Math 196 - Quiz 5, October 2, 2008

Name:_____

Problem 1. In each of the following cases determine whether or not the subset W is a subspace of the vector space V.

- (1) W is the set of all vectors in $V = \mathbb{R}^3$ such that $x_1 + x_2 = 0$.
- (2) W is the set of all vectors in $V = \mathbb{R}^3$ such that $x_1 + x_2 = 1$.
- (3) W is the set of all vectors in $V = \mathbb{R}^3$ such that $x_1 x_2 = 0$.
- (4) $W = \{0\} \subset V = \mathbb{R}^4$.
- (5) W is the set of all vectors of the form $s \begin{pmatrix} 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ where $s, t \in \mathbb{R}$ and $V = \mathbb{R}^2$.

(6) W is the set of all vectors of the form $s \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ or of the form $t \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ where $s, t \in \mathbb{R}$ and $V = \mathbb{R}^2$.

(7) W is the set of all vectors v in $V = \mathbb{R}^2$ such that $\begin{pmatrix} -1 & 2 \\ 3 & 2 \end{pmatrix} v = 0$.

- (8) W is the set of all matrices A in $V = M_{2\times 2}(\mathbb{R})$ such that $A\begin{pmatrix} 1\\4 \end{pmatrix} = 0$.
- (9) W is the set of all polynomials p such that p(2) = 0, where V is the vector space of all polynomials.

(10) W is the set of all polynomials p such that p(0) = 2, where V is the vector space of all polynomials. Solution 1.

- 1. W is a solution set to a homogeneous system of linear equations and hence it is indeed a subspace.
- 2. W does not contain the 0 vector and is therefore not a subspace of V.

3.
$$\begin{pmatrix} 1\\0\\0 \end{pmatrix}$$
 and $\begin{pmatrix} 0\\1\\0 \end{pmatrix}$ are both in W but their sum $\begin{pmatrix} 1\\1\\0 \end{pmatrix}$ is not. Hence W is not a subspace.

4. W contains 0 by definition and is closed under addition and scalar multiplication because 0 + 0 = 0 and $a0 = 0, \forall a \in \mathbb{R}$. Hence W is a subspace.

5. This is more familiar as the span of $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}$ and is indeed a subspace.

6.
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ are both in W but their sum $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ is not. Hence W is not a subspace.

7. W is just the set of solutions to the homogeneous system of linear equations given by

$$-x_1 + 2x_2 = 0$$
$$3x_1 + 2x_2 = 0.$$

Hence W is a subspace as in question 1.

8.
$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

If $A, B \in W$ then $(A+B) \begin{pmatrix} 1 \\ 4 \end{pmatrix} = A \begin{pmatrix} 1 \\ 4 \end{pmatrix} + B \begin{pmatrix} 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$ Hence $A+B \in W$
If $A \in W$ and $a \in \mathbb{R}$ then $(aA) \begin{pmatrix} 1 \\ 4 \end{pmatrix} = a(A \begin{pmatrix} 1 \\ 4 \end{pmatrix}) = a \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$ Hence $aA \in W.$

Thus W contains the zero vector and is closed under addition and scalar multiplication and hence is a subspace.

9. If p = 0 then p(2) = 0 so $0 \in W$. If $p, q \in W$ then (p+q)(2) = p(2) + q(2) = 0 + 0 = 0 so $p + q \in W$. If $p \in W$ and $a \in \mathbb{R}$ then (ap)(2) = a(p(2)) = a(0) = 0 so $ap \in W$. Thus W is a subspace.

10. W does not contain the 0 polynomial and so is not a subspace.