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1 The ring of algebraic integers

An algebraic number is called an algebraic integer if it is a root of polynomial
xn + a1x

n−1 + ... + an with integer coefficients.

Lemma 1.1. Let γ be any algebraic number. Then there exists a natural
number a such that aγ is an algebraic integer.

Proof. We have a0γ
n + ... + an = 0 for some integers ai. Multiply by an−1

o ,
and get (a0γ)n + a1(a0γ)n−1 + ... + anan−1

0 = 0. Hence a0γ is an algebraic
integer.

Lemma 1.2. Let γ1, ..., γn be non-zero complex numbers and let M be the
Z-module generated by them, i.e. {a1γ1 + ... + anγn, ai ∈ Z. Suppose that α
has the property that αγi ∈ M for each i. Then α is an algebraic integer.

Proof. We have αγi =
∑

ci,jγj for every i and some integers ci,j . Hence
γi are the solutions of the system of linear equations C~γ − α~γ = 0 where
~γ = [γ1, ..., γn], C = [[ci,j ]] Therefore the determinant det(C−αI) is 0. That
determinant is a polynomial in α with integer coefficients and the highest
coefficient 1.

Theorem 1.3. The set of algebraic integers is a ring.

Proof. Let α be a root of f(x), β be a root of g(x), both algebraic integers.
Let f be of degree m, g be of degree n. Consider the Z-module generated by
αiβj , 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1. Then (α± β)M ⊆ M and (αβ)M ⊆ M .
Hence both α± β and αβ are algebraic integers by Lemma 1.2.
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2 Rings of integers in finite extensions of Q

Let K be a finite extension of Q. The ring of integers O = O(K) is the
intersection of the ring of all algebraic integers with K.

Note that K = Q[α] for some α where the degree of the minimal polyno-
mial of α = the degree of the extension = the number of different embeddings
of K into Q̄. The embeddings σ1, ..., σn extend the maps α → αi where αi

are the roots of the minimal polynomial of α.
For every β ∈ K, the norm NK(β) (the trace trK(β)) is the product (the

sum) of all σi(β). Both are rational numbers since these are the coefficients
of the minimal polynomial for β. Note that the norm is multiplicative. As
usual, the trace allows us to define a bi-linear non-degenerate form on K:
(α, β) = tr(αβ). The properties are easy to verify, including tr(α2) 6= 0 if
α 6= 0. Note that for α, β ∈ O(K) we have tr(αβ) ∈ Z.

For every α1, ..., αn ∈ O(K) let

DK(α1, ..., αn) = det(σj(ai))2 = det(trK(αiαj))) ∈ Z.

The DK is the discriminant of the numbers αi.
Note that

Theorem 2.1. Let I be an ideal in O(K) and let α1, ..., αn be numbers in
I that are linearly independent over Q such that |DK(α1, ..., αn)| ∈ N is
minimal. Then I is the Z-module generated by αi’s.

Proof. Any α ∈ I is (unique) linear combination a1α1 + ... + anαn. It is
enough to show that ai ∈ Z. Suppose that, say, a1 6∈ Z. Then a1 = b + θ, θ
the fractional part of a1 (strictly between 0 and 1).

Consider a new collection of numbers β1, ..., βn from O(K):

~β = ~α



θ 0 0 ... 0
a2 1 0 ... 0
. . . ... .
. . . ... .
. . . ... .
an 0 0 ... 1

 .

Note that βi = αi ∈ O(K) if i > 1 and β1 = θα1 + a2α2 + ... + anαn =
β − bα1 ∈ O(K). Clearly, βi are linearly independent since θ 6= 0.

Then, computing the determinant in the definition of DK , we get

|DK(~β)| = θ2|DK(~α)| < |DK(~α)|,
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since θ < 1, a contradiction.

Definition 2.2. The discriminant of K is DK(~α) for some (=any) integral
basis ~α of O(K).

More properties of O(K).

Proposition 2.3. For every ideal I in O(K), O(K)/I is finite.

Proof. I is an n-dim free Abelian group inside another n-dim. free Abelian
group O(K).

Proposition 2.4. O(K) is Noetherian.

Proposition 2.5. Every prime ideal P of O(K) is maximal.

Proof. Indeed, O(K)/P is finite domain, hence a field.

Definition 2.6. If A and B are two ideals in O(K) then we say that A is
equivalent to B (denote A ∼ B) if

(α)A = (β)B

for some non-zero α and β from O(K).

Remark 2.7. ∼ is an equivalence relation.

Remark 2.8. (α)A = αA.

Remark 2.9. A ∼ (1) = O(K) iff A is principal. Indeed, A ∼ (1) means
αA = (β) for some α, β ∈ O(K). That implies β = αδ, δ ∈ A ⊆ O(K).
Hence A = (δ). The converse statement is obvious.

The equivalence classes of ideals are called ideal classes of K. We shall
show that the number of ideal classes is finite.

Proposition 2.10 (Hurwitz). There exists N > 0 such that for every γ ∈
K, there exists t ≤ M and θ ∈ O(K) such that

NK(tγ − θ) < 1.
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Proof. Let ω1, ..., ωn be a basis of O(K). Then we have an isomorphism
K → Qn (as vector spaces). If γ =

∑
ciωi then we set

||γ|| = max
i
|ci|.

Then

NK(γ) ≤
∏
j

(∑
i

|xi||σj(ωi)|

)
≤ ||γ||nC (1)

for some constant C.
Take any M > C so that m = M1/n is an integer. For every i let

ci = ai + bi where 0 ≤ bi < 1, ai ∈ Z. The integral part of γ, [γ] =
∑

aiωi.
The fractional part is {γ} = γ − [γ]. Note that [γ] ∈ O(K). Note also that
~b is in the unit cube of Rn. Divide the unit cube into M cubes with side
1
m . Then for each j = 1, ...,M + 1, the coordinate vector of {jγ} is in one
of these cubes. At least two of them must be in the same cube. Let it be
{j1γ} and {j2γ}, j1 > j2. Let t = j1 − j2. Then

tγ = θ + δ

with θ ∈ O(K), and

MK(δ) ≤ ||δ||nC ≤
(

1
m

)n

C =
C

M
< 1

by (1) as required.

Theorem 2.11. The number of ideal classes is finite.

Proof. Let A be an ideal of O. Choose β ∈ A with minimal |NK(β)|.
Take any α ∈ O(K). Then by the proposition, there exists natural

number t ≤ M and θ ∈ O(K) such that NK(tα
β − θ) < 1. Multiply by

NK(β):
|NK(tα− θβ)| < |NK(β)|.

Hence for every α ∈ A, tα ∈ (β). Since t divides M !, we get that

M !A ⊆ (β)

Therefore

B =
M !
β

A ⊆ O(K).
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Note that B is certainly an ideal of O(K). Moreover

(M !)A = (β)B,

so A ∼ B.
Since β ∈ A, we have M ! ∈ B. Hence (M !) ⊆ B. But there are only

finitely many ideals bigger than (M !) (the factor-ring is finite), so there are
finitely many choices for B.

Theorem 2.12. The classes of ideals form a group under multiplication.

Lemma 2.13. A = AB → B = (1).

Proof. Suppose that A = spanZ(α1, ..., αn). Since A = AB, we get αi =∑
βi,jαj , βi,j ∈ B. Hence ~α is the 1-eigenvector of the matrix U = [[βi,j ]].

Thus det(U − I) = 0. Expanding the determinant, we get 1 ∈ B.

Lemma 2.14. (β)A = AB → B = (β).

Proof. Let δ ∈ B. Then δA ⊆ (β). Hence δ
β A ⊆ A. By Lemma 1.2, δ

β ∈ O.
Hence B ⊆ (β) and β−1B ⊆ O. Then A = (β−1B)A, hence β−1B = O(K),
i.e. (β) = B.

Lemma 2.15. Am ∼ (1) for some m.

Proof. Ai ∼ Ai+j means (α)Ai = (β)Ai+j . Hence (α)Ai = ((β)Aj)Ai.
Therefore by the previous lemma, (β)Aj = (α), so Aj ∼ (1).

Proof of Theorem 2.12. It is easy to see that ∼ is stable under multi-
plication. So the set of classes is a finite semigroup. The previous lemma
implies existence of inverses.

Corollary 2.16. Let hK be the ideal class number of K. Then AhK ∼ (1).

Theorem 2.17 (Fundamental theorem of ideal theory.). Every ideal of
O(K) can be written as a product of prime ideals; it can be written in a
unique way except for the order of factors.

Lemma 2.18. AB = AC → B = C.

Proof. Ah = (α). Hence αB = αC which trivially implies B = C.

Lemma 2.19. A ⊆ B implies that there exists an ideal C such that A = BC.

Proof. Bh = (β). Then Bh−1A ⊆ (β). Hence C = 1
β Bh−1A ⊆ O(K). Then

BC = 1
β BhA = A.
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Proof of Theorem 2.17. O(K)/A is finite, hence there exists a maximal
ideal P1 > A. Then by the previous lemma there exists A1: P1A1 = A. We
have A ⊂ A1. If A1 6= O(K), we can continue. Hence A = P1P2...Pm for
some m (by the Noetherian property).

For uniqueness: if A = Q1...Ql then P1 must divide one of the Qi, etc.
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