HOMEWORK 5, MATH 175 - FALL 2009

DUE FRIDAY OCTOBER 16TH (AT THE BEGINNING OF CLASS)

This homework assignment covers Sections 15.4 - 15.6 in the book.

- 1. Find an equation of the tangent plane to the surface given by $z = x^2 e^{x^2 y^2}$ at the point (-1, 1, 1).
- 2. Find the linear approximation of the function $f(x,y,z) = \sqrt{x^2 + y^2 + z^2}$ at the point (2,3,-1).
- 3. Suppose $z = x^2 e^{yx}$, where $x = \sin t$, and $y = \ln t$. Find dz/dt.
- 4. Suppose $z = e^{x-y}$, where x = st, and y = s/t. Find $\partial z/\partial s$ and $\partial z/\partial t$.
- 5. Suppose $z = \sqrt{r^2 + s^2}$, where $r = y + x \cos t$, and $s = x + y \sin t$. Find $\partial z/\partial x$, $\partial z/\partial y$, and $\partial z/\partial t$.
- 6. Suppose $y^5 x^2y^2 = 1 e^{xy}$. Find dy/dx.
- 7. Suppose $xyz = \cos(x + y + z)$. Find $\partial z/\partial x$, and $\partial z/\partial y$.
- 8. Consider the function $f(x,y) = y^3/x^2$.
 - (a). Find the gradient of f.
 - (b). Find the directional derivative of f in the direction of (4, -1) at the point (1, 1).
- 9. Find the directions in which the directional derivative of the function $f(x,y) = x \cos y$ at the point $(-1, \pi/4)$ has the value -1.
- 10. Find the maximal value of the directional derivative $D_u f$ at the point (1, 2, -1) to the function $f(x, y, z) = \frac{1}{1+2x^2+3y^2+4z^2}$. In which direction is this maximum attained?