HOMEWORK 1, MATH 362A - FALL 2014

Due Friday August 29th

1. Let \mathcal{H} be a Hilbert space, and $K \subset \mathcal{H}$, a subspace. Prove that K^{\perp} is closed, and $(K^{\perp})^{\perp} = \overline{K}$.

2. Let \mathcal{H} be a Hilbert space.

(a). Prove that if μ is a probability measure on \mathbb{T} such that $\int \lambda d\mu(\lambda) = 0$, then for all $\xi, \eta \in \mathcal{H}$ we have the following **parallelogram identity**:

$$\|\xi\|^2 + \|\eta\|^2 = \int \|\xi + \lambda\eta\|^2 d\mu(\lambda).$$

(b). Prove that if μ is a probability measure on \mathbb{T} such that $\int \lambda^2 d\mu(\lambda) = \int \lambda d\mu(\lambda) = 0$, then for all $\xi, \eta \in \mathcal{H}$ we have the following **polarization identity**:

$$\langle \xi, \eta \rangle = \int \lambda \|\xi + \lambda \eta\|^2 \, \mathrm{d}\mu(\lambda)$$

3. Let \mathcal{H}_1 and \mathcal{H}_2 be Hilbert spaces. A linear map $V : \mathcal{H}_1 \to \mathcal{H}_2$ is an **isometry** if $||V\xi|| = ||\xi||$ for all $\xi \in \mathcal{H}_1$. Show that an isometry $V : \mathcal{H}_1 \to \mathcal{H}_2$ satisfies $\langle V\xi, V\eta \rangle = \langle \xi, \eta \rangle$ for all $\xi, \eta \in \mathcal{H}_1$.

4. Let \mathcal{H}_1 and \mathcal{H}_2 be Hilbert spaces. A map $T : \mathcal{H}_1 \to \mathcal{H}_2$ is an isometric affine transformation if $||T\xi - T\eta|| = ||\xi - \eta||$ for all $\xi, \eta \in \mathcal{H}_1$.

(a). If \mathcal{H}_1 and \mathcal{H}_2 are real Hilbert spaces, and if $T : \mathcal{H}_1 \to \mathcal{H}_2$ is an isometric affine transformation, then show that there exists a unique isometry $V : \mathcal{H}_1 \to \mathcal{H}_2$, and a unique vector $\xi \in \mathcal{H}_2$ such that $T = S_{\xi} \circ V$, where $S_{\xi} : \mathcal{H}_2 \to \mathcal{H}_2$ is the translation map $S_{\xi}(\eta) = \eta + \xi$.

(b). Show by example that the above decomposition does not always hold when considering complex Hilbert spaces.

5. Let X be a locally compact Hausdorff space, and suppose μ is a Radon measure on X. Prove that $C_c(X)$ is dense in $L^2(X, \mu)$.

6. Let \mathcal{H} be an infinite dimensional Hilbert space, prove that there does not exist a translation invariant Borel measure on \mathcal{H} which assigns finite positive measure to the unit ball.

7. Let \mathcal{H} be a Hilbert space. Show that any two orthonormal bases have the same cardinality.