$\qquad$
Problem 1. In each of the following cases determine whether or not the subset $W$ is a subspace of the vector space $V$.
(1) $W$ is the set of all vectors in $V=\mathbb{R}^{3}$ such that $x_{1}+x_{2}=0$.
(2) $W$ is the set of all vectors in $V=\mathbb{R}^{3}$ such that $x_{1}+x_{2}=1$.
(3) $W$ is the set of all vectors in $V=\mathbb{R}^{3}$ such that $x_{1} x_{2}=0$.
(4) $W=\{0\} \subset V=\mathbb{R}^{4}$.
(5) $W$ is the set of all vectors of the form $s\binom{1}{0}+t\binom{1}{1}$ where $s, t \in \mathbb{R}$ and $V=\mathbb{R}^{2}$.
(6) $W$ is the set of all vectors of the form $s\binom{1}{0}$ or of the form $t\binom{1}{1}$ where $s, t \in \mathbb{R}$ and $V=\mathbb{R}^{2}$.
(7) $W$ is the set of all vectors $v$ in $V=\mathbb{R}^{2}$ such that $\left(\begin{array}{cc}-1 & 2 \\ 3 & 2\end{array}\right) v=0$.
(8) $W$ is the set of all matrices $A$ in $V=M_{2 \times 2}(\mathbb{R})$ such that $A\binom{1}{4}=0$.
(9) $W$ is the set of all polynomials $p$ such that $p(2)=0$, where $V$ is the vector space of all polynomials.
(10) $W$ is the set of all polynomials $p$ such that $p(0)=2$, where $V$ is the vector space of all polynomials. Solution 1.

1. $W$ is a solution set to a homogeneous system of linear equations and hence it is indeed a subspace.
2. $W$ does not contain the 0 vector and is therefore not a subspace of $V$.
3. $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ are both in $W$ but their sum $\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ is not. Hence $W$ is not a subspace.
4. $W$ contains 0 by definition and is closed under addition and scalar multiplication because $0+0=0$ and $a 0=0, \forall a \in \mathbb{R}$. Hence $W$ is a subspace.
5. This is more familiar as the span of $\left\{\binom{1}{0},\binom{1}{0}\right\}$ and is indeed a subspace.
6. $\binom{1}{0}$ and $\binom{1}{1}$ are both in $W$ but their sum $\binom{2}{1}$ is not. Hence $W$ is not a subspace.
7. $W$ is just the set of solutions to the homogeneous system of linear equations given by

$$
\begin{aligned}
& -x_{1}+2 x_{2}=0 \\
& 3 x_{1}+2 x_{2}=0 .
\end{aligned}
$$

Hence $W$ is a subspace as in question 1 .
8. $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)\binom{1}{4}=\binom{0}{0}$.

If $A, B \in W$ then $(A+B)\binom{1}{4}=A\binom{1}{4}+B\binom{1}{4}=\binom{0}{0}+\binom{0}{0}=\binom{0}{0}$. Hence $A+B \in W$.
If $A \in W$ and $a \in \mathbb{R}$ then $(a A)\binom{1}{4}=a\left(A\binom{1}{4}\right)=a\binom{0}{0}=\binom{0}{0}$. Hence $a A \in W$.
Thus $W$ contains the zero vector and is closed under addition and scalar multiplication and hence is a subspace.
9. If $p=0$ then $p(2)=0$ so $0 \in W$. If $p, q \in W$ then $(p+q)(2)=p(2)+q(2)=0+0=0$ so $p+q \in W$. If $p \in W$ and $a \in \mathbb{R}$ then $(a p)(2)=a(p(2))=a(0)=0$ so $a p \in W$. Thus $W$ is a subspace.
10. $W$ does not contain the 0 polynomial and so is not a subspace.

