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Asymptotic Distribution of Nodes for Near-Optimal
Polynomial Interpolation on Certain Curves in R?

M. Gotz, V. V. Maymeskul, and E. B. Saff

Abstract. Let E ¢ RS be compact and ledf denote the dimension of the space
of polynomials of degree at mostin s variables restricted t&. We introduce the
notion of anasymptotic interpolation measuf@IM). Such a measureif it exists

E

describes the asymptotic behavior of any schesme {an}gn:r n=12,...,0fnodes

for multivariate polynomial interpolation for which the norms of the corresponding
interpolation operators do not grow geometrically large withVe demonstrate the
existence of AlMs for the finite union of compact subsets of certain algebraic curves
in R2. It turns out that the theory of logarithmic potentials with external fields plays a
useful role in the investigation. Furthermore, for the sets mentioned above, we give a
computationally simple construction for “good” interpolation schemes.

1. Introduction

With 11, (R%) denoting the set of all real polynomials of degree at nmasts variables,
ie.,

(RS := { p(¥) : p(x) = Z CX*, @ eZ5,CoeRxeR Y,

le|=n

(Z<. denotes the set of multi-indices withcomponents) an& C R® a compact set,
the problem of determining the asymptotic behavior of “good points” for polynomial
interpolation to functiond € C(E) is a fundamental question which has been resolved
in generality only for the case = 1. If 1,(E) denotes the linear space obtained by
restrictingri, (RS) to E, i.e.,

M (E) = mn (RY) .

anddf denotes the dimension aof,(E), then by “good points”{xk.n}ﬁil we mean
points for which the interpolation problem is solvablerip(E) with arbitrary data in
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these points and for which the norm of the interpolation operator

Ly : C(E) — 11,(E)

does not grow geometrically large with More precisely, ifLiE,n e mp(E),i = 1,dF,
are the fundamental Lagrange polynomials satisfying

(1.1) LE () =8k (.k=1,dF),
then

dr

La(f) =" f )L,
k=1

and (see [5]) the norriL, || is given by the_ebesgue constant

df
E ._ E
(1.2) AE = rpeaExi; ILE, (1.

Thus the basic problem we consider is the determination of Betsat have the
following property.

Definition. Aninfinite compact seE C RS is said to have aasymptotic interpolation
measure(more briefly, an AIM) if there exists a measyr& on E such that for any

E
interpolation scheme of nodeg = {xk.n}g":1 c E,n=0,1,..., for which the corre-
sponding interpolation problems are solvable and the sequence of Lebesgue constants
AE satisfies
n

(1.3) limsup(A5)¥" < 1,

n—oo

the sequence of normalized counting measures satisfies

dE
1 n

(1.4) v(Tn) = G E Oy, — ME as n— oo
n k=1

in the weak-star sense.

Here, and in what follows§, denotes the unit point mass»xat

Remark 1.1. The AIM property is clearly invariant under the affine transformations
of a setE.

Remark 1.2. AssumingE to contain infinitely many points, thAuerbach—Fekete
points(often referred to simply as Fekete points) satisfy (1.3). These points are defined

as follows. If{ p; }id;El form a basis forr, (E), then the Auerbach—Fekete points are points
E
{x;,n}ﬂ”:1 C E that maximize the determinant

[(Pi (Xk)) 1< k=dE |
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over allxy, ..., Xqe in E. For the Lebesgue constants corresponding to such points we
have

AE < dF,
and since

df < dimm,(R%) = (n ;L S) =0(Mm% as n— oo,
it is clear that (1.3) holds.

Remark 1.3. Fors = 1, itis easy to show that every compactBet R* with positive
logarithmic capacity has the AIM propettand, moreover, thatF is just the Robin
(equilibrium) measure foE. Indeed, this fact can be proved, for example, from the
well-known inequality

If = La(HI = @+ IILnlD oo If — pll

together with a result on asymptotically minimal polynomials which follows from the
theory of logarithmic potentials (see [4], [10]). Fer> 2 the problem is far more
difficult; there exist nontrivial compact sefs ¢ R? that donot have the AIM property
(see Example 3.4).

In the present paper we shall restrict ourselves to sulisetbalgebraic curves in
the plane. Using the theory of logarithmic potentials with external fields in the complex
plane (see [10]), we shall show that the union of finitely many compact subsets of positive
capacity of algebraic curves of genus GRifhas an AIM. The essential feature of such
curves is that they admit a rational parametrization. In particular, our result applies in the
case whelk is a compact subset of the image of the unit circle under a rational mapping
w = pP(2)/q(2) in the complex variable or a compact subset of a curve consisting of
piecewise conics.

The outline of the paper is as follows. Section 2 contains some simple consequences
of Auerbach’s theorem that are essential for the proofs of the main results of the paper.
In Section 3 we prove that the union of finitely many subsets of algebraic curves having
AlMs again has an AIM. In Section 4 we show that compact subsets of algebraic curves of
genus 0 have the AIM property and we determine their asymptotic interpolation measure
wE. In Section 5 we consider the inverse problem of constructing good interpolation
points when the AIMiE is known. In the final section, we present several examples that
illustrate our results.

2. Some Simple Consequences of Auerbach’s Theorem

In this section we prove two auxiliary results in the general Banach space settings which
are basic ingredients for establishing our main results.

1 This assertion need not holdEf has capacity zero.
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Proposition 2.1. LetX be anr-dimensional subspace of a Banach spadetB c V*
be a closed norm-determinifgubset of the dual spacand letl <m < p < r be
integersLet g € X andg; € V*, j =1, m, be such that

@i (9j) = dij (i,j=1nm),
and letL : V — X be defined by

L(f) =) ¢(fg.
j=1

J

Then there exispj € B, j = m+ 1, p,and f € X, j = 1, p, such that

(2.1) pi () = & (i,j=1p),
(2.2) leill =11l =1 (j=m+1 p),

and the operatol : V — X, given by

. p
(2.3) L(Ey:=) gD,
j=1
satisfies )
Il < (p—m+ DL+ (p—m).

Proof. LetY:={f e X:¢(f)=0,i =1, m}be endowed with the same normas
ThenY is an(r — m)-dimensional linear space and the restrict& is a closed norm-
determining set fol. By Auerbach’s theorem (see, e.g., [5]), there eXjst Y C X
andg; = ¢jly € Bly, j = m+1, p, such that| f;|| = 1, ||g;j|| = 1, and

@i (fj)) = &; (,j=m+1, p).

Notice that, sinc@ is norm-determining ang; € B, we havel|g;|l < llg;ll < 1, and so
llgjll = 1for j =m+ 1, p. Thus (2.2) holds.
Next, for j = 1, m, define

p

fi=g - Z ok (g)) fi.

k=m-+1
Then, forj = 1, m,
P p
oi(f) = @@ — D @i (f)=0(g) — > ok(g)di
k=m+1 k=m+1
p
Sij — Z () -0=2¢; if i <m,

k=m+1
¢i(g) —wi(g)=0=3¢; if m<i=<np,

where in the case < mwe used the fact thaf, € Y for k > m+ 1. Thus (2.1) holds.

2 By “norm-determining,” we mean that for eache V there holdg|v| = sug|e(v)| : ¢ € B}.
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Let f € Vwith || f|| < 1. Then from (2.2) we get

N p m p m
ILCHI = |D e (D fj| = (Z+ Z)‘Pj(f)fj < D_e(Hfi|+(p—m)
j=1 j=1  j=m+1, j=1
m m P
= 1D_e(hg =Y Y ei(He@) f| + (p—m)
j=1 j=1 k=m+1
P
= L= D e +(p—m
k=m+1
P
< ILI+ Y el + (p—m) = (p— m+ DL + (p — m).
k=m+1
Hence (2.3) holds. ]

We now apply Proposition 2.1 to a subspace of continuous functions on an infinite
compact Hausdorff spa& where the norm is the uniform norm 8nWith eachx € S
we associatg* € C(S)* by settingx*(f) := f(x), f € C(S). ThenB := {x* : x € S}
is a closed norm-determining set f6«S).

Corollary 2.2. LetX; c C(S) be anr-dimensional subspa@ndletl <m< p<r
be integersLet r = {xj}j1; C S be a set of nodes for which there exist & X,

i =1, m, such that
Lix) =6  G(,j=1m),
and define the interpolation operat@t: C(S) — X; by

m
(2.4) P(f) =) fxLi.
i=1
Then there exists a set of p interpolation nodes {x; }J-p:1 containingr and functions
Li € X;,i =1, p, such that
Lix) = &j (i,j=1p).
and the interpolation operatdP : C(S) — X; corresponding td satisfies

(2.5) IPIl < (p—m+D[P|l + (p—m).

Remark 2.3. The norms of the operato@andP in (2.4), (2.5) are given by formulas
similar to those for the Lebesgue constants defined in (1.2).

Remark 2.4. If p=r and the function$p; }{_; form a basis foiX,, then the set can
be obtained, for example, by adjoiningta set ofr —m nodes{x;}i_,,; maximizing
the determinant

[(Pi (Xj))1<i,j<rl
over all Xmi1, ..., %) € ST™™.
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Proposition 2.5. LetV be a Banach spa¢c& < m < p integersand let{1; }i"=1 c V*,
{fi}l_; C V satisfy

Vi (f)) = & i,j=1p),
(2.6) I¥ill = 1 (i=1p.

Let X, be an m-dimensional subspaceYyf := sparfy, ..., fp}. Then there exist a
subsefy i, of {y;}]_, and{g;}!, C Xp, such that

Y (g) =8;  (,.j=1m,
and the operatol : V — X, defined by

(2.7) Lty =) v (ha,
i=1
satisfies
R p
(2.8) 121 <m> .
j=1

Furthermoreif || fj|| < K, j = 1, p, then
(2.9) IZIl < min{[[£]| + KM+ 1)(p—m), Km(p — m+ D)},
whereL : V — Y, is defined byC(f) := ij:1 v (F)fj.

Proof. Define onXy, the new norn|-||x,, by

I fllx, = max|yi(f)[.
i=1lp
Then{y, ..., ¥p}isaclosed norm-determining set of linear functional&X, |- |Ix,,)-
Note further thaf| fx||x,, = 1 for all k.
By Auerbach’s theorem, there exighy }; C {¥j}/_; and{gi}[’; C X such that

(2.10) Vi (g5) = 8ij (i,j =1,m),
and
(2.11) lgillx, = ¥k llx;, =1 (i=1m)).

To simplify notation we assume thét, = v; fori =1, m.
Now et : V — (Xp, Il - ) be defined by

L= vi(Ha.
i=1

Sinceg; € Xy C Yy, j = 1, m, taking into account (2.10), we have

P P
(2.12) g =Y vi@fi="f+ > vi@f.
i=1

i=m+1
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Let f €V, || f|| < 1. Then using (2.6), (2.11), and (2.12) we obtain
m m p m p
IZCON <D I HIgill < D ()] (Z If; ||> <> Uil
j=1 j=1 i=1 j=1

= j i=1

and (2.8) follows.
Next assume thatf;|| < K, j = 1, p. To establish (2.9) we use (2.12) to obtain

m P
ij<f>(fj+ > ng)fi)
j=1

i=m+1

L(F)

p m
LH+ Y (Zw;(f)wi(g,-)—wm) fi,

i=m+1 \j=1
and so (2.6) and (2.11) imply that
A p m
IZCON < 1LHI+ > (Z g ||xm+1> K = 1L()] + (p—m(m+ DK,
i=m+1 \j=1

On the other hand,

m m p
IZCON = D D+ w(H) Y wig)fy
j=1 j=1 i=m+1
< mK+m(p—mK =m(p—m+ K.
Hence (2.9) holds. [ |

Analogous to Corollary 2.2 we obtain the following result.

Corollary 2.6. Letl < m < p be integerslet Y, be a p-dimensional subspace of
C(S),andletr := {x; }jp=1 C Sbe asetofinterpolation nodes for which the interpolation
problem is solvable ir,. Let X, be an m-dimensional subspace Bf. Then there
exists a subset of t consisting of m interpolation nodes such that the interpolation
problem is solvable ikX;,, and the corresponding interpolation operator satisfies

(2.13) IPIl < Pl min{(m+ 1)(p — m) + 1, m(p — m + 1)}.
Remark 2.7. In numerical applications, B = {p }".; is a basis foK, the set C ©
can be found by maximizing the absolute value of the determinant

(2-14) I(pi (ij))lgi,j§m|

over all (g) possible choices di }|; C 7.
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3. Unions of Sets Having AIMs

We first prove that the AIM property is not affected by the addition of finitely many
points.

Proposition 3.1. Let E C RS be an infinite compact seiand let F C RS be a finite
set Then E has aAIM if and only if EU F has anAIM. Moreoverif E has anAlM,
then for every finite set :F

Proof. It suffices to prove the result for a singleton $et= {z} with z ¢ E. Let
E = EU/{z}. _
Suppose first thaE has an AIM, and let, = {X1p, ..., ngyn} C E be a sequence of

interpolation points with Lebesgue constakggon E) satisfying

(3.1) lim )Y =1.

Suppose that the points are ordered suchihat# z,i = 1, dnE— 1. Denote byLif'fvn
the corresponding fundamental Lagrange polynomials (see (1.1)).

Casel: X, , =zanddf =df. Since
5

dE-1 df
max Y |LE,001 < max) " ILE,(0] = An,
xeE = xeE 31
using Corollary 2.2 witt = E,m=df — 1, p=r =df, X; = m(E), T = 7\{2},
andL; = LE , we can choose a poimte , € E such that the fundamental Lagrange

I,n’
polynomialsLF, € mn(E) for

Tn = {Xun, -« Xge b i= Kens ooy ané—l,n’ XdE n}s
satisfy
dy
Ani=maxy |LE )| < 2i, + 1.
n er;' (0] < 2 +
Case?2: “Otherwise.” Definer, := #,|g. Theni, < X, for the corresponding

Lebesgue constants ovErand I? respectively.
In either case, we havg, < 2\, + 1, and thus the Lebesgue constants associated with
7, (for E) satisfy a limit condition similar to (3.1). By assumptidha,has an AlM, so

diEZ(SX_) wE.

n xet,

Furthermore, it is easy to show that

(3.2) df <dy:=df <df+1.
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Consequentlyd, — oo ash — oo (recall thatE is infinite), and it follows that
1
= Z 6)( — /LE.
dn XETh

Thus, E has an AIM andﬁ;: RE.
Conversely, suppose thithas an AIM. Note first that

(3.3) suppug CE.
Let

fin(E) == {ple : p € my(E) andp(z) = 0}.
Clearly,f1,(E) C m1n(E) and, moreover,

(3.4) df — 1 <d, :=dimfi,(E) < dF.

Indeed, let the polynomialp, € nn(E), k = 1,dF, form a basis fon,(E) when
restricted toE. If, for somej, pj(2) # 0, then the polynomials

Pk (2)
p; (2

(3.5) Ok(X) == P(X¥) — Pj (X) (k=1,dF k#]),

are linearly independent ifi, (E).
Now, let 7y = {Xin,...,Xqen} C E be a sequence of interpolation points with
Lebesgue constants, (on E) satisfying

(3.6) lim )Y = 1.
If dy < dF, we apply Corollary 2.6 wittm = dy, p = df, X = fin(E), Y, = mn(E),
andt = 1, to get a subsef,, of t, consisting ofdn interpolation nodes for which the

interpolation problem is solvable ifi,(E) and the corresponding Lebesgue constant
satisfies

o < (dE + Drn.

(If d, = df, we simply set?;, := 1,.) Next, ifd, > dy, settingm = dn, p=r = dj,
X; = my(E), andt := 7,, we use Corollary 2.2 to adjoitﬂ}1 —d, < 2 nodes tof, and
obtain a complete sét, of interpolation nodes oft with Lebesgue constant satisfying

Xn < 3hn+2 < 3(d5 + D+ 2.
So, using (3.6), we conclude that
lim an¥" < 1.

By the assumption thd has an AIM we get
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Note that
1 df (1 1
(3.7 — ) b= |- 6x) + = 6x.
d” XET dn d'|15 ; dn xe(rzn\:rn)
Since, thanks to (3.2), we have
E
lim 2~ =1,
n—oo dn

and since the total mass of the second sum in the right-hand side of (3.7) is ay/dfost 3

it follows that
1 ~
E E ox — ,Uan

XETh

which together with (3.3) completes the proof. ]

The main goal of this section is to establish the following result concerning algebraic
curves inR2,

Theorem 3.2. Let V ¢ R? be an algebraic variety consisting of distinct algebraic
curves W), j =1, m, generated by irreducible polynomials‘Qof respective degrees
d,andsetd := )", d.Inadditionlet E’ c VI, j = 1, m, be infinite compact
sets and define E= | J{L, E!. Then if each EV has anAIM, so does EMoreovey

mogi
(3.8) pE=>"—uf

Proof.  Since we are interested in the limiting behavior of interpolation nodes, we can
assume thah > dV. For anyj, since car€!) = oo we have by BZzout's theorem
df” =dY"”, and so (see, e.g., [2]):

(3.9) dr(1]) - dr|15u‘> _ (n—i— 2> B (n —db + 2)

2 2
_ gion - 97@Y =3 i o)
2
and
n+2 n—dv¥ 42
(3.10) dnEzng=<2)—< ) )
dv@dv -3
PV G R
2
Note thatd® = O(n) asn — oo.
Lett, = {xk,n}g”=1 Cc E,n=0,1,..., be sets of interpolation nodes satisfying (1.3),

V= 1, N ED. Assuming that” # ¢ and denoting!’’ := cardz.”, we represent
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the setz! in the form
. i (J)
o) = {Xﬁ{;}tlv
wherex)) = Xi.n for somel (k), k = 1, n{".
Although the curve¥ ), j = 1, m, are not necessarily pairwise disjoint, bg®ut’s
theorem (see, e.g., [14, Th. 3.1]):

cardVY Nv®)y <dPd®  for i #j.
Hence,
m .
(3.11) dr <> n <df+cCV,
j=1
where the constar@V is given by

(3.12) cVi= > dVdD.

1<i<j<m

Since, for eactj, the corresponding interpolation problem on thezé@tis solvable
in mp (EY)), we conclude that

n <d  (j=1,m).

It follows that, for anyi,

n® >df - nd > dF - > d’ =@ n-c") - <<Zd<“> n— Zc”)>
j# j#i j#i j#i
j# j# j#i
m
— dv _ <cV _ C(i)) —dh ¢V,

n JZJ:- n
and so
(3.13) 0<d" -—n® <cV.

Our first purpose is to obtain the limiting distribution of the normalized counting
measure

1 &
v(m) =g ) bu,
n k=1

assuming that each set!’, j = 1, m, has an AIM. .
Fix j and, forn large enough, consider the interpolation problenéH with nodes

() _ gy
Th' = {Xk,n k=1*

(Note that fom large enough,ﬁ“ # ¢ thanks to (3.13) and (3.9).)
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if n < d, denote byt ), i = 1,n{, the polynomials £, , restricted toE().
ThenL{)) € my(E") and, clearly,

m .
(3.14) max y " |Lih (0] < Af,

(j) 4
xeE i—1

whererE denotes the L_ebesgue constant associatedwyitWe now use Corollary 2.2
with s = ED,m=n, p=r =d’, X, =n (E<J>) v = andLi = L)

to complete the set!/ by adjoining pomts{x(”} . Then, forEW, the Lebesgue

(J) l
constants.E”" associated with the nod%{,ﬂ}kzl satisfy

W <@ —nd + DAE + @ —n) < €V +DAE+CY,
thanks to (3.14) and (3.13). From (1.3) it then follows that

lim supLE")Y" < limsup((CY + DAE + CV)V" < 1.

n—o0 n—o0

Therefore, (1.3), witlE replaced byE), is also satisfied. In addition, sin&!’ has an
AlIM, we get

i )
vy - pF as n— oo,

in the weak-star topology, Whever,ﬁj)) is the normalized counting measure in the points

(J) d(J)
Xl

Note that by (3.9) and (3.10),

d(J) d(j)
3.15 im — = —.
( ) n—o00 dE dv
Thus, we have
m d(J) m d(])
(3.16) lim v(m) = n'Lmoo_ ZZ6X<,>—Z Z 8,0
]:1k n(J)+l
dr% m ﬂ(,j)
NI B W
k=1 i—Lk=1 ©
m_ () 1 m &
— n (i) .
= lm 1> GEv) -G 2 b
i=1 Un N Slgongg

m nil)

dE

1 n
+5E E Oxn — E )
dr \i= 10

i=1 k=
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Regarding the second measure we note that its total mass satisfies

d(])
dEXm: Z 6m = dE Z(dm n) = |:<nzd(1) Zdj))_ing)}
n j=1

k=n 41 j=1 j=1

1 no cv
= —(dn->cV-df)]==-—>0 as n—co.
d 2 d

The total mass of the third term can be estimated using (3.11):

(J)

e DT w o | B b e R

j=1 k=1 n

For the first measure on the right-hand side of (3.16), using (3.15) and (1.4) we get

J'
nI|_>mOCZ: v(f(l)) = Z lim ( V(-,;U))) W Zdu) B0

Consequently,
||m ( ) 1 Xm:d(” EW
n%oov ) = d =1 ® ’
and (3.8) is proved. ]

Remark 3.3. The converse of Theorem 3.2 also holds provided thdgj;g;(E“) N
E()) of intersection points of thE1)’s has zerq.E-measure. In this case, the existence
of 1E implies that eacluE"”" exists and is given by

EWM dV

_ - ,E
- d(])'u E()
This can be shown by applying Corollaries 2.6 and 2.2 to aseof “good nodes” on

E() to get a complete set of nodes &nand then using the AIM property d& along
with simple arguments regarding weak-star convergence of restricted measures.

V. Totik [12] has constructed the following example which shows that Theorem 3.2 is
not true for the union of arbitrary compact s&d’.

Example 3.4. First we list some simple assertions which will be used in the construc-
tion:

(i) IfasetE contains infinitely many triangles, then for althe dimension oft, (E)
is maximal, i.e.df = (n+ 1)(n +2)/2.

(i) If E consists of finitely many segments and of a disk, and if for a system of
(n+1)(n+2)/2 points inE the interpolation problem is solvable for polynomials
of degree< n, thenn?/2 — O(n) of the interpolation points lie in the disk. In
fact, each segment can only contain at most 1 interpolation points.
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(i) If E consists of aninterval] b] and infinitely many triangle$;, T»,. . ., such that
these triangles converge to one of the endpoints, safit®., every neighborhood
of a contains all but finitely many of th&'s), then the limit distribution for
nearly optimal interpolation points i&,. Indeed, by (i) the dimension of the
polynomials onE is maximal, and, as we have just mentioned, each segment of
E can only contain at most + 1 interpolation points. Thus, there are at most
O(n) interpolation points outside any neighborhoodof

(iv) If t,, cardr, = (n+ 1)(n + 2)/2, is a set of interpolation nodes on a &efor
degreen with Lebesgue constant, and ifx € E is any point, then we can place
a small diskB(x, &) aroundx so that the Lebesgue constant fgron the set
B(x, &) U Eisatmost(1+ 1/n)A,.

We now give the construction of two disjoint compact $et8 andE @ with the AIM
property for which the uniofe® U E® does not have this propertg® will consist of
the segment [01] together with infinitely many triangles converging to 0, & will
consist of the segment [3] together with infinitely many triangles converging to 3. By
(iii) these sets have the AIM property.

Let Eg = [0, 1] U[2, 3], and suppose we have already constru&igd, that consists
of Eg and some finitely many triangles. Suppose also that we have already defined two
positive radiir,_; andpm_1. If mis even (odd), then consider the unigg_1U B(0, ry)
(Em-1 U B(3, pm)) of En with the closed diskB(0, ry) (B(3, pm)) of radiusry, <
rm-1/M (om < pm-1/M) with center at 0 (at 3). For eaah take an optimal set of
interpolation nodes, , for this setEy_1 U B(O,rm) (Em—1 U B(3, pm)). Thenz,m
contains(n + 1)(n + 2)/2 points, and by (ii) most of them lie iB(0, ry) (B(3, om)).
Hence, if we choosey, sufficiently large, then there holds

(3.17) V(Tn,.m)(C\B(0, ryp)) < 1/m if mis even
(3.18) V(Th,.m)(C\B(3, pm)) < 1/m  if mis odd

By (iv), if pm (rm) is sufficiently small, then the Lebesgue constant for the nogles
on the setE,_1 U B(O, ry) U B(3, pm) is at most(1 + 1/n)-times the corresponding
Lebesgue constant on the $&f_; U B(O, ry) (Em—1 U B(3, pom)). This means that the
sequencér,,, m}o_; is a nearly optimal sequence of interpolation nddesny compact
set Hwith the propertyH C En_1 U B(O, ry) U B(3, pm) andz,,.m C H for all m.

Now the set,, m\ Em—1 consists of finitely many points lying iB(0, ry) (B(3, pm)).
For each such point select a small triangle that passes through that point and is contained
in B(O, rm) (B(3, pm)). Let E, be the union of all these triangles wil,_;.

This completes the definition of the sdfs, and the sequencdsy,} and {om}. We
define the seE := [ Jn,_o Em. Itis clear thatE consists of [01] U [2, 3] and infinitely
many triangles converging either to 0 or 3. Since the construction givek thakE,,_; U
B(0, rm) U B(3, pm) for everym, the sequencgry,, m}« iS a nearly optimal sequence of
interpolation nodes foE. But the sequenci (tn,, 2 }ie, converges tdg (see (3.17)),
while {v(Tn,.,.2+1) Jeioq CONvVerges tés (see (3.18)), so the sktdoes not have the AIM
property.

Finally, let E® (resp.,E®) be the portion ofE lying to the left (resp., to the right)
of the linex = 3/2.
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4. Algebraic Curves of Genus 0

In this section we shall show that compact subsets of planar irreducible algebraic curves
of genus 0 have an asymptotic interpolation measure and we find a formula for this
measure.

Irreducible algebraic curves of genus 0 can be characterized by the following.

Theorem 4.1([8, Th. 5.27]). An irreducible algebraic curve ifR? is rational if and
only if it has genu$.

Letl =Rorl =S':={ze C: |z = 1}. Supposd := {(X,y) € R?: Q(X, y) =
0} is an irreducible (over the complex field) real algebraic curve of genus 0, and

pl(t)’ y = y(t) = P2(t)
q) q)
is its proper rational parametrization with (possibly complex) polynomigis pz, q

in the sense that for all but at most a finite number of poimisy) € L, there is a
uniquet € | such thatx = x(t), y = y(t) and, conversely, for all but at most finitely
manyt € I, (x(t), y(t)) is a point onL. Note that by luiroth’'s theorem (see, e.g., [14,
Ch.V, Th. 7.3]), every irreducible rationally parametrizable curve also has such a proper
parametrization. Moreover, we may of course, in the following, assume that the greatest
common divisor of the parametrizing polynomials satisfies

(tel),

(4.2) ged(py, p2, @) = 1.
By [6, Th. 4.4], if L does not only consist of a single point, this implies that
(4.3) max(deg ps), deg pz), degq)) = deg Q) = d- =: d.

Let E C L be a compact set of positive logarithmic capacity. According to (3.9), for
n > d, the dimension of the linear spaog(E) is given by

(4.4) df =dn—ct.
If n < d, thenmi,(E) has full dimension, i.e.,

4E — n+2y (M+2)(n+1
"\ 2 )" 2 '

Note that in either case
(45) dimmgn(l) —c- —1<df <dimngy(1) =dn+1  if d>3.

(Ford = 1, 2 one haglf = dimmgn(l) = dn+ 1 foralln.)

Suppose that a scheme of interpolation points= {(X; n, yi,n)}idil, n=201...,
is given onE such that the interpolation problem is solvable on eachnd the cor-
responding Lebesgue constanfssatisfy (1.3). According to Proposition 3.1, we can
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assume without loss of generality (w.l.0.g.) tiEatloes not contain isolated points of the
algebraic curve (if such points exist). Denotinglbythe set of points of self-intersection
of L we can also assume that

(4.6) E:={tel:(X®),yt) e E\Lg)

is compact. This is clearly the casd if= S'; otherwise, it can be easily established by
reparametrizing via the circle (see Example 6.2). So for(a!ny, yi,n) € 1y, 1 =1,dF,
there existd; , € E’ such that

tin tin
Ko Vo) = (W n Pt >),

q(ti,n) ' q(ti,n)

andt , is unique except, possibly, for the case when,, yi.n) is a point of self-
intersection of the curve (in such a case, any of the preimages can be chosen).
We define a discrete measuré€t,) on E’ associated with/(z,) as the normalized
E

counting measure of the s&t:= {ti,n}idgl, ie.,

1 &
V(3y) = I > 6y,
n i=1

The subsequent results are formulated in terms of potential theoretic notions, such as
weighted equilibrium measuyr®obin equilibrium measurdalayage For their intro-
duction and discussion, the reader is referred to [10].

Theorem 4.2. If E’is compact and condition(d.3)and(4.3)hold, then the weak-star
limit as n — oo of the measures(z,) existsand it is the weighted equilibrium measure
Wy on E with the weight

@) ©=—
. w = —Q-
lq(t)|/d
More precisely
48) tim ) = 10, = 905+ (1= 5D o,

wherewg is the Robin equilibrium distribution on’Eand vy denotes the balayage of
the normalized counting measurg of the zeros of g onto 'E

Corollary 4.3. If E is a compact subset of an algebraic curve of gedasd E has
positive logarithmic capacitghen E has a\IM. Moreover 1 F is given by

(4.9) 1E(B) = 1, (B), B :={t e E: (x(t), y(t)) € B},

for any Borel subset B of Bvherepu,, is as in(4.8).
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Remark 4.4. Frequently, itis possible to find the density.f explicitly. For instance,

(@) if E’isaninterval &, b] andq has only real roott, .. ., tq,, dg := degq), which
due to (4.2) are not irg, b], thenu,, has density

1 1 VG —a —
+d-d
nd JT—ayd-1) (Z It —t q)
with respect to the Lebesgue measurear] (see [10, p. 122]);
(b) if the curveL is compact (as in Examples 6.4 and 6.5 of Section 6)&nd L,
using the complex parametrization and denoting the roots lof ¢; := rj€%,

j = 1, dg, for the density ofu,, with respect to the arclength on the unit circle,
we obtain the formula

d 2

1 —dg\ 1 : 11—rf]

= p - ' d—d

d <Z| (2.4 2n >2nd (; 1—2rjcosp — ) +r? * q)’

z:=¢?,

whereP(., -) is the Poisson kernel.

The proof of Theorem 4.2 (see below) can be carried over to dimensien2 and
yields the following.

Theorem 4.5. Suppose the curve L RS is rationally parametrizable via
p(t) _ Ps(t)
a® > am

and assume that for a compact setcEL, whose preimage has positive capacite
have

(4.10) X, = tel),

imr,(E 1
d := maxdeg py),...,deqg ps), deqgq)} = w + O(ﬁ) .

Then the weak-star limit of the normalized counting measures associated with interpola-
tion nodes on E having Lebesgue constants of polynomial growth can be characterized as
the image under the transformati¢#.10)of the|q|~Y/9-weighted equilibrium measure

on the(w.l.0.g. compac} preimage of E undef4.10).

Proof of Theorem 4.2. As in Section 3{L,En(x y)} , denotes the basis of Lagrange
polynomials associated with. We have

E (Pl(t) pz(t)) _ B, an(t)
am " q) q(t)n

with polynomialsP, 4n(t) in t of degree at mostn.
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If d > 3, thendf < dn+1 (see (4.5)) and we use Corollary 2.2 with- E’,m = dF,
p=r =dn+1,X, =q "rgn(l), the weighted space of polynomials of degree at most
dnonl, t = %, andL; = q "R 4n to find pointst; , € E’,i = dfF + 1, dn+ 1, with

Lagrange fundamental functiohst) € X;,i = 1, dn + 1, satisfying
dni:l“.(t)' < @dn-df +2 maxdi: Pan®l (dn—df +1)
o B O n

dr
=<

€ +2max) L0l + (¢ +1) <2(c" + iy (teE).
xeE =1 ’

Ford = 2 ord = 1we havedf = dn+1, and there is no need to adjoin additional points.
Next, with w defined as in (4.7), consider the sequenceafieightedkth Chebyshev
polynomialsT,” on E” which by definition are the monic polynomials of degkewith
minimal weighted normjw*T.” || (see [10, p. 163]). Using the standard estimation of
the interpolation error by the interpolation norm and error in best approximation, we find

dn+1
w® [Tt =t
j=1

]

dn+1
< (1+ sup I|j(t)|> lw T4 aller.
E =1

teE’ i

By assumption (1.3) and estimate (4.11) it follows that

dns1 1/@n

w® [Tt =0

j=1

< limsup|w™ Ty 12",

n—o0

limsup

n—o0

E’

which implies that the weak-star limit distribution of the normalized counting measures
of the points{ti,n}id;‘fl is thew-weighted equilibrium distribution o’ (combine [10,

Th. 111.3.1] and [10, Th. ll.4.2]). Finally we remark that removing the previously added
pointst n, i = df + 1, dn+ 1, which are of uniformly bounded cardinality, does not

change the weak-star limiting behavior. ]

Combining Theorems 4.2 and 3.2 we obtain

Corollary 4.6. Let V and E be as in Theore®2, and assume that the curvesiy/
j = 1, m, are rational Then E has théIM property anduF is given by(3.8),wherg
for each j the measurg.E" is defined on E via (4.9).

5. Constructing “Good Points” for Interpolation

Now we prove an inverse statement to Theorem 4.2. Namely, assuming that the asymp-
totic interpolation measurneF is known for a compact subsEtof an algebraic curve of

genus 0, our purpose is to show how one can easily obtain “good points” for interpolation
on E in the sense that the corresponding sequence of Lebesgue constants satisfies (1.3).
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For a setr of m points onl we set

(5.1) eoc=minju—v|  and  v(r) = Zét

uzv tE‘[

Recall that thadiscrepancyof a signed Borel measueeon | with compact support
S c | is defined by

Dlo] := S;Jplo(J)l,

where the supremum is taken over all intervals (adcs) | (see [10, Sec. VIII.7]).
We need the following simple inequality (which is analogous to Koksma’s inequality
[7, p. 143]) regarding the discrepancy of signed measures:

Let Sc R be a compact setet o be a signed measure on &nd let f(t) > 0 be
monotonic and continuous on Bhen

(5.2)

/f(t)da(t) < D[o]max]| f (t)].
s teS

For a discrete measute == Y, a 6, the estimate (5.2) follows immediately from
Abel’s identity

p— K
Zakbk Z A —bien) + A, Aci=) 3,
k=1 j=1

and the general case can now be verified by discretizing
The estimate (5.2) also holds f&rc S* with a suitable definition of monotonicity.

Lemma5.1. Let Sc | be a compact set of positive logarithmic capacigd letu,,
denote the weighted equilibrium measure on S for the continuous positive wetght
Suppose that

(@ S=S, := suppu,; and
(b) there exist constants G 0, p > 0, and c e (0, 1) such thatfor any Borel set
U c S with one-dimensional Lebesgue meagure< c,

pw(U) < C=log|u )=+,

Let a sequencgx = {t;, k}k” cS k=0,1,..., besuchthat
(c) D[v(w) — pwlloge,, — Oas k— oo.

Then the sequence of Lebesgue constant®rresponding tgy in the spacevmy (1),
k=0,1,..., satisfies

(5.3) lim sup;\l/k <1

k— o0
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Proof. Note that condition (c) implies(yx) — ., in the weak-star sense ks> oo.
Moreover, for fixed, the setsy « := w\{ti.x} have the same limit distribution as the
w's, i.e.,

Vik i = — Z(st%ﬂw as k— oo.
t€Vk

We consider the case whén= R. For a parametrization using the cir€&the proof is
similar.

Itis easy to verify from the definition of discrepancy, and the fact thais absolutely
continuous with respect to Lebesgue measure, that

(5.4 DIy — il = -

In particular, it follows from (c) that lodl/e,,) = o(k) ask — oo, i.e., points inyy
cannot become exponentially close to each other. Also, since

k — Mw = (V(Vk) - Mw) + (V(Vk) - 6t.‘k)/k,
using (5.4) we get
(5.5  Dlvik— pu] = Dlv(n) — nul +2/k < B+ 2/K)D[v(y) — pwl-

The weighted fundamental Lagrange polynomials correspondipgdce given by

w(x)K X —tjk

Lik(X) :=
I w(ti Ok itk = ik

i=1k+1 k=0,1,...).

Letx x € S, be a point whergL; «(x)| attains its maximum o,. Then

+ 2 log

i

X,k — t]k

1/k)

= log(|[Li | | '"’(X' L

w(ti k)

t|k_th

= —QXix + Q(ti,k)+/ |09

tlk_

‘d‘)i,k(t)

= —QXiK) + Qi) — U™ (Xik) + U (t 1)

+/ log

W

Xik —

t
o ' (dvi i — dpe) (D),

whereQ(x) := —logw(x) andU*» denotes the logarithmic potential af,.
It can be shown that (b) implies thdt*» is continuous on, and so

U*»(x) + Q(x) = const onS,

(see [10, Th. 1.4.4]). Writey := &,,. Then puttingB; = B(ti k, &k) U B(Xi k, &x/2),
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whereB(x,r) i= (X —r, X +r), we get

/ log ‘ (dvi k — dpty) (1)

(Lo L)ool
Sl)\Blk Blk
/ log
Su\Bik

+ / log
B(Xi k.€k/2)

The second integral can be estimated by

tik—t diamS
12 < / log | ‘ At (t) < / log dt (t).
B(Xi k.&k) Xik —t B(Xi k&k) ik — t|

Xik —

tlk_

o ‘(dv. = die) (0)

Xik —

t —
‘(dV.k—de)(t)vL/ log| X —
B Xi k

ik

|k_

X.

t ‘dv. (@ =10 1@ 4@,
i,k_

Then by partitioningB(x; x, ¢) Vvia the intervals{t : 2™logex < loglxixk —t] <

2Mlogek}, m=0,1,..., and using (b) we get

®) Co\"’
(5.6) 19 < Cy (log ==
&k

with constant$y, C, > 0 independent df, k.
For the third integral we have

0 if dist(Xik, vik) > &k/2,
5.7 1@ 1 e — t log 2
®-7) = log | Xk < =992 it distxi o 7 k) < ex/2
k ik —t* k ’ ’

wheret* denotes the point of, x closest ta; k.

Finally, assuming for definitenessthiat < x; x and applying (5.2) t&N{t < t x—ex},
SN{t > X k+ek/2}, andSN{t k+ex <t < Xi k—ek/2} (Separately for < (X k+tik)/2

andt > (X k +tik)/2) if Xi x — ti k > 3ex/2 we obtain, from (5.5), that
2diamS

(5.8) 1P| < 4log<

whereC3; andC, are constants independentipk.
So it follows from (5.6), (5.7), (5.8), and (5.2) that

1
log(hy/*) < Elog ((k+1) max ||Li,k||&,>
i=Lkt1
log(k + 1 log(k + 1
_ og(k + )+ max I < og(k + )+ maX(I(l) I(z))
k i=Tkt1 k i=Tkt1

| k+1 P
< %“H:Ig( )D[v(w) uw]+c1(logf—k2)

ask — oo, which implies (5.3).

Cy
) D[VI k — Mw] <GCs IOg( ) D[V(Vk) Mw],

t
— ‘ dpy ()

-0

275
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Theorem 5.2. Let L be arational curve parametrized (4.1),let d denote the degree
of L asdefinedifg.3),let E C L be acompact subset of positive logarithmic capatsty
1 E be the limit measure determined in Corolla#y8,and let E,e := suppu®. Suppose
p = card E\E,e) < oo and that the corresponding weighted measgugeon | satisfies
condition (b) of Lemma5.1.For n = 0,1,..., let y, = {tin)?"?* C S, be a set of
interpolation nodes satisfyin@) of Lemméb.1,and definer, := {(X(t), y(t)) : t € yn}.
Then there exist sets, n > d*, of interpolation nodes on E such that

(i) cardz, = df andcard,\%,) < p + c- + 1, where ¢ is defined in(4.4);and
(ii) theinterpolation problem is solvable ap and the corresponding Lebesgue con-
stants satisfy

lim supAr" < 1.

n—o00

Proof. By Corollary 4.3, for the setE, =)’ defined forE e via (4.6) we have
Sy 1= suppuw = (Ee)".

So according to Lemma 5.1 (with= S,), the Lebesgue constaritg corresponding to
v satisfy (5.3).

If p > 0, denote byi, (E) the subspace af,(E) consisting of polynomials vanishing
on E\E,e. Then

df — p <df :=dimf,(E) < df.

(For p = 1 we have (3.4), and fg# > 1 it can be shown by induction.)
If d >3 ord < 3andp > 0, for eachn, let B, be a basis in1,(E), and denote

(5.9) Bn i= {p(X(1), y(1)) : p(X,y) € By}, B, :=spanB;.

Applying Corollary 2.6 withS = S, m = anE, p=dn+1,v =yn, Yy =q "mgn(l),

andXy, = B;, we get a subsel, = {fi,n}id;El of y,, such that its Lebesgue constant
satisfies (2.13), i.e.,

An < (@AE+D@An+1—-dE) + Dan < (dF + D"+ p + 1) + Dan < Cinin,

whereC; > 0 is a constant independentrafHence, if

Lran® = > cjpx).yt) (=148,

Pj eBy

are the fundamental Lagrange functions corresponding,tthen the polynomials

(5.10) LinGY) = Y @ jpi(X,y) € fin(E)

pi€Bn

are the fundamental Lagrange polynomials correspondirtg te= {(x(t), y(t)) : t €
7n} C ™ having the same Lebesgue constanon E, = and, hence, ok.
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Now, if df < dE, we use Corollary 2.2 witts = E, m = dE, p = r = df,
X; = my(E), andr = 7, to get a complete sé}, of dnE nodes ork and the fundamental

Lagrange polynomialﬁfn, i = 1, dF, with the Lebesgue constants satisfying

Jn < (dF —dE + DA+ dF — dF) < Conin.
Thus, (ii) follows from Lemma 5.1. Clearly,

cardry\7n) < @dn+1) —df <p+c-+1 ]

Remark 5.3. If d > 3, thendt < dn+ 1 (see (4.5)). This fact is essential for the
solvability statement in (ii). Furthermore, the use of Corollary 2.6 in choosing &, set
of “good nodes” forE amongdn+ 1 of those orE’ is extremely helpful. We illustrate
these assertions in Example 5.4.

Theorem 4.2 and the proof of Theorem 5.2 suggest the following algorithm for the
construction of “good” interpolation points on a compact sulkset an algebraic curve
L of genus O (provided, of course, that the Bdtself is “good enough” in the sense that
its AIM measureuF is known and satisfies the conditions of Theorem 5.2).

¢ Givenn, choose a set, of d-n+1 points onE’ such that condition (c) of Lemma 5.1
is satisfied. To make such a choice, one can, say, discrejjagsing the method
describedin[10, Sec. VI.4]. Alternatively, one can use zeros of weighted Chebyshev
polynomials (or other weighted monic polynomials not growing exponentially fast
on E').

e With E; denoting the set of isolated points Bfandp := cardE;, choose a séB,
of df — p linearly independent polynomials im, (E) vanishing ong; (this can be
done inductively using (3.5)) and use Remark 2.7 (vidtk= By, defined in (5.9)
andXp, = B)) to select a subse}, of y, consisting ofdf — p points.

e Apply Remark 2.4 withX; = m,(E), T = 7, = {(X(), yt)) : t € y,}, and
any (say, monomial) bas{g; (x, y)}id;El in 1, (E) to addp missing nodes, thereby
constructing a complete s&f of dF nodes orE.

Then, for anyn, the interpolation problem with the set of nodgds solvable inm, (E)

and the sequences, n > dt, of the corresponding Lebesgue constants satisfies (1.3),
i.e., points in the sequen¢&,} are “good points” for interpolation. Actually, the above
algorithm is designed not only to achieve (1.3) but to preserve the slow growth of the
Lebesgue constants for the parametric interval problem.

Example 5.4. LetE := {(x,y) : y = x3,x € [—1, 1]} be the subarc of the cubic
curve with the natural parametrization=t, y = t3,t € R. Thendf = 3n, p = 0,

E' =[-1,1], wt) = 1, andu := u, is the Robin (arcsine) measure on], 1]. It

is well-known that the zeros of the Chebyshev polynomil@) = cogkarccog),
k=1,2,..., are uniformly distributed with respect foon E’ in the weak-star sense
and, clearly, satisfy the discrepancy-separation condition (c) of Lemma 5.1. Denote by
7n the set of zeros 0fs,, and lets, == {(t,t3) : t € P,}. Since, for anyn, Tz, € B, =
sparl,t, ..., t3"2 3"}, the polynomialf, € Bn(= m.(E)) corresponding tds, via
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(5.10) is identically zero ofi,. Therefore, the interpolation problemrist solvable on
T, foranyn =1, 2,.... So we should start with a sgt of 3n + 1 nodes on|1, 1] and
then apply Remark 2.7 in order to choose a node to be omitted.

It is worth mentioning that the procedure described in Remark 2.7 can be easily
implemented in this particular case. Indeed, for aysef k points on [-1, 1], let V,
denote the usudtth order Vandermonde determinant corresponding tdVe shall

choosey, = {tk,n}ﬁiﬁl to be the set of min/max points &, on [—1, 1], i.e.,txn =
cog(k — 1) /(3n)). Denoting byA,, | = 1,3n+ 1, the determinants presented in

(2.14), we note that\; can be obtained frorv,, by omitting the 3ith row and thdth
column. LetP(t, 1) = ¢ ot® + ¢ 1t>1 + ... be the polynomial obtained by replacing
in V,, the nodet by t. ThenA; = (—1)3"*¢q ;. SinceP(txn, 1) = 0 fork # | and
Pt n, 1) = V,,, we have

V}/nQ3n+l(t) _ 23n_13nv}/n 1—[ (t tk )
— %,n

Pt = = =
Q5n 1) —1in) Q,3n+1 (tl,“) 1<k<dn+1
Pt}

23n_13n V}/ntl n t3n71

= ot + — o
° Q3n+1(tl.ﬂ)
whereQzn, 1 (t) = (t2 — DTy, (). Consequently,
257-13nV, t S
A= ()3Tt (1 =13n+1).
Q3011 (tl,n)

With t = cosf, we haveQ2z,,1(t) = 3nsind sin(3nd), and so
, 3n . :
Qg (D) = —W(cose sin(3nd) + 3nsind cog3n0)).

Thus
(_1)3n23nflvyntl’n
- 3nm ’
wherem, = 2if| = 1,3n + 1, andm, = 1 otherwise. So the node to be excluded is
ton = cog(m/3N) (Or —ton = t3nn).
Similar arguments can be applied in the case of an arbitrary compact &ibsghe

cubic curve without isolated points. Given = {t n}i"i* c E’, we have

A

tin—S,
A1 = |V, o2
$230,1(tn)
whereQzn,1(t) := ]_[‘;‘”:il(t—tk,n) ands,, := ‘;‘”:*il tk.n. So the problem of maximizing

the determinants is an easy task.

Now letV be as defined in Theorem 3.2. Assuming that its compongmtsj = 1, m,
are rational, by Corollary 4.6 we know the limiting distribution of “good” interpolation
points onV. This fact along with Theorem 5.2 allows us to generate such points.
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Theorem 5.5. With the notation of Theore®.2, suppose that m> 2 and that each
curve V), j = 1, m, has genud) and satisfies the assumptions of Theofeéh For
each jletyy) = (t}))d0m+t C S, be sets of interpolation nodes satisfying condition
(c) of Lemmab.1,and definery” := {(x (1), yP(1)): t € W}, 7 := UL, 7. Then

there exist set&,, n > dV, of interpolation nodes on E such that

(i) card#, = df andcardz,\%,) < ij=1 oM +¢¥ +m;and
(i) the interpolation problem is solvable di and the corresponding sequence of
Lebesgue constants satisfies

(5.11) limsupi¥/™ < 1.

n—o00

Proof. For eachj, we apply Theorem 5.2 to the sét) in order to determine sets of
nodesii”’, n > d, satisfying

(5.12) cardz{) =d{’,  cardr{"\FP) < p® +c 41,
wherec! is defined in (3.9), and

(5.13) lim sup({H¥" < 1.

n—o00

With Q® defined as in Theorem 3.2, far> dV denote

~ j . j K

A (ED) = mp_gvig0 (ED) TT Q¥lva.
1<k=m
k#j

Thenfi,(EW) is ad;j_)dud(j,-dimensional subspace of,(E(1). We consider polyno-
mials infin(E)) as polynomials i1, (E) vanishing orE\ E‘). Applying Corollary 2.6
with p=d’, m=m® = dr(]’_)dV+d(,,, Yp = my(ED), Xy = fin(ED), andr = 7y

we find a se€!!’ ¢ f,ﬁ“ of m1) interpolation nodes such that the interpolation problem
is solvable infi,(EY) and the corresponding Lebesgue constant satisfies

—

<3P+ (p—mP) 4+ 1) < @)D,
Set

Then using (3.9), (3.10), and (3.12), after some computations, we get
m ) m )
(5.14) card?, = y m = Zdéj_)dudm
=1 =1
— Z[d(l)(n —dV +d®) —c] = dr|1£ —cv,
j=1

whereCV is defined by (3.12).
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Further, with L)) € i1, (E?), k = 1, m®, denoting the fundamental Lagrange
polynomials corresponding )

Li n for 7, by setting

, we define the fundamental Lagrange polynomials

Cini=Ch
ijthe corresponding node from 7, satisfies; = z € frﬁj). Then the Lebesgue constant
An (on E) for the set of nodes, satisfies
in < max i < (dv)2dY max 200 < 2dv)%n max 100
=J=m

T 1<j=m 1<j=m

Finally, taking into account (5.14), we use Corollary 2.2 With= min(E),r = p = dF,
m = df — CV, andt = £, to obtain a sef, of df nodes for which the interpolation
problem is solvable and its Lebesgue constargatisfies

An < (CV + Dia +C¥ < Cy(V)n max ).
=]J=m

Now (5.11) follows from (5.13). For (i), using (5.12) we obtain

m m m
cardz\tn) < Y pV+> cP+m+c¥ =3 pD 4+ +m. n
i=1 i=1 i=1

6. Examples

Example 6.1. Suppose the cunde is the graph ofy = p(x)/q(x), wherep, g are real
polynomials having no common factor. From the natural parametrizatientq(t) /q(t),

y = p(t)/q(t), we see thenthat Theorem 4.2 applies wits max(deq p), degq)+1).

For the special casg= x™ with a positive integem, the observation in [3] concerning
the distribution of Fekete points can thus also be obtained by means of Theorem 4.2.

Example 6.2. SupposeL is the unit circlex? + y? = 1. Then we may parametrie
in two essentially different ways: in a complex setting via

ZZ+1 2-1
X = , = — zZl =1,
57 y iz (12| )

which follows from the familiar trigonometric representation, or in a real setting via

2t t2—1

= —, = t e R),
X t2+1 y t2+1 tek)

which one obtains from its stereographic representation. Using the first parametrization,
it is easily seen that the limiting distribution of interpolation pointsE®nc L with
Lebesgue constants of polynomial growth is just the classical Robin equilibrium distri-
bution for the seE’. It is shown in [9, Th. 14.7] that Auerbach—Fekete points for the
unit circle are exactly the equally spaced points.
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Fig. 6.1. AIM distribution for E = {(x, y) : x3 = y®, -1 <x < 1}.

Example 6.3. Supposd. is the graph of an equation of the fox' = yP with m, p
integers (not necessarily positive). Here, a parametrization is

X =1tP, y=t" (t e R).

This example already shows that contrary to the behavior of “good” interpolation points
in polynomial interpolation in one complex variable, the problem in the bivariate case
depends on the precise algebraic structure of the curve.

For instance, ifp, m > 2 are such that™ — yP is irreducible and if the origin is an
interior point of E, then the density of.F with respect to arclength

duf®  dwg /ds

ds = dt / dt
will blow up at the origin, sincalwg /dt remains bounded from below by a positive
constant in a neighborhood bf= 0, while ds/dt = 4/t2P-2 + t2™-2 tends to zero as
t — 0. This effect is illustrated in Figure 6.1 whelsis the subset of the curvé® = y°
for x € [—1, 1]. Note that as, for instanc@,= m+ 2 — oo, the curvex™ = yP looks
locally more and more like a straight line. Thus “geometry” is less an issue than the fine
algebraic structure.

With the aid of Examples 6.1-6.3 and the invariance of the AIM property under affine

transformations, it is possible to solve the problem for all compactEetit positive
capacity, which are subsets of conic sections.

Example 6.4. Suppose that the curve is the image of the unit circl&! under a
polynomial mappind:(z) = « + Bz + y 2%, |B| + |y| # 0. Then the equations

S 2., a _
X = X(2) '= R(Py(2)) = %)/Z4 + B+ 2,}2{2(0,)2 + Bz 7

v+ B+ 232 - pz—y
22

3

(6.1)

s

1
y=Y(@ =3(P(2) = 5
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z ¢ S, give a complex parametrization bf It can be easily verified that the algebraic
equation determining this curve is

QX y) i= (1P, — al® — |y1)? — |BIPIP, — a* — |By|* — 2R(B%*Y (P, — @) = 0.

Assuming thaty # 0 andg # 0 (so thatL is not just a circle or a circle passed twice),
one can conclude th&(x, y) is irreducible ove(C. SolL is a rational algebraic curve of
order 4, and (6.1) represents its proper parametrization. It follows from Remark 4.4 that,
for E = L, the density ofs,, onStis 1/2x, i.e., iu,, is the uniform (Robin) measure on
St

Note that if P,(2) is one-to-one or$? (i.e., L is a Jordan curve), then it maps the
open unit disk conformally and one-to-one onto the interiok oThus the AIM in this
case is the image of the uniform measurééunnder arinterior Riemann mapping. We
remark that for the complex polynomial interpolation the limit distribution of “good”
interpolation nodes is given by the Robin measuré evhich is the image of the uniform
measure ofs! under arexterior Riemann mapping function. This fact demonstrates the
substantial difference in the distribution of “good” nodes for bivariate and complex
polynomial interpolation.

Example 6.5. Due to applications in computer graphics and geometric modeling, there
is a substantial interest in feasible algorithms for the parametrization of algebraic curves
(see, for instance, [1], [11], [13]). Maple contains subroutines (based on [13]) with the
aid of which one can check if an algebraic curve has genus 0, and find appropriate
parametrizations. For example, the trisectdiX + y? — 2x)2 — x?> — y? = 0, which is

a particular case of tHemagon of Pascalcan be parametrized via

2t(t? + 4t + 1) (P -D(P+4t+ 1)

62) xO=—p 392 - YO (12 + 1)2

(t e R).

(Infact, Maple gives a more complicated but equivalent representation for this curve.) But
if Eisthe whole curve, a complex parametrization should be used instead. From (6.2), one
can easily verify that this curve is the imageSdfunder the mapping»(z) = 22+ z+1.

Hence, it follows from the previous example that is just a normalized arclength on

Fig. 6.2. AIM distribution for the trisectrix(x? + y2 — 2x)2 — x2 — y2 = 0.
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the unit circle and so the density of the AIM on the trisectrix is given by

duf(9 1 1 1 1
dS 27 [2z+1 27 /5+ 4coss

whereSdenotes the length of the arc connectigl) = 3 andP,(2) (see Figure 6.2).

(z=€°,s€]0,27)),
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