Recipe for the Cauchy-Euler Equation

The Cauchy-Euler equation looks like this:

2 d"y w1 4"y dy
ns" o + ap_1x T +- -+ ax o +agy = g(z).

The first step is to write the homogeneous proble (i.e., replace g(x) with 0), and substitute
y = ™. This leads to the polynomial equation

0= a,m(m—1)(m—-2)---(m—n+2)(m—n+1)
+  apym(m—1)(m—2)---(m—n+2)
+
+  agm(m—1)
+ aim
+ ag
which you should now solve, obtaining some roots mq,ms,...,m,. If those roots are

distinct, and if the original problem was homogeneous (i.e., if we actually had g(z) = 0
in the given problem), then the solution is simply

y = ™ + e 4o 4 e’

But if there are repeated roots or if the problem was nonhomogeneous, the solution is
more complicated. In that case we can proceed as follows: Multiply out the polynomial
equation; it will then look something like this:

bym™ + bpym™ -+ bom® + bym 4+ by =0

where the b;’s are numbers that you’ll have to find. (The first and last coefficients will
agree with the previous polynomial — that is, you will find b,, = a,, and by = ag — but

in general you may have b; # a; for all j = 1,2,3,...,n — 1, so you'll have to compute
those b;’s.)
Now write down this constant-coefficient differential equation:
b dny+b n71y+ +b d2y+b dy+b (e")
n —— n—1 ——— e 2 = — e’).
dt i1 2 g YT

Note that this equation differs from the original one in these respects:
e We have to work to find the b;’s, which differ from the a;’s.
e The z’s have been replaced by t’s.

e [t’s now a constant-coefficient equation — i.e., the derivatives are no longer preceded
by polynomials.

e The right side of the equation has changed: we’ve replaced g(z) with g(e').
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We will use D as an abbreviation for jt (Do not confuse that with j .) Then the
x

transformed problem is
bp D™y + by 1 D"y A -+ 4 by Dy + by Dy + boy = g(e).

Solve this constant-coefficient differential equation, by methods that we’ve solved earlier.
The solution y is a function of ¢, with n arbitrary constants.

Finally, substitute t = Inz or = €', and the resulting function of x is the solution of
the original problem.

An Example: Repeated Roots

We will solve Example 2 from page 195 of the textbook. The problem is
d’y dy
42> — 4+ 8z = +y = 0.
T a2 o dz ty

That yields the polynomial equation 4m(m — 1) + 8m + 1 = 0 which simplifies to
4m? +4m +1=0; that is, (2m +1)* = 0.

We have repeated roots, so the answer is not just y = c¢;z~ /2 + coz~'/2. Start from the
equation
4m*+4m+1=0

which gives us the constant-coefficient equation

Py - dy
129 Y.
az g Y

I've only written that down to make it more evident what we're doing; writing that down
isn’t really essential for the computation. The computation proceeds from a polynomial
equation that we already worked out a few steps ago:

(2m+1)*>=0
m=-1/2, m=-1/2
which gives us (by the usual recipe)
t/2

Y = cle’t/2 + cote™

Finally, substitute ¢ = Inz and x = ¢e'; we get

. c1 + C Inx
or more concisely Y= ?
X

Check: If y = % then yv/r = ¢; + coInz. Differentiate both sides to get
/24 Lyp—1/2
2y

y=co7 % + cy(Inx)r1/?

y' = coz~'. Multiply both sides by x to get y'23/2+1yx!/? = ¢,. Differentiate
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both sides of that to get y”z%/? + 2y/x'/? + Lyz=1/2 = 0. Multiply both sides by 4z'/? to
get the original problem.

Another Example: A Nonhomgeneous Problem

We'll do Example 6 from page 198 of the textbook:
2y — a2y +y=1Inzx.

To avoid any possible confusion, let’s first rewrite the problem with a differentiation
notation that explicitly displays the independent variable:

The associated polynomial equation (for the homogeneous problem) is
m(m—1)—m+1=0

m?>—2m+1=0
(m—1)(m—-1)=0

m=1 or m=1
The transformed problem is
Py dy
—— —2—= =t
az Ca Y

(D —1)*(D —0)°% = 0e" + te".

That has general solution of the form
y = lao +ait]e' + [po + prt] ™

where ag and a; are arbitrary, but we must find py and p;. Compute:

Yp = Po + pit
y;’; = Y41
Yp = 0

Yp =2y, t Y = (=2p1+po) + pit

and that last expression must equal £. So we need p; = 1 and —2p; +py = 0, hence py = 2.
Thus we obtain
y = (ap+ art)e’ +2+t.

Finally, substitute t = Inz and x = €'; we get |y = (ap + a;Inz) + 2+ Inx|.




Why It Works (a partial explanation)

It works because of the relationship between the original variables  and y, and the
auxiliary variable ¢ = Inx that we’ve introduced. Note that = e'. Don’t worry about
whether ¢ is a function of z or x is a function of £. Think of them as linked quantities:
when we vary one, then the other varies too — not quite at the same rate, but at rates
determined by the chain rule. Note that

Zj—et—x and ii—i—e_t.

Let’s denote D = %; that’s the operator we use to solve constant-coefficient differential
equations. Then what is -2 ? (It’s not D.) And what is D in terms of 27

Consider any function u, which depends on z or on t. (Don’t worry about whether u
is a “function of” x or a “function of” ¢; just think of u as another quantity that varies
when we vary x and ¢.) The chain rule tells us

du du dt 1
. — (Du) -~
dx dt dx (Du) T

Or, in other words,
du

rz— = Du.

dx
Consequently, using the product rule for derivatives, we can find

2 2
dx dx?

and so on. In general, D*u will look like the kinds of terms that appear in the left side
of a Cauchy-Euler equation — they will be a sum of constants times terms of the form
xkgx—k‘. But the constants get changed by this transformation. A full description of how

the constants get changed would take longer; we’ll skip that part.

Still Harder Problems

Example 5 on page 197 requires techniques that we haven’t discussed yet.



