
Recipe for the Cauchy-Euler Equation

The Cauchy-Euler equation looks like this:

anxn dny

dxn
+ an−1x

n−1 dn−1y

dxn−1
+ · · ·+ a1x

dy

dx
+ a0y = g(x).

The first step is to write the homogeneous proble (i.e., replace g(x) with 0), and substitute
y = xm. This leads to the polynomial equation

0 = an m(m− 1)(m− 2) · · · (m− n + 2)(m− n + 1)

+ an−1m(m− 1)(m− 2) · · · (m− n + 2)

+ · · ·
+ a2m(m− 1)

+ a1m

+ a0

which you should now solve, obtaining some roots m1,m2, . . . ,mn. If those roots are
distinct, and if the original problem was homogeneous (i.e., if we actually had g(x) = 0
in the given problem), then the solution is simply

y = c1x
m1 + c2x

m2 + · · ·+ cnxmn .

But if there are repeated roots or if the problem was nonhomogeneous, the solution is
more complicated. In that case we can proceed as follows: Multiply out the polynomial
equation; it will then look something like this:

bnm
n + bn−1m

n−1 + · · ·+ b2m
2 + b1m + b0 = 0

where the bj’s are numbers that you’ll have to find. (The first and last coefficients will
agree with the previous polynomial — that is, you will find bn = an and b0 = a0 — but
in general you may have bj 6= aj for all j = 1, 2, 3, . . . , n − 1, so you’ll have to compute
those bj’s.)

Now write down this constant-coefficient differential equation:

bn
dny

dtn
+ bn−1

dn−1y

dtn−1
+ · · ·+ b2

d2y

dt2
+ b1

dy

dt
+ b0y = g(et).

Note that this equation differs from the original one in these respects:

• We have to work to find the bj’s, which differ from the aj’s.

• The x’s have been replaced by t’s.

• It’s now a constant-coefficient equation — i.e., the derivatives are no longer preceded
by polynomials.

• The right side of the equation has changed: we’ve replaced g(x) with g(et).
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We will use D as an abbreviation for
d

dt
. (Do not confuse that with

d

dx
.) Then the

transformed problem is

bnD
ny + bn−1D

n−1y + · · ·+ b2D
2y + b1Dy + b0y = g(et).

Solve this constant-coefficient differential equation, by methods that we’ve solved earlier.
The solution y is a function of t, with n arbitrary constants.

Finally, substitute t = ln x or x = et, and the resulting function of x is the solution of
the original problem.

An Example: Repeated Roots

We will solve Example 2 from page 195 of the textbook. The problem is

4x2 d2y

dx2
+ 8x

dy

dx
+ y = 0.

That yields the polynomial equation 4m(m− 1) + 8m + 1 = 0 which simplifies to

4m2 + 4m + 1 = 0; that is, (2m + 1)2 = 0.

We have repeated roots, so the answer is not just y = c1x
−1/2 + c2x

−1/2. Start from the
equation

4m2 + 4m + 1 = 0

which gives us the constant-coefficient equation

4
d2y

dt2
+ 4

dy

dt
+ y = 0.

I’ve only written that down to make it more evident what we’re doing; writing that down
isn’t really essential for the computation. The computation proceeds from a polynomial
equation that we already worked out a few steps ago:

(2m + 1)2 = 0

m = −1/2, m = −1/2

which gives us (by the usual recipe)

y = c1e
−t/2 + c2te

−t/2.

Finally, substitute t = ln x and x = et; we get

y = c1x
−1/2 + c2(ln x)x−1/2 or more concisely y =

c1 + c2 ln x√
x

.

Check: If y = c1+c2 ln x√
x

then y
√

x = c1 + c2 ln x. Differentiate both sides to get

y′x1/2+ 1
2
yx−1/2 = c2x

−1. Multiply both sides by x to get y′x3/2+ 1
2
yx1/2 = c2. Differentiate

2



both sides of that to get y′′x3/2 + 2y′x1/2 + 1
4
yx−1/2 = 0. Multiply both sides by 4x1/2 to

get the original problem.

Another Example: A Nonhomgeneous Problem

We’ll do Example 6 from page 198 of the textbook:

x2y′′ − xy′ + y = ln x.

To avoid any possible confusion, let’s first rewrite the problem with a differentiation
notation that explicitly displays the independent variable:

x2 d2y

dx2
− x

dy

dx
+ y = ln x.

The associated polynomial equation (for the homogeneous problem) is

m(m− 1)−m + 1 = 0

m2 − 2m + 1 = 0

(m− 1)(m− 1) = 0

m = 1 or m = 1

The transformed problem is
d2y

dt2
− 2

dy

dt
+ y = t

(D − 1)2(D − 0)0y = 0e1t + te0t.

That has general solution of the form

y = [a0 + a1t] e
1t + [p0 + p1t] e

0t

where a0 and a1 are arbitrary, but we must find p0 and p1. Compute:

yp = p0 + p1t
y′p = p1

y′′p = 0

y′′p − 2y′p + yp = (−2p1 + p0) + p1t

and that last expression must equal t. So we need p1 = 1 and −2p1+p0 = 0, hence p0 = 2.
Thus we obtain

y = (a0 + a1t)e
t + 2 + t.

Finally, substitute t = ln x and x = et; we get y = (a0 + a1 ln x) + 2 + ln x .
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Why It Works (a partial explanation)

It works because of the relationship between the original variables x and y, and the
auxiliary variable t = ln x that we’ve introduced. Note that x = et. Don’t worry about
whether t is a function of x or x is a function of t. Think of them as linked quantities :
when we vary one, then the other varies too — not quite at the same rate, but at rates
determined by the chain rule. Note that

dx

dt
= et = x and

dt

dx
=

1

x
= e−t.

Let’s denote D = d
dt

; that’s the operator we use to solve constant-coefficient differential
equations. Then what is d

dx
? (It’s not D.) And what is D in terms of x?

Consider any function u, which depends on x or on t. (Don’t worry about whether u
is a “function of” x or a “function of” t; just think of u as another quantity that varies
when we vary x and t.) The chain rule tells us

du

dx
=

du

dt
· dt

dx
= (Du) · 1

x
.

Or, in other words,

x
du

dx
= Du.

Consequently, using the product rule for derivatives, we can find

D2u = x
d

dx

(
x
du

dx

)
= x ·

[
1 · du

dx
+ x · d2u

dx2

]
= x

du

dx
+ x2 d2u

dx2

and so on. In general, Dku will look like the kinds of terms that appear in the left side
of a Cauchy-Euler equation — they will be a sum of constants times terms of the form
xk dku

dxk . But the constants get changed by this transformation. A full description of how
the constants get changed would take longer; we’ll skip that part.

Still Harder Problems

Example 5 on page 197 requires techniques that we haven’t discussed yet.
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