HOMEWORK 1, MATH 362A - FALL 2014

Due Friday August 29th

1. Let \mathcal{H} be a Hilbert space, and $K \subset \mathcal{H}$, a subspace. Prove that K^{\perp} is closed, and $\left(K^{\perp}\right)^{\perp}=\bar{K}$.
2. Let \mathcal{H} be a Hilbert space.
(a). Prove that if μ is a probability measure on \mathbb{T} such that $\int \lambda \mathrm{d} \mu(\lambda)=0$, then for all $\xi, \eta \in \mathcal{H}$ we have the following parallelogram identity:

$$
\|\xi\|^{2}+\|\eta\|^{2}=\int\|\xi+\lambda \eta\|^{2} \mathrm{~d} \mu(\lambda)
$$

(b). Prove that if μ is a probability measure on \mathbb{T} such that $\int \lambda^{2} \mathrm{~d} \mu(\lambda)=\int \lambda \mathrm{d} \mu(\lambda)=0$, then for all $\xi, \eta \in \mathcal{H}$ we have the following polarization identity:

$$
\langle\xi, \eta\rangle=\int \lambda\|\xi+\lambda \eta\|^{2} \mathrm{~d} \mu(\lambda)
$$

3. Let \mathcal{H}_{1} and \mathcal{H}_{2} be Hilbert spaces. A linear map $V: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is an isometry if $\|V \xi\|=\|\xi\|$ for all $\xi \in \mathcal{H}_{1}$. Show that an isometry $V: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ satisfies $\langle V \xi, V \eta\rangle=\langle\xi, \eta\rangle$ for all $\xi, \eta \in \mathcal{H}_{1}$.
4. Let \mathcal{H}_{1} and \mathcal{H}_{2} be Hilbert spaces. A map $T: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is an isometric affine transformation if $\|T \xi-T \eta\|=\|\xi-\eta\|$ for all $\xi, \eta \in \mathcal{H}_{1}$.
(a). If \mathcal{H}_{1} and \mathcal{H}_{2} are real Hilbert spaces, and if $T: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is an isometric affine transformation, then show that there exists a unique isometry $V: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$, and a unique vector $\xi \in \mathcal{H}_{2}$ such that $T=S_{\xi} \circ V$, where $S_{\xi}: \mathcal{H}_{2} \rightarrow \mathcal{H}_{2}$ is the translation map $S_{\xi}(\eta)=\eta+\xi$.
(b). Show by example that the above decomposition does not always hold when considering complex Hilbert spaces.
5. Let X be a locally compact Hausdorff space, and suppose μ is a Radon measure on X. Prove that $C_{c}(X)$ is dense in $L^{2}(X, \mu)$.
6. Let \mathcal{H} be an infinite dimensional Hilbert space, prove that there does not exist a translation invariant Borel measure on \mathcal{H} which assigns finite positive measure to the unit ball.
7. Let \mathcal{H} be a Hilbert space. Show that any two orthonormal bases have the same cardinality.
