} al=,
3) NP :={eyp}, where np = ¢4 is the centroid of F,
4) Np = {eyDr}peat ;
5) Ni = {gnD%’}neA%;
6) Nr = Ui_i{ew, D*}aj<1-

Proof: It is easy to see that the cardinality of the set A matches the
dimension of Sy(Aper) as given in Theorem 2. We already know that
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the set M defined in that theorem is a MDS for So(Aper). Thus, to show
that N is a MNDS, it suffices to show that if s € So(Aper), then setting
the values {As}ren determines all coefficients of s. For each v € V,
by the C* smoothness at v, we can directly compute the B-coefficients
corresponding to domain points in M,, := D4(v) directly from the values
{D%5(0) bjaica-

Now let F' := (v1,vq,v3) be a face of A. Then for each edge e :=
(vi, viq1) of F', we can use the values {As}ren, to compute the derivatives
D.s(ni), D?s(n?), and D?s(n3), where D, is the directional derivative
corresponding to a unit vector lying in F' and perpendicular to e. Now it
is a standard computation to compute the B-coefficients of the bivariate
spline s|p corresponding to domain points within a distance 2 of e. At
this point all of the coefficients of s|p have been determined except for
the coefficient corresponding to £ € MY%. But this coefficient can now be
computed directly from the value of s(fgg).

We now examine coefficients corresponding to domain points in T :=
(w, v1,v2,v3), where T is a tetrahedron in Aper containing F'. First we
consider domain points on the shell Rg(w). So far all coefficients corre-
sponding to domain points on this shell are already known except for those
corresponding to the six points in M. These coefficients can now be com-
puted from the values {Dps(n)},ca1 by solving a 6 x 6 nonsingular linear
system of equations. Next we consider the shell R7(w), where there are 12
undetermined coefficients corresponding to M2%. These can be computed
from the values of {D%s(n)}, ¢ A2 by solving a 12 x 12 nonsingular system
of equations.

Now for any v € V¢, the coefficients of s corresponding to domain
points in Dy (v) can be computed directly from the values of the derivatives
{D%s(v)}jaj<1- We conclude that all coefficients of s corresponding to
domain points in the set M of Theorem 2 have been determined. The
theorem then implies that all coefficients of s are determined. O

Theorem 3 shows that for any function f € C*(£2), there is a unique
spline s € Sa(Apcer) solving the Hermite interpolation problem

As = Af, for all A € N,

or equivalently,
1) D2s(v) = D*f(v), for all |a] <4 and all v € V,

2) Dgs(ng,j) = Dgf(ng’j), forall [f|l=iwithl<j<iand1<i<2
and for all edges e of A,

3) s(€233) = f(£553), for each face F of A,
4) Drs(&) = Drf(€) for all £ € A, for each face F of A,
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5) D%s(¢) = D% f(€) for all £ € A%, for each face F' of A,
6) D%s(v) = D*f(v), |a| <1, for all v € V°.

The mapping which takes functions f € C*(Q) to this Hermite inter-
polating spline defines a linear operator Z,, ., : C*(Q) — Sa(Apcr). The
construction guarantees that Z,_,.s = s for every spline s € Sa(Aper),
and in particular for all trivariate polynomials of degree 9. We now discuss
error bounds for this interpolation process, which in turn provides an es-
timate for the approximation power of the space So(Aper). Throughout
this section, we use the maximum norm. Since we want to give estimates
for derivatives of splines, we will follow the usual convention in finite-
element theory whereby the norm on a union of triangles €2 is taken to be
the maximum of the norms over the individual triangles. We shall make
use of the classical Sobolev semi-norm |f|; o = maxq<; || D f| o

It is well known that the key to getting error bounds for these types
of spline interpolation operators is to show that the construction of the
interpolating spline is both local and stable. The localness of the operator
is clear from the way in which the B-coefficients of the interpolating spline
s are computed. More precisely, for every domain point &, the correspond-
ing coefficient c¢¢ of s depends only on values of f and its derivatives at
points in T¢, where T € A is a tetrahedron containing £. Concerning
stability, we have the following result.

Lemma 4. Given a tetrahedral partition /\, let Apcor be the correspond-
ing double-Clough-Tocher partition, and let 6., be the smallest angle
between any two edges in /A pcr sharing a vertex. Then there exists a con-
stant C' depending only on 6 such that for any spline s € Sa(ApcT),
its coefficients satisfy

DCT

4
|C€| < CZ |T€|i|8|i,Tga all§ € Dapor,9; (8)
1=0

where T¢ is a tetrahedron containing £, and |T¢| is its diameter.

Proof: To see that (8) holds, we review the computation of the coeffi-
cients of s as described in the proof of Theorem 3. For domain points
in balls of the form D4(v) where v is a vertex of A, (8) follows from the
well-known connection between B-coefficients in such a ball and deriva-
tives at v. In the next step we compute coefficients in the sets M, from
the derivatives corresponding to N,. For each face F', this involves con-
verting the derivatives in N, to derivatives associated with unit vectors
lying in F', and then performing a standard bivariate computation. These
computations are stable with a constant depending only on 6 and so
the resulting coefficients satisfy (8).

DCT?
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Now for each face F' of A, we have already taken care of all coefficients
corresponding to domain points lying in F', except for the one correspond-
ing to £§;;§, which is determined by interpolation at this point. Since this
point is the barycenter of the face, we conclude that the corresponding
coefficient satisfies (8). We next examine the coefficients on Rg(w) of the
tetrahedron T in the proof of Theorem 3. These correspond to ML. To
compute these coefficients, we solve a nonsingular 6 x 6 linear system. The
matrix corresponding to this system is nonsingular and is the same for all
faces. In addition, its inverse is bounded by a constant depending only on
0,cr- Next we compute the 12 coefficients corresponding to M2 by solv-
ing a linear system of 12 equations whose matrix is also nonsingular and
is the same for all faces. Its inverse is also bounded by a constant depend-
ing only 6,,. Since the coefficients corresponding to My are computed
directly from derivatives, it follows immediately that they also satisfy (8).

At this point we have shown that (8) is satisfied for all £ € M. Now
all remaining coefficients are computed from smoothness conditions, and
in particular, satisfy

|C€| < ’i%‘}\)j |CTI|7 all £ € DADCTag \ M, (9)

for some absolute constant . This follows from the fact every tetrahe-
dron T in A is split in exactly the same way (using Clough-Tocher splits
associated with barycenters), and all coefficients associated with domain
points not in M are computed in the same way for each T. We conclude
that (8) holds for all domain points. O

Given a tetrahedral partition A, we write |A| for the diameter of the
largest tetrahedron in A.

Theorem 5. There exists a constant K depending only on 0., such
that for every f € C™T1(Q) with 3 <m <9,
ID(f = Tper )l < KA fl 0, (10)

for all |o| < m.

Proof: The proof is similar to the proofs of Theorem 3.3 in [6] and
Theorem 6.3 in [7]. Fix T € A, and let f € C™T1(Q). By Lemma 4.3.8
of [8], there exists a polynomial ¢ := gz € P2, such that

IDP(f — )llr < |(f — d)ljprr < K| T|™ P flysrr, (1)

for all g with |B| < m. Now fix a with |a| < m. Since Z,_,.p = p for all
pEPS,

ID*(f = Zpor Hllr < ID*(f = Dl + DLy (f = @)l
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We can estimate the first term using (11) with S = a. To estimate the
second term, we now apply the Markov inequality [17] to each of the
polynomials Z,,...(f — q)|r;, where T1,...,Ti¢ are the tetrahedra in the
DCT-split of T. Using the fact that |T'|/|T;| < 16, we get

||DaIDCT(f_q)||Tj < K2|T|_|a|||IDCT(f_q)”Tj’

where K is a constant depending only on 0,.,. Let c; be the B-coeff-
icients of the polynomial 7, (f — ¢)|r; relative to the tetrahedron Tj.

Then combining (8), (11), and the fact that the Bernstein basis polyno-
mials form a partition of unity, it follows that

4

T — < <K T* f —
1 Zper (f = @)y _gégl)a;idlql_ 3;| "[f—q

i, T+

Taking the maximum over j and combining this with (11) gives
1 Zpor (f = Dllr < Ka|TI™H F s,
which gives
ID*(f = Zper f)llr < Ks|TI™ 71 f Lo

Maximizing over all tetrahedra T in A, we get (10). O

§6. Remarks

Remark 1. In the bivariate setting, C™ macro-elements have been studied
by several authors, see e.g. [1,4,5,11,12], and references therein.

Remark 2. As far as we know, double-Clough-Tocher splits have not been
used previously in the trivariate setting, and in fact their only appearance
in the literature that we are aware of is in [1], where they are used to
construct a C? bivariate macro-element.

Remark 3. The results here depend critically on the fact that for each
tetrahedron T := (v1,vs,v3,v4), the center v, and four subcenters 'u;
in the double-Clough-Tocher split of T' are chosen as barycenters. In
particular, this choice means that for each 7 = 1,2, 3, 4, the points v;, v,,
and v’ are collinear, where v* is the barycenter of the subtetrahedron in
the Clough-Tocher split of 7" which does not contain v;. Any perturbation
of these points which destroys this geometry would result in a spline space
So(Tper) with a different dimension. For example, if all points are in
generic position, then the space has dimension 272, but doesn’t work as
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a C? macro-element since only 256 of the 264 degrees of freedom needed
for global smoothness can be imposed.

Remark 4. C" trivariate polynomial macro-elements defined on nonsplit
tetrahedra were constructed in [14] using polynomials of degree 8- + 1. If
used to construct a Hermite interpolant associated with a general tetra-
hedral partition, they produce a superspline with C?" supersmoothness
around edges, and C*" supersmoothness at vertices. For r = 2, these
elements make use of polynomials of degree 17.

Remark 5. C! trivariate macro-elements were constructed on the Clough-
Tocher split in [2]. For other C! trivariate macro-elements, see [18,19].

Remark 6. By examining slices through Tpco7r, it can be shown that it
is not possible to construct C? macro-elements on the DCT-split using
splines with smoothness less than 4 at the vertices. This in turn implies
that the minimal degree possible is nine.

Remark 7. The java code of the first author for examining determining
sets for piecewise polynomial functions on tetrahedral partitions was a
key tool in developing the macro-elements described in this paper. It can
be used or downloaded from http://www.math.utah.edu/~pa/3DMDS,
along with associated documentation. This program computes the di-
mension of trivariate spline spaces and finds minimal determining sets.
This involves analyzing homogeneous linear systems with integer coeffi-
cients. The code usually analyzes such systems in residual arithmetic
modulo the prime number P = 23! — 1, but optionally is also capable
of doing the analysis in exact integer arithmetic (at much greater com-
putational expense), which is what we have done here for the proof of
Theorem 1. The linear algebra involved in the code is exactly as in the
corresponding bivariate code described in [3], and documented in detail at
http://www.math.utah.edu/~pa/MDS.

Remark 8. Because the smoothness conditions built into the space
So(Tper) overlap, a spline s in this space automatically satisfies a number
of additional smoothness conditions. In particular,

1) s € C3(e) for each of the 4 edges connecting v,. to vertices of T,
2) s € C*(e) for each of the 12 edges connecting the v’ to vertices of T,
3) s € C"(e) for each of the four edges connecting v, to the v’

4) s € C3(F) for each of the 12 faces of Tpcr of the form (V¢ v, 05),
i.e., whose vertices include v, one of the v}, and one of the vertices
of T.

Remark 9. In analogy with the bivariate case, cf. [4,5], we say that N is
a set of natural degrees of freedom for a macro-element space & provided
it involves only functionals defined at points on the boundary of T' which
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are necessary to ensure the global smoothness. Our space So(Tper) is not
defined by a set of natural degrees of freedom because of the derivative
data required at the subcenters ’U;. Clearly, by enforcing an appropriate
set of 16 additional special smoothness conditions, it is possible to define
a subspace of So(Tper) of dimension 264 with an associated set of nat-
ural degrees of freedom. However, we have not been able to find a nice
(symmetric) way to describe exactly which 16 conditions will work.

Remark 10. It is possible to create macro-elements with fewer degrees of
freedom by the process of condensation. This amounts to further restrict-
ing the spline space by forcing cross-derivatives along edges or through
faces of the tetrahedron 7' to be of reduced degree. The main problem
with this strategy is that it produces elements which no longer have the
capability of reproducing the full polynomial space, and thus have reduced
approximation power.

Remark 11. In this paper we have given error bounds for Hermite in-
terpolation with our macro element in the uniform norm. Analogous re-
sults hold for the p-norms, and can be proved using appropriate quasi-
interpolation operators, cf. Sect. 10 of [10] for the bivariate case.
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