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§1. Introduction

Suppose △ is a finite collection of nondegenerate tetrahedra such that if any two
tetrahedra in △ intersect, then their intersection is exactly one vertex, one edge, or
one face. Then we call △ a tetrahedral partition of the set Ω, where Ω is the union
of all tetrahedra in △. This definition of a tetrahedral partition allows Ω to have
holes and cavities as well as pinch points where just two tetrahedra meet in a single
point.

Given 0 ≤ r ≤ d, let Pd be the
(
d+3
3

)
-dimensional space of trivariate polyno-

mials of degree d. In this paper we study the space

Sr
d(△) = {s ∈ Cr(Ω) : s|T ∈ Pd, for all T ∈ △}

of trivariate splines of smoothness r and degree d associated with △. Here the con-
dition s ∈ Cr(Ω) means that s belongs to Cr(v) for every point v ∈ Ω, i.e., if v is
contained in the tetrahedra T1, . . . , Tm, then all of the polynomials s|T1

, . . . , s|Tm

have common derivatives up to order r at v.
Trivariate splines are important tools in approximation theory and numerical

analysis, and have attracted considerable interest in the past few years, see [3] and
references therein.

Clearly Sr
d(△) is a finite dimensional linear space. However, finding explicit

formulae for its dimension for general r, d, and △, is an extremely difficult problem
due to the fact that the dimension depends not only on the way in which the
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tetrahedra are connected to each other, but also on the precise location of the
vertices. In general, an arbitrarily small change of the location of the vertices can
change the dimension of Sr

d(△).
The dimension of Sr

d(△) can be trivially determined when r = 0 or when r = d,
see Remark 1. Our aim in this paper is to establish upper and lower bounds on
the dimension of Sr

d(△) for all choices of 0 < r < d, and for arbitrary tetrahedral
partitions. Our bounds will depend on d and r, and also on the nature of △, but
not on the precise locations of the vertices.

The paper is organized as follows. In Section 2 we describe how completely
general tetrahedral partitions can be built inductively using 28 specific types of
assembly steps. In Section 3 we show that lower and upper bounds on the dimension
of Sr

d(△) for arbitrary 0 < r < d and arbitrary △ can be given in terms of lower and
upper bounds ℓi, ui on how much the dimension of a spline space changes when we
add just one tetrahedron using assembly step i to an existing tetrahedral partition.
Section 4 is devoted to a review of basic Bernstein–Bézier theory, while in the
following section we present several formulae for counting certain sets of domain
points. In Section 6 we derive explicit formulae for suitable ℓi and ui in terms of
r and d. In Section 7 we show that our lower and upper bounds take a strikingly
simple form in the special case where the partition △ is shellable. Several numerical
examples illustrating our bounds are given in Section 8. We conclude the paper
with remarks and references.

§2. Tetrahedral Partitions

Every tetrahedral partition △ consisting of N tetrahedra can be assembled in N

steps, starting with a single tetrahedron, and adding one additional tetrahedron in
each subsequent step. Generally, there will be many different ways to assemble a
given partition, and we will see later that the order in which the tetrahedra are
added will affect our bounds on the dimension of the associated spline spaces.

For our purposes, we need to identify and classify the different ways in which
a tetrahedron can be added to a partially completed partition in order to build
a partition △. There are twenty-eight types of assembly steps, which we number
as in Tab. 1. For example, simply adding one tetrahedron that doesn’t touch
any existing tetrahedron at all is classified as type 0. Adding a tetrahedron that
touches the existing partition at one vertex only is classified as type 1. A step of
type 27 corresponds to adding a tetrahedron that touches the existing partition
along exactly one face and also at the opposite vertex. The last column in the table
is designed to help visualize these steps. In particular, assuming the tetrahedron
being added is T := 〈v1, v2, v3, v4〉, this column lists the vertices, edges, and faces
of T where T touches the existing partition. Here eij denotes the edge 〈vi, vj〉, and
fijk denotes the face 〈vi, vj , vk〉.

These twenty-eight types of assembly steps allow the step-wise construction
of completely general tetrahedral partitions. However, most partitions likely to be
used in practice, including those with holes and cavities, can be built with only a
few of these steps, see Remark 4.
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Type Nature of Touching Facets List of Touching Facets
0 Isolated tetrahedron
1 one vertex v1

2 two vertices v1, v2,
3 three vertices v1, v2, v3

4 four vertices v1, v2, v3, v4

5 one edge e12

6 two opposite edges e12, e34

7 two edges sharing a vertex e12, e23

8 three edges forming a path e12, e23, e34

9 three edges sharing a vertex e12, e13, e14

10 three edges on one face e12, e23, e31

11 four edges forming a loop e12, e23, e34, e41

12 four edges not forming a loop e12, e23, e31, e14

13 five edges e12, e13, e14, e23, e24

14 six edges e12, e13, e14, e23, e24, e34

15 one edge and one vertex e12, v3

16 one edge and two vertices e12, v3, v4

17 two edges and one vertex e12, e23, v4

18 three edges and one vertex e12, e23, e31, v4

19 one face and one edge f123, e14

20 one face and two edges f123, e14, e24

21 one face and three edges f123, e14, e24, e34

22 two faces and one edge f123, f124, e34

23 one face f123

24 two faces f123, f124

25 three faces f123, f124, f134

26 four faces f123, f124, f134, f234

27 one face and the opposite vertex f123, v4

Tab. 1. Assembly steps for tetrahedral partitions.

§3. The Key Inequalities

It is clear that when △ consists of a single tetrahedron, the dimension of Sr
d(△) is

equal to the dimension of Pd which is
(
d+3
3

)
. To get bounds on the dimension of

Sr
d(△) on an arbitrary tetrahedral partition △, we proceed by induction. Suppose

△ can be obtained from a tetrahedral partition △̃ by adding one tetrahedron T .
To get bounds on Sr

d(△), we need to account for how the dimension changes as we

add T to △̃. Clearly, this will depend on how T joins △̃, i.e., to which of the 28
classes identified in the previous section it belongs. For each 0 ≤ i ≤ 27, let ℓi and
ui be such that

ℓi ≤ dimSr
d(△) − dimSr

d(△̃) ≤ ui,

whenever T is of type i. We now establish the key inequalities.
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Theorem 3.1. Fix 0 < r < d, and suppose △ is a tetrahedral partition that

can be built inductively using τi assembly steps involving tetrahedra of type i for

i = 0, . . . , 27. Then

L(r, d) ≤ dimSr
d(△) ≤ U(r, d), (3.1)

where

L(r, d) := max
[(d + 3

3

)
,

27∑

i=0

τiℓi

]
, U(r, d) :=

27∑

i=0

τiui.

Proof: Let T1, . . . , TN be a numbering of the tetrahedra in the order that they are
added in building △. The spline space Sr

d(△) restricted to the single tetrahedron

T1 has dimension ℓ0 = u0 =
(
d+3
3

)
. Now each time we add a tetrahedron of type

i, the dimension changes by an amount δi satisfying ℓi ≤ δi ≤ ui. Summing gives
the formulae for L(r, d) and U(r, d), where for L(r, d) we have taken the maximum
with

(
d+3
3

)
since Pd ⊆ Sr

d(△) for all 0 ≤ r ≤ d.

Formulae for the ℓi and ui will be derived in Sect. 6 below. We refer to the
τi as the assembly parameters of △. In general they are not uniquely determined.
A given tetrahedral partition can usually be built in many different ways, leading
to different bounds. We give an example to illustrate this in Sect. 8, which also
contains several other numerical examples illustrating Theorem 3.1.

§4. Bernstein–Bézier Methods

Our analysis of the dimension of Sr
d(△) is based on well-known Bernstein–Bézier

techniques, see [3] and references therein. For convenience, we review some of
the basic ideas and notation. Suppose T := 〈v1, v2, v3, v4〉 is a tetrahedron with
vertices v1, v2, v3, v4. The key fact is that every polynomial p ∈ Pd has a unique
Bernstein–Bézier representation of the form

p :=
∑

i+j+k+l=d

cijklBijkl,

where Bijkl are the Bernstein basis polynomials of degree d associated with T . It
is standard practice to associate each coefficient cijkl with a corresponding domain

point

ξijkl :=
iv1 + jv2 + kv3 + lv4

d
,

for i + j + k + l = d. Given r ≥ 0, we often work with the following subsets of
domain points:

• ball of radius r around v1: Br(v1) := {ξijkl : i ≥ d − r},

• shell of radius r around v1: Rr(v1) := {ξijkl : i = d − r},

• tube of radius r around e := 〈vi, vj〉: tr(e) := {ξijkl : i + j ≥ d − r},

• r-slab containing the face F := 〈v1, v2, v3〉: Gr(F ) := {ξijkl : l ≤ r}.
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Analogous sets can be defined in the same way for the other vertices, edges, and
faces.

One of the reasons that the Bernstein–Bézier representation is so useful is that
it provides a simple way to describe when two polynomials defined on tetrahedra
T := 〈v1, v2, v3, v4〉 and T̃ := 〈v5, v2, v3, v4〉 sharing the face F := 〈v2, v3, v4〉 join
with Cr smoothness. The condition is that

c̃mijk =
∑

ν+µ+κ+δ=m

cν,i+µ,j+κ,k+δB
m
νµκδ(v5), all i + j + k = d − m, (4.1)

for m = 0, . . . , r, where {cijkl}i+j+k+l=d and {c̃ijkl}i+j+k+l=d are the B-coefficients

of p and p̃ relative to T and T̃ , respectively.
We refer to the domain point ξ̃mijk corresponding to the coefficient c̃mijk on

the left in (4.1) as the tip of the smoothness condition. It is clear from (4.1) that the
conditions for two polynomials to join with Cr smoothness across a common face
involve only coefficients corresponding to domain points in the r–slabs containing
F in both T and T̃ .

§5. Formulae for Intersections of Balls, Tubes, and Slabs

In this section we provide formulae for the sizes of various subsets of domain points.
They are used in the following section to derive formulae for the expressions ℓi and
ui appearing in Theorem 3.1. Given 0 ≤ r < d, let

• nr := the number of points in Br(v), where v is a vertex of T ,

• m2b(r, d) := the number of points in Br(v1)∩Br(v2), where v1, v2 are vertices
of T ,

• m3b(r, d) := the number of points in Br(v1)∩Br(v2)∩ tr(v3), where v1, v2, v3

are vertices of T ,

• m4b(r, d) := the number of points in Br(v1)∩Br(v2)∩Br(v3) ∩Br(v4), where
v1, v2, v3, v4 are the vertices of T ,

• m1t(r, d) := the number of points in tr(e), where e is an edge of T ,

• m2t(r, d) := the number of points in tr(e1)∩ tr(e2), where e1, e2 are edges of
T sharing a vertex v,

• mto(r, d) := the number of points in tr(e1)∩ tr(e2), where e1, e2 are edges of
T not sharing any vertex,

• m3t(r, d) := the number of points in tr(e1)∩ tr(e2)∩ tr(e3), where e1, e2, e3 are
edges of T sharing a vertex v of T ,

• m3tf (r, d) := the number of points in tr(e1)∩ tr(e2)∩ tr(e3), where e1, e2, e3

are edges of T lying in one face,

• m3tp(r, d) := the number of points in tr(e1)∩ tr(e2)∩ tr(e3), where e1, e2, e3

are edges of T forming a path, i.e., not all lying on one face and not all sharing
a single vertex,
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• m4tl(r, d) := the number of points in tr(e1)∩ tr(e2)∩ tr(e3)∩ tr(e4), where
e1, . . . , e4 are edges of T forming a loop, i.e., such that no three of the edges
share a single vertex,

• mtb(r, d) := the number of points in tr(e)∩Br(v), where e is an edge of T and
v is a vertex not contained in e,

• mt2b(r, d) := the number of points in tr(e)∩Br(v)∩Br(w), where e is an edge
of T and v, w are vertices not contained in e,

• m2tb(r, d) := the number of points in tr(e1)∩ tr(e2)∩Br(v), where e1, e2 are
edges of T and v is a vertex not contained in either edge,

• mts(r, d) := the number of points in tr(e)∩Gr(F ), where e is an edge of T not
lying in the face F .

• m2t2b(r, d) := the number of points in
(
Br(v1)∩Br(v2)

)
\ tr(e), where e is the

edge with vertices v3 and v4,

• ms(r, d) := the number of points in the slab Gr(F ) associated with a face F

of T .

We now derive formulae for all of these expressions.

Lemma 5.1. For all 0 ≤ r < d,

nr :=

(
r + 3

3

)
,

m2b(r, d) :=

(
2r − d + 3

3

)
,

m3b(r, d) :=

(
3r − 2d + 3

3

)
,

m4b(r, d) :=

(
4r − 3d + 3

3

)
,

m1t(r, d) :=

(
r + 3

3

)
+

d∑

ν=r+1

(
r + 2

2

)
,

m2t(r, d) :=

(
r + 3

3

)
+

d∑

ν=r+1

(
2r + 2 − ν

2

)
,

m3t(r, d) :=

(
r + 3

3

)
+

d∑

ν=r+1

(
3r + 2 − 2ν

2

)
,

mto(r, d) :=

{∑r
ν=d−r(ν + 1)(d + 1 − ν), if d ≤ 2r,

0, otherwise,
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m3tf (r, d) :=

r∑

ν=0

[(
3r − 2ν − d + 2

2

)
− 3

(
2r − ν − d + 1

2

)]
,

m3tp(r, d) :=

r∑

ν=d−r

ν∑

µ=0

(
d + 1 − max(ν, d − r + µ)

)
,

m4tl(r, d) :=

r∑

ν=d−r

ν∑

µ=0

(
min(d, r + µ) + 1 − max(ν, d − r + µ)

)
,

mtb(r, d) :=
2r−d∑

ν=0

(ν + 1)(r − ν + 1),

mt2b(r, d) :=
3r−2d∑

ν=0

(ν + 1)(2r − d − ν + 1),

m2tb(r, d) :=
2r−d∑

ν=0

[
(ν + 1)2 −

(
r − d + ν + 1

2

)]
,

mts(r, d) :=

r∑

ν=0

(
min(r, d − ν) + 2

2

)
,

m2t2b(r, d) :=
r∑

i=d−r

d−i∑

j=max(d−r,r+1−i)

(d − i − j + 1),

ms(r, d) :=

(
d + 3

3

)
−

(
d + 2 − r

3

)
.

Proof: The formula for nr, m2b, m3b, m4b and ms can be obtained by inspection.
We now consider the other cases individually.

m1t: To get the formula for m1t, note that the tube contains the ball of radius r

around one of the vertices v of e. In addition, for each ν = r + 1, . . . , d, it contains(
r+2
2

)
points on the shell Rν(v). Summing over the shells gives m1t.

m2t: To get the formula for m2t, note that the ball of radius r around v is in both
tubes, which accounts for the term

(
r+3
3

)
. To count the remaining points in the

intersection of the two tubes, we consider the shells Rν(v) for ν = r +1, . . . , d. It is
easy to check that on the shell Rν(v), there are

(
2r+2−ν

2

)
points in the intersection.

Summing over the shells gives the second term in the formula for m2t.

m3t: For the case of three intersecting tubes sharing the vertex v, we note that
the number of points in the intersection lying on the shell Rν(v) is

(
ν+2−3(ν−r)

2

)
.

Summing over the shells gives the formula for m3t.
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mto: Without loss of generality we may assume the first tube is along the edge
e1 := 〈v1, v2〉 while the second is along the edge e2 := 〈v3, v4〉. Then ξijkl lies
in both tubes if and only if i + j ≥ d − r and k + l ≥ d − r which implies that
i + j ≤ d − (d − r) = r. Thus, for a point ξijkl to be in the intersection we need
d−r ≤ i+j ≤ r. It follows that the intersection of the two tubes is empty if d > 2r.
Letting ν = i + j, there are ν + 1 ways to choose i and j, and for each such choice,
there are d + 1 − ν ways to choose k and l with k + l = d − ν. The count follows.

m3tf : Suppose the face is F := 〈v1, v2, v3〉. The expression in brackets is just the
number of points in the intersection of the shell Rd−ν(v4) and the tubes around the
three edges of F . The result follows by summing over the shells.

m3tp: For each 0 ≤ i, j ≤ 4, let tij be the tube along edge eij := 〈vi, vj〉. We
suppose the edges forming the path are e12, e23, e34, and consider the three tubes
t12, t23, and t34. We need to count the number of 4-tuples (i, j, k, l) of nonnegative
integers that satisfy

i + j + k + l = d, i + j ≥ d − r, j + k ≥ d − r, and k + l ≥ d − r.

These inequalities imply that i + j ≤ r and k + l ≤ r. It is convenient to use the
substitution µ = i, ν = i + j, and κ = i + j + k. Then, according to the above
inequalities, admissible values of ν range from d − r to r, and admissible values
of µ range from 0 to ν. Since j + k = κ − µ ≥ d − r, we need κ ≥ d − r + µ.
Given µ and ν, there are thus d + 1 − max{ν, d − r + µ} choices of κ ranging from
max{ν, d− r+µ} to d. Counting the total number of possibilities gives the formula
for m3tp.

m4tl: The proof is similar to the proof for m3tp except that now we also have to
satisfy κ − µ = j + k ≤ r.

mtb: For each d − r ≤ ν ≤ r, points in the intersection lie on ν − d + r + 1 lines
parallel to e, each of which contains d + 1 − ν points. Thus, the total number is∑r

ν=d−r(ν − d + r + 1)(d + 1 − ν). A change of summation index gives the stated
formula.

mt2b: For each 2d − 2r ≤ ν ≤ r, points in the intersection lie on ν − 2d + 2r + 1
lines parallel to e, each of which contains d + 1− ν points. Thus, the total number
is

∑r
ν=2d−2r(ν − 2d + 2r + 1)(d + 1 − ν). A change of summation index gives the

stated formula.

m2tb: Suppose the two edges are e1 and e2, and that the vertex not on the edges
is v4. For each d − r ≤ ℓ ≤ r, the number of points in tr(e1)∩ tr(e2)∩Rℓ(v4) is
(r − d + ℓ + 1)2 −

(
2r−2d+ℓ+1

2

)
. Summing over ℓ and changing the index gives the

stated formula.

mts: Let v be the vertex opposite the slab. For each 0 ≤ ν ≤ r, the number of
points in the intersection and lying on the shell Rd−ν(v) is

(
min(r,d−ν)+2

2

)
, and the

formula follows.
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m2t2b: A domain point ξijkl lies in the set Br(v1)∩Br(v2) if and only if i ≥ d − r

and j ≥ d − r. It lies outside the tube tr(e) if and only if k + l < d − r. We
compute the number of 4-tuples (i, j, k, l) satisfying all three inequalities. The first
two inequalities imply that i, j ≤ r. The third inequality implies that j ≥ r +1− i.
Given i and j there are d+1− i− j possible choices of k and l. Summing gives the
formula.

§6. The Change in Dimension When Adding One Tetrahedron

Suppose △ is a tetrahedral partition that can be obtained from a tetrahedral par-
tition △̃ by adding one tetrahedron T . In this section we give upper and lower
bounds ui and ℓi on the change in dimension

δi := dimSr
d(△) − dimSr

d(△̃)

when T is of type i, 0 ≤ i ≤ 27, according to the classification scheme of Sect. 3.
Note that δi can be negative in some cases.

Suppose s ∈ Sr
d(△) and that we already know the coefficients of s correspond-

ing to domain points in △̃. If T touches △̃ at a vertex v, then the Cr smoothness
at v imposes nr conditions on the coefficients of s associated with domain points in
Br(v). Similarly, if T touches △̃ along an edge e, then the Cr smoothness along e

imposes m1t conditions on the coefficients in the tube tr(e). If T touches △̃ along a
face F , then the Cr smoothness across F imposes ms conditions on the coefficients
in the slab Gr(F ). Recall that nd =

(
d+3
3

)
is the number of coefficients of s|T .

To get a lower bound ℓi for δi, we can take nd−ncond, where ncond is the number
of conditions on s|T imposed by the fact that T joins with △̃ with Cr smoothness.
However, some of these conditions may be redundant in the sense that one or more
of them are automatically satisfied whenever the others are satisfied. Removing as
many redundant conditions as possible leads to a better lower bound. There are
two situations where we know that conditions on a coefficient cξ are redundant:

1) ξ ∈ Br(v), where v is contained in more than one of the edges or faces where T

touches △̃. There is one smoothness condition associated with each such edge
or face, but we need only count one of them as the rest are redundant.

2) ξ ∈ tr(e), where e is contained in more than one of the faces where T touches
△̃. There is one smoothness condition associated with each such face, but we
need only count one of them as the rest are redundant.

Note that ℓi computed in this way can be negative as well as nonnegative.
The change in dimension δi is equal to the number of coefficients of s|T that

can be set to arbitrary values while maintaining all smoothness conditions. Such
coefficients cannot correspond to domain points which are tips of any smoothness
condition. We call such points constrained points. Thus, as an upper bound we can
take ui = nd − ntips, where ntips is the number of points in T that are constrained.
While counting unconstrained points seems like a straightforward process, it is
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complicated in some cases due to the fact that balls, tubes, and slabs can intersect
in various ways depending on r, d and the class to which T belongs. Note that ui

computed in this way is nonnegative for all 0 ≤ i ≤ 27.
In terms of the notation of the previous section, the number of domain points

in a ball of radius r around a vertex is nr. For ease of notation we write m1t :=
m1t(r, d), with a similar short-hand notation for all the other quantities defined in
the previous section. For d > 2r, we define m̃1t := m1t(r, d−r−1), m̃2t := m2t(r, d−
r − 1), m̃3t := m3t(r, d − r − 1). Let m̂1t := m1t(2r − d, r), m̂2t := m2t(2r − d, r),
and m̂3tf := m3tf (2r − d, r) for d ≤ 2r, and define them to be zero when d > 2r.
Given an edge e := 〈u, v〉 of a tetrahedron, we define a 1-partial tube around e to
be tr(e) \ Br(u). Similarly, we define a 2-partial tube to be tr(e) \ (Br(u) ∪Br(v)).

Lemma 6.1. The expressions given in Tab. 2 provide upper and lower bounds for

δi for all 0 ≤ i ≤ 27.

Proof: The cases 0, 1, 5, 23, and 27 are obvious.

2: (T touches △̃ at two vertices v1, v2). There are nr smoothness conditions as-
sociated with each of the balls Br(vi), i = 1, 2, and the lower bound follows. The
number of constrained points in T is 2nr − m2b, since points in the intersection of
two balls should be counted only once. This gives the upper bound.

3: (T touches △̃ at three vertices v1, v2, v3). There are nr smoothness conditions
associated with each of the balls Br(vi), i = 1, 2, 3, and the lower bound follows.
The number of points in the union of the three balls is 3nr − 3m2b + m3b, and the
upper bound follows.

4: (T touches △̃ at four vertices v1, v2, v3, v4). There are nr smoothness conditions
associated with each of the balls Br(vi), i = 1, . . . , 4, and the lower bound follows.
The number of points in the union of the four balls is 4nr − 6m2b + 4m3b + m4b,
and the upper bound follows.

6: (T touches △̃ along two edges e1, e2 that do not share a vertex). There are m1t

smoothness conditions associated with each of these edges, and the lower bound
follows. The number of points in tr(e1)∪ tr(e2) is 2m1t −mto, where the term mto

takes account of the fact that the tubes can intersect when d ≤ 2r. This gives the
upper bound.

7: (T touches △̃ along two edges e1 and e2 that share a vertex v). There are m1t

smoothness conditions associated with each of these edges. However, since both
tubes contain Br(v), nr of these conditions are redundant, and the lower bound
follows. The number of points in tr(e1)∪ tr(e2) is 2m1t−m2t, and the upper bound
follows.

8: (T touches △̃ along three edges e1, e2, e3 forming a path). There are m1t smooth-
ness conditions associated with each of these edges. However, since the first two
tubes tr(e) both contain Br(v1), nr of the conditions with tips in Br(v1) are re-
dundant. Similarly, nr of the conditions with tips in Br(v2) are redundant, and the
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i ℓi ui

0 nd nd

1 nd − nr nd − nr

2 nd − 2nr nd − 2nr + m2b

3 nd − 3nr nd − 3nr + 3m2b − m3b

4 nd − 4nr nd − 4nr + 6m2b − 4m3b + m4b

5 nd − m1t nd − m1t

6 nd − 2m1t nd − 2m1t + mto

7 nd − 2m1t + nr nd − 2m1t + m2t

8 nd − 3m1t + 2nr nd − 3m1t + 2m2t + mto − m3tp

9 nd − 3m1t + 2nr nd − 3m1t + 3m2t − m3t

10 nd − 3m1t + 3nr − m3b nd − 3m1t + 3m2t − m3tf

11 nd − 4m1t + 4nr − m4b nd − 4m1t + 4m2t + 2mto − 4m3tp + m4tl

12 nd − 4m1t + 4nr − m3b

{
0, if d ≤ 2r

nd − 4m1t + 5m2t − m3t − m3tf , if d > 2r

13 nd − 5m1t + 6nr − 2m3b,

{
0, if d ≤ 2r

nd − 5m1t + 8m2t − 2m3tf − 2m3t, if d > 2r

14 nd − 6m1t + 8nr − 4m3b + m4b

{
0, if d ≤ 2r

nd − 6m1t + 12m2t − 4m3t − 4m3tf , if d > 2r

15 nd − m1t − nr nd − m1t − nr + mtb

16 nd − m1t − 2nr nd − m1t − 2nr + 2mtb + m2b − mt2b

17 nd − 2m1t nd − 2m1t − nr + m2t + 2mtb − m2tb

18 nd − 3m1t + 2nr − m3b nd − nr − 3(m1t − m̂1t − m2t + m̂2t)
−(m3tf − m̂3tf )

19 nd − ms − m1t + nr nd − ms − m1t + mts

20 nd − ms − 2m1t + 3nr − m3b

{
0, if d ≤ 2r

nd − ms − 2m̃1t + m̃2t, if d > 2r

21 nd − ms − 3m1t + 5nr − 3m3b + m4b

{
0, if d ≤ 2r

nd − ms − 3m̃1t + 3m̃2t − m̃3t, if d > 2r

22 nd − 2ms + 2nr − m2b + m2t2b

{
0, if d ≤ 3r

nd−2r−2 − m1t + 2mts, if d > 3r

23 nd − ms nd−r−1

24 nd − 2ms + m1t nd−2r−2

25 nd − 3ms + 3m1t − m3t nd−3r−3

26

{
−4(ms − 3m1t + 3m2t − m3tf ), if d ≤ 2r

nd − 4ms + 6m1t − 4m3t, if d > 2r
nd−4r−4

27 nd − ms − nr (nd − ms − nr)+

1

Tab. 2. Formulae for ℓi and ui.

lower bound follows. The upper bound follows from the fact that the number of
points in tr(e1) ∪ tr(e2) ∪ tr(e3) is 3m1t − 2m2t − mto + m3tp, as can be seen by a
careful examination of a Venn diagram.

9: (T touches △̃ along three edges e1, e2, e3 sharing a vertex v). There are m1t

smoothness conditions associated with each of these edges. However, since all three
tubes contain Br(v), 2nr of these conditions are redundant, and the lower bound
follows. The upper bound follows from the fact that the number of points in the
intersection of all three tubes is 3m1t − 3m2t + m3t.
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10: (T touches △̃ along three edges e1, e2, e3 on one face). The three 2-partial tubes
contain 3(m1t−2nr +m2b) points. The three balls contain 3nr−3m2b +m3b points,
cf. the argument for the upper bound in case 3. Thus, there are at most 3m1t−3nr+
m3b, nonredundant smoothness conditions, and the lower bound follows. The upper
bound follows from the fact that the number of points in tr(e1)∪ tr(e2)∪ tr(e3) is
3m1t − 3m2t + m3tf .

11: (T touches △̃ along four edges e1, . . . , e4 forming a loop). Given a domain
point ξ in T , let b(ξ) and t(ξ) be the number of balls Br(vi) and tubes tr(ei),
1 ≤ i ≤ 4, that contain ξ. Suppose ξ is not in the intersection of all four balls.
Then the coefficient associated with the point ξ is subject to t(ξ) conditions, but
b(ξ) of them are redundant, and thus the change in dimension corresponding to
this point is bounded below by 1 − t(ξ) + b(ξ). Points that are in all four balls are
also in all four tubes. The associated coefficients are subject to four conditions, but
three of them are redundant, and thus there is no change in dimension. It follows
that a lower bound for the change in dimension when we add T to △̃ is given by∑

ξ∈T (1− t(ξ)+ b(ξ))−m4b = nd − 4m1t +4nr −m4b. To get the upper bound, we

need to count the number of points in Γ := ∪4
i=1tr(ei). Looking at a Venn diagram,

we see that there are four pairs of neighboring tubes intersecting in m2t points and
two pairs of opposite tubes that intersect in mto points. There are four paths of
three tubes, and m3tp points in the intersection of the three tubes in such a path.
The intersection of all four tubes contains m4tl points. It follows that the number
of points in Γ is 4m1t − 4m2t − 2mto + 4m3tf −m4tl, and the upper bound follows.

12: (T touches △̃ along four edges e1, . . . , e4 not forming a loop). Three of these
edges lie on one face F . Let v1, v2, v3 be the vertices on this face, and suppose v3

is the vertex where three of the touching edges meet. There are m1t − 2nr + m2b

points in each of the three 2-partial tubes along the edges of F . In addition,
there are m1t − nr points in the 1-partial tube along the fourth edge. There are
3nr−3m2b+m3b points in the three balls around the vertices of F , cf. the argument
for the upper bound in case 3. Thus, the total number of nonredundant smoothness
conditions is at most 4m1t − 4nr + m3b, and the lower bound follows. To get the
upper bound, we count the number of points in Γ := ∪4

i=1tr(ei). It is easy to
see that when d ≤ 2r, Γ contains all points in T , and so u12 = 0. Suppose now
d > 2r. In this case m3tp = mto = 0. Looking at a Venn diagram, we see there are
five pairs of neighboring tubes intersecting in m2t points, and one pair of opposite
tubes intersecting in mto points. There is one set of three tubes intersecting in
m3tf points, one set of three tubes meeting at v3 intersecting in m3t points, and
2 pairs of three tubes forming paths such that each pair intersects in m3tp points.
The intersection of all four tubes is empty. It follows that the number of points in
Γ is 4m1t − 5m2t + m3t + m3tf . This gives the upper bound.

13: (T touches △̃ along five edges e1, . . . , e5). Let v1, v2 be the vertices where three
of these edges meet, and e34 the single non-touching edge. Then two of the touching
edges meet at v3, and two meet at v4. Each of the five 2-partial tubes contains
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m1t − 2nr + m2b points. As discussed in case 3, Br(v1) ∪ Br(v2) ∪Br(v3) contains
3nr − 3m2b + m3b points. There are nr − 2m2b + m3b points in Br(v4) but not in
the balls Br(v1) or Br(v2). We conclude that the total number of nonredundant
smoothness conditions is at most 5m1t − 6nr + 2m3b, and the lower bound follows.
To get the upper bound, we count the number of points in Γ := ∪5

i=1tr(ei). It
is easy to see that Γ contains all the points of T when d ≤ 2r, and so u13 = 0.
Suppose now d > 2r. In this case m3tp = mto = 0. Looking at a Venn diagram,
we see that there are eight pairs of neighboring tubes intersecting in m2t points,
and two pairs of opposite tubes intersecting in mto = 0 points. There are 2 sets
of three tubes intersecting in m3tf points and 2 sets of three tubes intersecting in
m3t points. The remaining 6 intersecting sets of triples of three tubes each contain
m3tp = 0 points. There are 6 sets where four tubes intersect, but the intersections
are all empty since opposite tubes don’t overlap. It follows that the number of
constrained points is 5m1t − 8m2t + 2m3tf + 2m3t. This gives the upper bound.

14: (T touches △̃ along six edges). There are m1t−2nr +m2b points in each of the
six 2-partial tubes around the edges. In addition, there are 4nr−6m2b+4m3b−m4b

points in the four balls, cf. the discussion of the upper bound in case 4. Thus, the
total number of nonredundant smoothness conditions is at most 6m1t − 8nr +
4m3b − m4b, and the lower bound follows. To get the upper bound, we count the
number of points in the union Γ of the tubes around the six edges. It is easy to
see that Γ contains all the points of T when d ≤ 2r, and so u14 = 0. Suppose now
d > 2r. In this case m3tp = mto = 0. There are 15 pairs of intersecting tubes.
Twelve of these intersect in m2t points, and the other three intersect in mto points.
There are 20 sets of intersections of three tubes. Four of these contain m3tf points,
four of them contain m3t points, and the remaining 12 contain m3tp = 0 points.
There are 6 sets where four tubes intersect, but the intersections are all empty
since opposite tubes don’t overlap. It follows that the number of points in Γ is
6m1t − 12m2t + 4m3t + 4m3tf . This gives the upper bound.

15: (T touches △̃ on one edge e and at a vertex v not on e). Clearly the number
of nonredundant smoothness conditions is at most m1t + nr, and the lower bound
follows. The upper bound follows from the fact that there are m1t +nr−mtb points
in tr(e) ∪ Br(v).

16: (T touches △̃ on one edge e and at two vertices v1, v2 not on e). The number
of smoothness conditions with tips in T is m1t + 2nr, and the lower bound follows.
Examining a Venn diagram, we see that there are m1t + 2nr − 2mtb − m2b + mt2b

points in tr(e) ∪ Br(v1) ∪ Br(v2), and the upper bound follows.

17: (T touches △̃ on two edges e1, e2 and at a vertex v not on those edges). Clearly
the number of nonredundant smoothness conditions is at most 2m1t − nr + nr =
2m1t, and the lower bound follows. The upper bound follows from the fact that
there are 2m1t + nr − 2mtb − m2t + m2tb points in tr(e1) ∪ tr(e2) ∪ Br(v).

18: (T touches △̃ on three edges e1, e2, e3 and at a vertex v not on those edges). The
number of nonredundant smoothness conditions associated with the three tubes is
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at most 3m1t − 3nr + m3b, cf. the discussion of case 10. Adding the nr conditions
associated with Br(v) leads to the lower bound. To get the upper bound we first
notice that are 3m1t − 3m2t + m3tf points in Λ := tr(e1)∪ tr(e2)∪ tr(e3), cf. the
upper bound in case 10. There are nr points in the ball Br(v). However, if d ≤ 2r,
the ball Br(v) intersects Λ creating three smaller tubes of radius 2r−d. The number
of points in these tubes is 3m̂1t − 3m̂2t + m̂3tf , and the upper bound follows.

19: (T touches △̃ on one face F and one edge e not in the face). The number
of nonredundant smoothness conditions is at most ms + m1t − nr, and the lower
bound follows. To get the upper bound, we observe that the number of points in
Gr(F )∪ tr(e) is ms + m1t − mts.

20: (T touches △̃ on one face F and two edges e1, e2 not in the face). Let e3 be the
edge lying on the same face as e1 and e2. The number of nonredundant smoothness
conditions in the three tubes surrounding the edges e1, e2, e3 is 3m1t − 3nr + m3b,
cf. the lower bound for case 10. The number of nonredundant smoothness conditions
in the slab Gr(F ) but not in the tube tr(e3) is ms − m1t. Thus, the total number
of nonredundant smoothness conditions is at most ms + 2m1t − 3nr + m3b, and
the lower bound follows. Let Γ be the union of the slab Gr(F ) with the tubes
around the two edges e1, e2. It is easy to see that Γ contains all points of T when
d ≤ 2r, and so u20 = 0 in this case. Now suppose d > 2r. In this case there are
ms constrained points in the slab Gr(F ). The set of domain points resulting from
cutting off the slab can be considered as corresponding to a polynomial of degree
d − r − 1. Referring to case 7, the number of points in the two tubes sharing the
vertex v4 is 2m̃1t − m̃2t. The upper bound follows.

21: (T touches △̃ on one face F and three edges e1, e2, e3 not in the face). To count
nonredundant smoothness conditions, we note that T touches on all six edges. By
case 14, the number of nonredundant smoothness conditions associated with these
edges is at most 6m1t−8nr +4m3b−m4b. The number of nonredundant smoothness
conditions associated with points in the slab Gr(F ) but not in the tubes around the
three edges of F is ms−(3m1t−3nr+m3b). Thus the total number of nonredundant
smoothness conditions is at most ms + 3m1t − 5nr + 3m3b − m4b, and the lower
bound follows. Let Γ := Gr(F )∪ tr(e1)∪ tr(e2)∪ tr(e3). It is easy to see that Γ
contains all points of T when d ≤ 2r, and so u21 = 0 in this case. Suppose now
d > 2r. Then the number of points in the slab Gr(F ) is ms, while the number of
points in the rest of Γ is 3m̃1t − 3m̃2t + m̃3t, cf. case 9. This leads immediately to
the upper bound.

22: (T touches △̃ on two faces F1, F2 and one edge e not in either face). If d > 2r,
then the number of nonredundant conditions with tips in the two slabs is 2ms−m1t,
while the number of nonredundant conditions with tips in the tube tr(e) is at most
m1t−2nr+m2b. The lower bound follows since m2t2b = 0 in this case. Now suppose
d ≤ 2r and that e := 〈v3, v4〉 is the edge between the two faces. In this case we
have counted each point ξ in Br(v1)∩Br(v2) \ tr(e) twice, but the two smoothness
conditions with tip at ξ are are consistent because they are associated with the
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tube tr(e). Thus in this case we have to adjust the lower bound by adding m2t2b.
It is easy to check that the upper bound is zero whenever d ≤ 3r. Suppose now
d > 3r. Let T̃ be the tetrahedron obtained by stripping off two slabs of size r from
T . Clearly, T̃ contains nd−2r−2 points. The number of points lying in the tube of

radius r around the edge e∩ T̃ is m1t − 2mts, and the upper bound follows.

24: (T touches △̃ on two faces). The number of nonredundant smoothness condi-
tions in the slabs associated with the two faces is 2ms −m1t, and the lower bound
follows. Since all points in these two slabs are constrained, it is clear that the
number of unconstrained points is equal to the number of points in the tetrahedron
that is obtained by slicing off the two slabs, namely nd−2r−2.

25: (T touches △̃ on three faces F1, F2, F3). Let v be the vertex opposite the
nontouching face, and let e1, e2, e3 be the three edges meeting at v. The number of
points contained in T but not in the tubes around these edges is u9 = nd − 3m1t +
3m2t − m3t. The number of points in one of the three slabs Gr(Fi) but not in the
tubes is ms −2m1t +m2t. Multiplying the latter by three and subtracting gives the
lower bound. The upper bound follows as in the previous case by removing three
slabs.

26: (T touches △̃ on four faces). Consider first the case where d ≤ 2r. In this case
the number of constrained points is nd, and so the upper bound is 0. To get the
lower bound, we subtract the number of smoothness conditions with tips outside
the tubes around edges of T from the number of unconstrained points (which is 0).
For each face, the number of smoothness conditions outside the three tubes around
the edges of that face is ms − (3m1t −3m2t +m3tf ), cf. case 9, and the lower bound
follows. Now suppose d > 2r. In this case the number of points contained in T but
not in the six tubes is u14 = nd − 6m1t + 12m2t − 4m3t − 4m3tf . The number of
points in each of the four slabs but not in the tubes is ms − 3m1t + 3m2t − m3tf .
Multiplying the latter by four and subtracting gives the lower bound. To get the
upper bound we strip off four slabs.

§7. The Case Where △ Is Shellable

A tetrahedral partition △ is called shellable provided it consists of a single tetra-
hedron, or can be obtained from a shellable tetrahedral partition △̃ by adding one
tetrahedron T such that T intersects △̃ precisely along one, two, or three triangular
faces. In this section we show that if △ is shellable, then there are simple formulae
for the bounds on dimSr

d(△) in terms of the combinatorics of △. Let FI , EI , VI

be the number of interior faces, edges, and vertices of △. Given 0 ≤ r < d, let
β := m1t − nd and γ := nd − m3t. Similarly, let β̃ := nd−2r−2 − 2nd−r−1 and
γ̃ := 3nd−r−1 − 3nd−2r−2 + nd−3r−3.

Theorem 7.1. Suppose △ is a shellable tetrahedral partition. Then for every

0 ≤ r < d,

L(r, d) ≤ dimSr
d(△) ≤ U(r, d),
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where
L(r, d) = nd + (nd−r−1FI + βEI + γVI)+,

U(r, d) = nd + nd−r−1FI + β̃EI + γ̃VI .
(7.1)

Proof: If △ is shellable, then it can be assembled using only steps of types 0, 23,
24, and 25. Clearly, τ0 = 1. We get a new interior vertex each time we carry out
step 25, and thus VI = τ25. We get new interior edges each time we carry out steps
of types 24 and 25, and so EI = τ24+3τ25. Similarly, FI = τ23+2τ24+3τ25. Solving
these equations for the assembly parameters, we find that τ23 = FI − 2EI + 3VI ,
τ24 = EI−3VI , and τ25 = VI . Referring to Tab. 2 and using the fact that nd−ms =
nd−r−1, the formulae (7.1) follows immediately from Theorem 3.1.

§8. Numerical Examples

We have extensively tested and evaluated our bounds using a java program which
is capable of computing the exact dimension, see Remark 6. In this section we
describe the results of a few of our tests. Our first example shows that (at least for
a range of r and d), our lower bounds cannot be improved.

Example 8.1. For each 0 ≤ i ≤ 27, let △i be the smallest tetrahedral partition

such that to build △i we use an assembly step of type i as the last step.

Discussion: The △i are actually quite small. For example, for i = 1, . . . , 4, △i

consists of just i + 1 tetrahedra. The cases i = 4 and i = 5 require just two and
three tetrahedra, respectively. For each r = 1, . . . , 6 and d = r + 1, . . . , 4r + 1, we
computed the change in dimension due to the last step. In all cases it turns out
that ℓi = δi. As a check on our upper bounds, we also directly counted the number
of unconstrained points.

Our next example shows that in general the bounds in Theorem 3.1 depend
on the order in which the tetrahedral partition is assembled.

Example 8.2. Let △ be the partition described in Tab. 3.

Discussion: This partition is obtained by splitting a given tetrahedron into 15
subtetrahedra. It is the trivariate analog of the well-known Morgan-Scott split
of a triangle, see [5]. The table lists the coordinates (xi, yi, zi) of each of the 8
vertices of △, and the vertex numbers (vi

0, v
i
1, v

i
2, v

i
3) of each of the 15 tetrahedra in

△. Tab. 4 shows the results obtained for selected values of r and d. The column
labeled symdim gives the exact dimension of the splines spaces for the specific
choice of vertices given in the table, which corresponds to a high level of symmetry.
The column labeled gendim gives the corresponding results for a generic partition
obtained by perturbing each of the vertices slightly. We give two sets of upper and
lower bounds. The columns labeled L1(r, d) and U1(r, d) correspond to an assembly
scheme for which τ0 = τ5 = τ7 = τ10 = τ26 = 1, τ24 = 6, and τ25 = 4.

The columns labeled L2(r, d) and U2(r, d) correspond to an assembly scheme
for which τ0 = 1, τ23 = 4, τ24 = 6, and τ25 = 4. The table shows that the bounds
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i vi
0 vi

1 vi
2 vi

3 xi yi zi

0 4 5 6 7 14 42 42
1 3 4 5 6 14 0 42
2 2 4 5 7 -14 21 21
3 1 4 6 7 0 21 0
4 0 5 6 7 2 18 24
5 2 3 4 5 2 24 24
6 1 3 4 6 6 21 27
7 1 2 4 7 4 21 30
8 0 3 5 6
9 0 2 5 7

10 0 1 6 7
11 0 1 2 7
12 0 1 3 6
13 0 2 3 5
14 1 2 3 4

Tab. 3. The tetrahedral partition for Example 8.2.

depend on the assembly order. For this example, the second set of bounds are
better.

Our next example gives results for a partition with a hole.

Example 8.3. Let △ be the tetrahedral partition described in Tab. 5.

Discussion: △ is a partition of a square-shaped torus into 24 tetrahedra. In Tab. 6
we give results for selected values of r and d, both for the symmetric case corre-
sponding to the listed vertices, and for the generic case corresponding to slightly
perturbed vertices. In both cases we give bounds corresponding to assembly pa-
rameters τ0 = 1, τ19 = 4, τ23 = 12, τ24 = τ25 = 3, and τ27 = 1.

Our final example involves a partition with a cavity.

Example 8.4. Let △ be the partition obtained by removing the tetrahedron num-

bered 0 in Tab. 3 from the partition described there.

Discussion: Removing the tetrahedron creates a cavity. This partition can be
built using the assembly parameters τ0 = τ5 = τ7 = τ10 = 1, τ24 = 6, and τ25 = 3.
In Tab. 7 we give numerical results for selected values of r and d, where as before
we consider both the generic and symmetric case. For r = 1 we note that the lower
bounds give the correct dimensions for all d ≥ 4.
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r d L1(r, d) L2(r, d) gendim symdim U2(r, d) U1(r, d)
1 2 10 10 10 11 14 15
1 3 20 20 20 25 36 39
1 4 43 43 43 54 81 88
1 5 104 104 104 113 160 172
1 6 214 214 214 222 288 306
1 7 388 388 388 396 480 504
1 8 641 641 641 649 751 781
1 9 988 988 988 996 1116 1152
2 3 20 20 20 20 24 26
2 4 35 35 35 35 51 57
2 5 56 56 56 56 96 109
2 6 84 84 84 87 170 193
2 7 120 120 132 144 284 320
2 8 203 207 243 252 449 500
2 9 380 384 420 428 680 748
3 4 35 35 35 35 39 42
3 5 56 56 56 56 72 81
3 6 84 84 84 84 124 143
3 7 120 120 120 120 200 233
3 8 165 165 165 167 311 363
3 9 220 220 220 234 468 543
3 10 286 286 332 348 682 784
3 11 364 364 524 534 964 1096
3 12 581 593 799 807 1329 1494
3 13 936 948 1172 1180 1792 1992
4 5 56 56 56 56 60 64
4 6 84 84 84 84 100 112
4 7 120 120 120 120 160 185
4 8 165 165 165 165 245 288
4 9 220 220 220 220 360 427
4 10 286 286 286 287 516 613
4 11 364 364 364 371 724 857
4 12 455 455 455 486 995 1169
4 13 560 560 640 667 1340 1560
4 14 680 680 926 944 1770 2040

Tab. 4. Results for Example 8.2.

§9. Remarks

Remark 1. Given a tetrahedral partition △, let Dd,△ be the set of all domain
points associated with tetrahedra of △, where common domain points are included
just once. Then the dimension of the trivariate spline space S0

d(△) is equal to the
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i vi
0 vi

1 vi
2 vi

3 xi yi zi

0 0 3 7 15 -1 1 0
1 0 4 7 15 -1 -1 0
2 0 4 12 15 1 -1 0
3 0 8 12 15 1 1 0
4 0 8 11 15 -2 2 0
5 0 3 11 15 -2 -2 0
6 0 1 4 12 2 -2 0
7 1 4 5 12 2 2 0
8 1 5 12 13 -1 1 1
9 1 9 12 13 -1 -1 1

10 1 8 9 12 1 -1 1
11 0 1 8 12 1 1 1
12 1 2 5 13 -2 2 1
13 2 5 6 13 -2 -2 1
14 2 6 13 14 2 -2 1
15 2 10 13 14 2 2 1
16 2 9 10 13
17 1 2 9 13
18 2 3 6 14
19 3 6 7 14
20 3 7 14 15
21 3 11 14 15
22 3 10 11 14
23 2 3 10 14

Tab. 5. The tetrahedral partition for Example 8.3.

the number of points in the set Dd,△. This is nV +(d−1)nE +
(
d−1
2

)
nF +

(
d−1
3

)
nT ,

where nV , nE , nF , and nT are the numbers of vertices, edges, faces, and tetrahedra
in △. At the other extreme, the dimension of Sd

d (△) is equal to m
(
d+3
3

)
, where m

is the number of connected components of △.

Remark 2. By definition, any shellable tetrahedral partition is homeomorphic
to a ball in IR3. The simplest example of a nonshellable partition is the partition
consisting of two tetrahedra touching at one vertex. The fact that a tetrahedral
partition is homeomorphic to a ball does not imply that it is shellable. For an
example consisting of 41 tetrahedra and 14 vertices, see Rudin [6].

Remark 3. For the special case of shellable tetrahedral decompositions, the upper
bounds given here agree with those given in [1]. Our lower bounds agree for r = 1,
and provide a significant improvement when r > 1. That paper contains two
typographical errors: the summation indices in (10) and (15) there should be κ

instead of i, and the upper limits of the summation should be k + 1 and k instead
of κ + 1 and κ, respectively.
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r d L(r, d) gendim symdim U(r, d)
1 2 10 10 12 22
1 3 48 48 48 68
1 4 144 144 144 176
1 5 320 320 320 364
1 6 600 600 600 656
1 7 1008 1008 1008 1076
1 8 1568 1568 1568 1648
1 9 2304 2304 2304 2396
2 3 20 20 22 32
2 4 35 35 46 83
2 5 93 96 108 176
2 6 237 240 256 353
2 7 477 480 500 629
2 8 837 840 864 1025
2 9 1341 1344 1372 1565
3 4 35 35 37 47
3 5 56 56 64 104
3 6 84 84 112 204
3 7 151 176 208 360
3 8 351 380 420 623
3 9 663 696 744 1004
3 10 1111 1148 1204 1524
3 11 1719 1760 1824 2204
3 12 2511 2556 2628 3068
3 13 3511 3560 3640 4140
4 5 56 56 58 68
4 6 84 84 92 132
4 7 120 120 140 240
4 8 165 165 220 405
4 9 220 288 356 640
4 10 483 560 644 1006
4 11 875 960 1060 1509
4 12 1419 1512 1628 2170
4 13 2139 2240 2372 3010
4 14 3059 3168 3316 4050

Tab. 6. Results for Example 8.3.

Remark 4. A shellable partition can be built using only assembly steps of types
0, 23, 24, and 25. However, a tetrahedral partition of a set Ω with holes and/or
cavities cannot be shellable. In [3], a tetrahedral partition △ is said to have a
regular cavity provided that it can be obtained from a larger tetrahedral partition
by removing a shellable subpartition T , all of whose vertices are interior vertices
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r d L(r, d) gendim symdim U(r, d)
1 2 10 10 11 15
1 3 20 20 25 39
1 4 46 46 57 88
1 5 112 112 121 172
1 6 228 228 236 306
1 7 408 408 416 504
1 8 666 666 674 780
1 9 1016 1016 1024 1148
2 3 20 20 20 26
2 4 35 35 35 57
2 5 56 56 57 109
2 6 84 84 91 193
2 7 120 144 157 320
2 8 242 270 279 500
2 9 436 464 472 748
3 4 35 35 35 42
3 5 56 56 56 81
3 6 84 84 84 143
3 7 120 120 120 233
3 8 165 165 168 363
3 9 220 224 245 543
3 10 286 368 381 784
3 11 428 584 593 1096
3 12 718 886 894 1494
3 13 1108 1288 1296 1992
4 5 56 56 56 64
4 6 84 84 84 112
4 7 120 120 120 185
4 8 165 165 165 288
4 9 220 220 220 427
4 10 286 286 289 613
4 11 364 364 380 857
4 12 455 478 518 1169
4 13 560 712 736 1560
4 14 680 1036 1053 2040

Tab. 7. Results for Example 8.4.

of △. A tetrahedral partition △ of a set Ω is said to have a regular hole provided
that it can be obtained from a larger tetrahedral partition by removing a shellable
subpartition T with the property that if F is a triangular face of a tetrahedron in
T and F lies on the boundary of Ω, then F ∈ t1 ∪ t2, where
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1) t1 and t2 are shellable triangulations,

2) the triangles of t1 do not touch those in t2.

In [3], a tetrahedral partition △ is said to be regular provided that one of the
following holds:

1) △ is shellable, or

2) △ can be obtained from a regular tetrahedral partition by creating a regular
hole or a regular cavity.

This definition is general enough to include all of the tetrahedral partitions typically
used in practice. We conjecture that regular partitions can be built using only
assembly steps of types 0, 23, 24, 25, and 27.

Remark 5. It was shown in [1] that there exists a tetrahedral decomposition such
an arbitrarily small change in the location of the vertices changes the dimension of
the corresponding spline space Sr

d(△) by a term which is linear in d. It follows that
any upper and lower bounds on the dimension of Sr

d(△) that work for arbitrary
partitions and do not take account of the precise locations of the vertices must
differ by a term that is at least O(d). We claim that for d > 2r, the upper and
lower bounds of Theorem 3.1 satisfy U(r, d) − L(r, d) = O(d), and thus can be
considered to be asymptotically optimal. To see this, we note that the upper bound
is U(r, d) = nd−ntips, where ntips is the number of points that are tips of smoothness
conditions. By the discussion in Sect. 6, L(r, d) ≥ nd − ncond, where ncond is the
number of conditions imposed by smoothness. Thus U(r, d)−L(r, d) ≥ ncond−ntips.
When d > 2r, a point can be the tip of more than one smoothness condition only if
it lies in a tube tr(e) around an edge of △, and it follows that ncond−ntips = O(d).
This proves the claim.

Remark 6. The java software that we used for testing our bounds is available
at http://www.math.utah.edu/˜pa/3DMDS/. It can be used as an applet directly
from the web page, or can be downloaded and used offline.

Remark 7. Explicit formulae for the dimension of S1
d(△) for d ≥ 8 were established

in [2] for generic shellable tetrahedral partitions. Comparing with Theorem 7.1, it
is easy to see that for such partitions the dimension of S1

d(△) is equal to the lower
bound in (7.1).

Remark 8. Recently Lau [4] gave a lower bound for the dimension of Sr
d(△)

for tetrahedral partitions of simply connected domains. His lower bound differs
from our lower bound in Theorem 7.1 in two ways. First, it is missing the term
involving VI , and thus is generally much too low. For example, for the partition
of Example 8.2 and for the range of r and d shown in Tab. 4, it gives negative
numbers for almost all cases. On the other hand, his bound contains an additional
nonnegative term which takes account of the geometry of faces surrounding interior
edges. We have not attempted to take account of geometry here.
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