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Asymptotic Distribution of Nodes for Near-Optimal
Polynomial Interpolation on Certain Curves in R2

M. Götz, V. V. Maymeskul, and E. B. Saff

Abstract. Let E ⊂ Rs be compact and letdE
n denote the dimension of the space

of polynomials of degree at mostn in s variables restricted toE. We introduce the
notion of anasymptotic interpolation measure(AIM). Such a measure,if it exists,

describes the asymptotic behavior of any schemeτn = {xk,n}d
E
n

k=1,n = 1,2, . . ., of nodes
for multivariate polynomial interpolation for which the norms of the corresponding
interpolation operators do not grow geometrically large withn. We demonstrate the
existence of AIMs for the finite union of compact subsets of certain algebraic curves
in R2. It turns out that the theory of logarithmic potentials with external fields plays a
useful role in the investigation. Furthermore, for the sets mentioned above, we give a
computationally simple construction for “good” interpolation schemes.

1. Introduction

With Πn(Rs) denoting the set of all real polynomials of degree at mostn in s variables,
i.e.,

Πn(Rs) :=
{

p(x) : p(x) =
∑
|α|≤n

cαxα,α ∈ Zs
+, cα ∈ R, x ∈ Rs

}
,

(Zs
+ denotes the set of multi-indices withs components) andE ⊂ Rs a compact set,

the problem of determining the asymptotic behavior of “good points” for polynomial
interpolation to functionsf ∈ C(E) is a fundamental question which has been resolved
in generality only for the cases = 1. If Πn(E) denotes the linear space obtained by
restrictingΠn(Rs) to E, i.e.,

Πn(E) := Πn(Rs)
∣∣
E
,

and dE
n denotes the dimension ofΠn(E), then by “good points”{xk,n}d

E
n

k=1 we mean
points for which the interpolation problem is solvable inΠn(E) with arbitrary data in
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these points and for which the norm of the interpolation operator

Ln : C(E)→ Πn(E)

does not grow geometrically large withn. More precisely, ifL E
i,n ∈ Πn(E), i = 1,dE

n ,
are the fundamental Lagrange polynomials satisfying

L E
i,n(xk,n) = δik (i, k = 1,dE

n ),(1.1)

then

Ln( f ) =
dE

n∑
k=1

f (xk,n)L
E
k,n,

and (see [5]) the norm‖Ln‖ is given by theLebesgue constant

λE
n := max

x∈E

dE
n∑

i=1

|L E
i,n(x)|.(1.2)

Thus the basic problem we consider is the determination of setsE that have the
following property.

Definition. An infinite compact setE ⊂ Rs is said to have anasymptotic interpolation
measure(more briefly, an AIM) if there exists a measureµE on E such that for any

interpolation scheme of nodesτn = {xk,n}d
E
n

k=1 ⊂ E, n = 0,1, . . ., for which the corre-
sponding interpolation problems are solvable and the sequence of Lebesgue constants
λE

n satisfies

lim sup
n→∞

(λE
n )

1/n ≤ 1,(1.3)

the sequence of normalized counting measures satisfies

ν(τn) := 1

dE
n

dE
n∑

k=1

δxk,n → µE as n→∞(1.4)

in the weak-star sense.

Here, and in what follows,δx denotes the unit point mass atx.

Remark 1.1. The AIM property is clearly invariant under the affine transformations
of a setE.

Remark 1.2. Assuming E to contain infinitely many points, theAuerbach–Fekete
points(often referred to simply as Fekete points) satisfy (1.3). These points are defined

as follows. If{pi }d
E
n

i=1 form a basis forΠn(E), then the Auerbach–Fekete points are points

{x∗k,n}d
E
n

k=1 ⊂ E that maximize the determinant

|(pi (xk))1≤i,k≤dE
n
|
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over allx1, . . . , xdE
n

in E. For the Lebesgue constants corresponding to such points we
have

λE
n ≤ dE

n ,

and since

dE
n ≤ dimΠn(Rs) =

(
n+ s

s

)
= O(ns) as n→∞,

it is clear that (1.3) holds.

Remark 1.3. Fors= 1, it is easy to show that every compact setE ⊂ R1 with positive
logarithmic capacity has the AIM property1 and, moreover, thatµE is just the Robin
(equilibrium) measure forE. Indeed, this fact can be proved, for example, from the
well-known inequality

‖ f − Ln( f )‖ ≤ (1+ ‖Ln‖) min
p∈Πn(E)

‖ f − p‖

together with a result on asymptotically minimal polynomials which follows from the
theory of logarithmic potentials (see [4], [10]). Fors ≥ 2 the problem is far more
difficult; there exist nontrivial compact setsE ⊂ R2 that donot have the AIM property
(see Example 3.4).

In the present paper we shall restrict ourselves to subsetsE of algebraic curves in
the plane. Using the theory of logarithmic potentials with external fields in the complex
plane (see [10]), we shall show that the union of finitely many compact subsets of positive
capacity of algebraic curves of genus 0 inR2 has an AIM. The essential feature of such
curves is that they admit a rational parametrization. In particular, our result applies in the
case whenE is a compact subset of the image of the unit circle under a rational mapping
w = p(z)/q(z) in the complex variablez or a compact subset of a curve consisting of
piecewise conics.

The outline of the paper is as follows. Section 2 contains some simple consequences
of Auerbach’s theorem that are essential for the proofs of the main results of the paper.
In Section 3 we prove that the union of finitely many subsets of algebraic curves having
AIMs again has an AIM. In Section 4 we show that compact subsets of algebraic curves of
genus 0 have the AIM property and we determine their asymptotic interpolation measure
µE. In Section 5 we consider the inverse problem of constructing good interpolation
points when the AIMµE is known. In the final section, we present several examples that
illustrate our results.

2. Some Simple Consequences of Auerbach’s Theorem

In this section we prove two auxiliary results in the general Banach space settings which
are basic ingredients for establishing our main results.

1 This assertion need not hold ifE has capacity zero.
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Proposition 2.1. LetX be an r-dimensional subspace of a Banach spaceV, letB ⊂ V∗
be a closed norm-determining2 subset of the dual space, and let1 ≤ m < p ≤ r be
integers. Let gj ∈ X andϕj ∈ V∗, j = 1,m, be such that

ϕi (gj ) = δi j (i, j = 1,m),

and letL : V→ X be defined by

L( f ) :=
m∑

j=1

ϕj ( f )gj .

Then there existϕj ∈ B, j = m+ 1, p, and fj ∈ X, j = 1, p, such that

ϕi ( f j ) = δi j (i, j = 1, p),(2.1)

‖ϕj ‖ = ‖ f j ‖ = 1 ( j = m+ 1, p),(2.2)

and the operatorL̃ : V→ X, given by

L̃( f ) :=
p∑

j=1

ϕj ( f ) f j ,(2.3)

satisfies
‖L̃‖ ≤ (p−m+ 1)‖L‖ + (p−m).

Proof. LetY := { f ∈ X : ϕi ( f ) = 0, i = 1,m} be endowed with the same norm asV.
ThenY is an(r −m)-dimensional linear space and the restrictionB|Y is a closed norm-
determining set forY. By Auerbach’s theorem (see, e.g., [5]), there existf j ∈ Y ⊂ X
andϕ̃j = ϕj |Y ∈ B|Y, j = m+ 1, p, such that‖ f j ‖ = 1, ‖ϕ̃j ‖ = 1, and

ϕi ( f j ) = δi j (i, j = m+ 1, p).

Notice that, sinceB is norm-determining andϕj ∈ B, we have‖ϕ̃j ‖ ≤ ‖ϕj ‖ ≤ 1, and so
‖ϕj ‖ = 1 for j = m+ 1, p. Thus (2.2) holds.

Next, for j = 1,m, define

f j := gj −
p∑

k=m+1

ϕk(gj ) fk.

Then, for j = 1,m,

ϕi ( f j ) = ϕi (gj )−
p∑

k=m+1

ϕk(gj )ϕi ( fk) = ϕi (gj )−
p∑

k=m+1

ϕk(gj )δik

=

δi j −
p∑

k=m+1

ϕk(gj ) · 0= δi j if i ≤ m,

ϕi (gj )− ϕi (gj ) = 0= δi j if m< i ≤ p,

where in the casei ≤ m we used the fact thatfk ∈ Y for k ≥ m+ 1. Thus (2.1) holds.

2 By “norm-determining,” we mean that for eachv ∈ V there holds‖v‖ = sup{|ϕ(v)| : ϕ ∈ B}.
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Let f ∈ V with ‖ f ‖ ≤ 1. Then from (2.2) we get

‖L̃( f )‖ =
∥∥∥∥∥ p∑

j=1

ϕj ( f ) f j

∥∥∥∥∥ =
∥∥∥∥∥
(

m∑
j=1

+
p∑

j=m+1

)
ϕj ( f ) f j

∥∥∥∥∥ ≤
∥∥∥∥∥ m∑

j=1

ϕj ( f ) f j

∥∥∥∥∥+ (p−m)

=
∥∥∥∥∥ m∑

j=1

ϕj ( f )gj −
m∑

j=1

p∑
k=m+1

ϕj ( f )ϕk(gj ) fk

∥∥∥∥∥+ (p−m)

=
∥∥∥∥∥L( f )−

p∑
k=m+1

ϕk(L( f )) fk

∥∥∥∥∥+ (p−m)

≤ ‖L‖ +
p∑

k=m+1

‖ϕk‖‖L‖‖ fk‖ + (p−m) = (p−m+ 1)‖L‖ + (p−m).

Hence (2.3) holds.

We now apply Proposition 2.1 to a subspace of continuous functions on an infinite
compact Hausdorff spaceS, where the norm is the uniform norm onS. With eachx ∈ S
we associatex∗ ∈ C(S)∗ by settingx∗( f ) := f (x), f ∈ C(S). ThenB := {x∗ : x ∈ S}
is a closed norm-determining set forC(S).

Corollary 2.2. LetXr ⊂ C(S) be an r-dimensional subspace, and let1≤ m< p ≤ r
be integers. Let τ := {xj }mj=1 ⊂ S be a set of nodes for which there exist Li ∈ Xr ,

i = 1,m, such that

Li (xj ) = δi j (i, j = 1,m),

and define the interpolation operatorP : C(S)→ Xr by

P( f ) =
m∑

i=1

f (xi )Li .(2.4)

Then there exists a set of p interpolation nodesτ̃ = {xj }pj=1 containingτ and functions

L̃i ∈ Xr , i = 1, p, such that

L̃i (xj ) = δi j (i, j = 1, p),

and the interpolation operator̃P : C(S)→ Xr corresponding tõτ satisfies

‖P̃‖ ≤ (p−m+ 1)‖P‖ + (p−m).(2.5)

Remark 2.3. The norms of the operatorsP andP̃ in (2.4), (2.5) are given by formulas
similar to those for the Lebesgue constants defined in (1.2).

Remark 2.4. If p = r and the functions{pi }ri=1 form a basis forXr , then the set̃τ can
be obtained, for example, by adjoining toτ a set ofr −m nodes{x∗j }rj=m+1 maximizing
the determinant

|(pi (xj ))1≤i, j≤r |
over all(xm+1, . . . , xr ) ∈ Sr−m.
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Proposition 2.5. LetV be a Banach space, 1≤ m< p integers, and let{ψi }pi=1 ⊂ V∗,
{ fi }pi=1 ⊂ V satisfy

ψi ( f j ) = δi j (i, j = 1, p),

‖ψi ‖ = 1 (i = 1, p).(2.6)

LetXm be an m-dimensional subspace ofYp := span{ f1, . . . , fp}. Then there exist a
subset{ψki }mi=1 of {ψj }pj=1 and{gj }mj=1 ⊂ Xm such that

ψki (gj ) = δi j (i, j = 1,m),

and the operatorL̂ : V→ Xm, defined by

L̂( f ) :=
m∑

i=1

ψki ( f )gi ,(2.7)

satisfies

‖L̂‖ ≤ m
p∑

j=1

‖ f j ‖.(2.8)

Furthermore, if ‖ f j ‖ ≤ K , j = 1, p, then

‖L̂‖ ≤ min{‖L‖ + K (m+ 1)(p−m), Km(p−m+ 1)},(2.9)

whereL : V→ Yp is defined byL( f ) :=∑p
j=1ψj ( f ) f j .

Proof. Define onXm the new norm‖·‖Xm by

‖ f ‖Xm := max
i=1,p
|ψi ( f )|.

Then{ψ1, . . . , ψp} is a closed norm-determining set of linear functionals on(Xm, ‖·‖Xm).
Note further that‖ fk‖Xm = 1 for all k.

By Auerbach’s theorem, there exist{ψki }mi=1 ⊂ {ψj }pj=1 and{gi }mi=1 ⊂ Xm such that

ψki (gj ) = δi j (i, j = 1,m),(2.10)

and

‖gi ‖Xm = ‖ψki ‖X∗m = 1 (i = 1,m).(2.11)

To simplify notation we assume thatψki = ψi for i = 1,m.
Now let L̂ : V→ (Xm, ‖ · ‖) be defined by

L̂( f ) =
m∑

i=1

ψi ( f )gi .

Sincegj ∈ Xm ⊂ Yp, j = 1,m, taking into account (2.10), we have

gj =
p∑

i=1

ψi (gj ) fi = f j +
p∑

i=m+1

ψi (gj ) fi .(2.12)
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Let f ∈ V, ‖ f ‖ ≤ 1. Then using (2.6), (2.11), and (2.12) we obtain

‖L̂( f )‖ ≤
m∑

j=1

|ψj ( f )|‖gj ‖ ≤
m∑

j=1

|ψj ( f )|
(

p∑
i=1

‖ fi ‖
)
≤

m∑
j=1

p∑
i=1

‖ fi ‖,

and (2.8) follows.
Next assume that‖ f j ‖ ≤ K , j = 1, p. To establish (2.9) we use (2.12) to obtain

L̂( f ) =
m∑

j=1

ψj ( f )

(
f j +

p∑
i=m+1

ψi (gj ) fi

)

= L( f )+
p∑

i=m+1

(
m∑

j=1

ψj ( f )ψi (gj )− ψi ( f )

)
fi ,

and so (2.6) and (2.11) imply that

‖L̂( f )‖ ≤ ‖L( f )‖ +
p∑

i=m+1

(
m∑

j=1

‖gj ‖Xm + 1

)
K = ‖L( f )‖ + (p−m)(m+ 1)K .

On the other hand,

‖L̂( f )‖ =
∥∥∥∥∥ m∑

j=1

ψj ( f ) f j +
m∑

j=1

ψj ( f )
p∑

i=m+1

ψi (gj ) fi

∥∥∥∥∥
≤ mK+m(p−m)K = m(p−m+ 1)K .

Hence (2.9) holds.

Analogous to Corollary 2.2 we obtain the following result.

Corollary 2.6. Let 1 ≤ m < p be integers, let Yp be a p-dimensional subspace of
C(S), and letτ := {xj }pj=1 ⊂ S be a set of interpolation nodes for which the interpolation
problem is solvable inYp. Let Xm be an m-dimensional subspace ofYp. Then there
exists a subset̂τ of τ consisting of m interpolation nodes such that the interpolation
problem is solvable inXm and the corresponding interpolation operator satisfies

‖P̂‖ ≤ ‖P‖min{(m+ 1)(p−m)+ 1,m(p−m+ 1)}.(2.13)

Remark 2.7. In numerical applications, ifB = {pi }mi=1 is a basis forXm, the set̂τ ⊂ τ
can be found by maximizing the absolute value of the determinant

|(pi (xkj ))1≤i, j≤m|(2.14)

over all

(
p
m

)
possible choices of{xkj }mj=1 ⊂ τ .
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3. Unions of Sets Having AIMs

We first prove that the AIM property is not affected by the addition of finitely many
points.

Proposition 3.1. Let E ⊂ Rs be an infinite compact set, and let F ⊂ Rs be a finite
set. Then E has anAIM if and only if E∪ F has anAIM. Moreover, if E has anAIM,
then for every finite set F:

µE = µE∪F .

Proof. It suffices to prove the result for a singleton setF = {z} with z /∈ E. Let
Ẽ := E ∪ {z}.

Suppose first thatE has an AIM, and let̃τn = {x̃1,n, . . . , x̃dẼ
n ,n
} ⊂ Ẽ be a sequence of

interpolation points with Lebesgue constantsλ̃n (on Ẽ) satisfying

lim
n→∞(λ̃n)

1/n = 1.(3.1)

Suppose that the points are ordered such thatx̃i,n 6= z, i = 1,dẼ
n − 1. Denote byL Ẽ

i,n
the corresponding fundamental Lagrange polynomials (see (1.1)).

Case1: x̃dẼ
n ,n
= z anddẼ

n = dE
n . Since

max
x∈E

dE
n −1∑
i=1

|L Ẽ
i,n(x)| ≤ max

x∈Ẽ

dE
n∑

i=1

|L Ẽ
i,n(x)| = λ̃n,

using Corollary 2.2 withS = E, m = dE
n − 1, p = r = dE

n , Xr = Πn(E), τ = τ̃n\{z},
and Li = L Ẽ

i,n, we can choose a pointxdE
n ,n ∈ E such that the fundamental Lagrange

polynomialsL E
i,n ∈ Πn(E) for

τn := {x1,n, . . . , xdE
n ,n} := {x̃1,n, . . . , x̃dẼ

n −1,n, xdE
n ,n},

satisfy

λn := max
x∈E

dE
n∑

i=1

|L E
i,n(x)| ≤ 2λ̃n + 1.

Case2: “Otherwise.” Defineτn := τ̃n|E. Then λn ≤ λ̃n for the corresponding
Lebesgue constants overE andẼ, respectively.

In either case, we haveλn ≤ 2λ̃n+1, and thus the Lebesgue constants associated with
τn (for E) satisfy a limit condition similar to (3.1). By assumption,E has an AIM, so

1

dE
n

∑
x∈τn

δx → µE.

Furthermore, it is easy to show that

dE
n ≤ d̃n := dẼ

n ≤ dE
n + 1.(3.2)
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Consequently,̃dn→∞ asn→∞ (recall thatE is infinite), and it follows that

1

d̃n

∑
x∈τ̃n

δx → µE.

Thus,Ẽ has an AIM andµẼ = µE.
Conversely, suppose that̃E has an AIM. Note first that

suppµẼ ⊆ E.(3.3)

Let

Π̂n(E) := {p|E : p ∈ Πn(Ẽ) and p(z) = 0}.
Clearly,Π̂n(E) ⊆ Πn(E) and, moreover,

dE
n − 1≤ d̂n := dim Π̂n(E) ≤ dE

n .(3.4)

Indeed, let the polynomialspk ∈ Πn(Ẽ), k = 1,dE
n , form a basis forΠn(E) when

restricted toE. If, for some j , pj (z) 6= 0, then the polynomials

qk(x) := pk(x)− pj (x)
pk(z)
pj (z)

(k = 1,dE
n , k 6= j ),(3.5)

are linearly independent in̂Πn(E).
Now, let τn = {x1,n, . . . , xdE

n ,n} ⊂ E be a sequence of interpolation points with
Lebesgue constantsλn (on E) satisfying

lim
n→∞(λn)

1/n = 1.(3.6)

If d̂n < dE
n , we apply Corollary 2.6 withm= d̂n, p = dE

n , Xm = Π̂n(E), Yp = Πn(E),
andτ = τn to get a subset̂τn of τn consisting ofd̂n interpolation nodes for which the
interpolation problem is solvable in̂Πn(E) and the corresponding Lebesgue constant
satisfies

λ̂n ≤ (dE
n + 1)λn.

(If d̂n = dE
n , we simply setτ̂n := τn.) Next, if d̃n > d̂n, settingm = d̂n, p = r = d̃n,

Xr = Πn(Ẽ), andτ := τ̂n, we use Corollary 2.2 to adjoiñdn − d̂n ≤ 2 nodes toτ̂n and
obtain a complete set̃τn of interpolation nodes oñE with Lebesgue constant satisfying

λ̃n ≤ 3λ̂n + 2≤ 3(dE
n + 1)λn + 2.

So, using (3.6), we conclude that

lim
n→∞(λ̃n)

1/n ≤ 1.

By the assumption that̃E has an AIM we get

1

d̃n

∑
x∈τ̃n

δx → µẼ.
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Note that

1

d̃n

∑
x∈τ̃n

δx = dE
n

d̃n

(
1

dE
n

∑
x∈τn

δx

)
+ 1

d̃n

∑
x∈(τ̃n\τn)

δx.(3.7)

Since, thanks to (3.2), we have

lim
n→∞

dE
n

d̃n

= 1,

and since the total mass of the second sum in the right-hand side of (3.7) is at most 3/dE
n ,

it follows that
1

dE
n

∑
x∈τn

δx → µẼ,

which together with (3.3) completes the proof.

The main goal of this section is to establish the following result concerning algebraic
curves inR2.

Theorem 3.2. Let V ⊂ R2 be an algebraic variety consisting of distinct algebraic
curves V( j ), j = 1,m, generated by irreducible polynomials Q( j ) of respective degrees
d( j ), and set dV :=∑m

j=1 d( j ). In addition, let E( j ) ⊂ V ( j ), j = 1,m, be infinite compact
sets, and define E:=⋃m

j=1 E( j ). Then if each E( j ) has anAIM, so does E. Moreover,

µE =
m∑

j=1

d( j )

dV
µE( j )

.(3.8)

Proof. Since we are interested in the limiting behavior of interpolation nodes, we can
assume thatn ≥ dV . For any j , since cardE( j ) = ∞ we have by B´ezout’s theorem
dE( j )

n = dV ( j )

n , and so (see, e.g., [2]):

d( j )
n := dE( j )

n =
(

n+ 2

2

)
−
(

n− d( j ) + 2

2

)
(3.9)

= d( j )n− d( j )(d( j ) − 3)

2
=: d( j )n− c( j )

and

dE
n = dV

n =
(

n+ 2

2

)
−
(

n− dV + 2

2

)
(3.10)

= dVn− dV (dV − 3)

2
=: dVn− cV .

Note thatdE
n = O(n) asn→∞.

Let τn = {xk,n}d
E
n

k=1 ⊂ E, n = 0,1, . . . , be sets of interpolation nodes satisfying (1.3),
τ
( j )
n := τn ∩ E( j ). Assuming thatτ ( j )

n 6= ∅ and denotingn( j )
τ := cardτ ( j )

n , we represent
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the setτ ( j )
n in the form

τ ( j )
n = {x( j )

k,n}n
( j )
τ

k=1,

wherex( j )
k,n = xl (k),n for somel (k), k = 1,n( j )

τ .
Although the curvesV ( j ), j = 1,m, are not necessarily pairwise disjoint, by B´ezout’s

theorem (see, e.g., [14, Th. 3.1]):

card(V ( j ) ∩ V (i )) ≤ d( j )d(i ) for i 6= j .

Hence,

dE
n ≤

m∑
j=1

n( j )
τ ≤ dE

n + CV ,(3.11)

where the constantCV is given by

CV :=
∑

1≤i< j≤m

d(i )d( j ).(3.12)

Since, for eachj , the corresponding interpolation problem on the setτ
( j )
n is solvable

in Πn(E( j )), we conclude that

n( j )
τ ≤ d( j )

n ( j = 1,m).

It follows that, for anyi ,

n(i )τ ≥ dE
n −

∑
j 6=i

n( j )
τ ≥ dE

n −
∑
j 6=i

d( j )
n = (dVn− cV )−

((∑
j 6=i

d( j )

)
n−

∑
j 6=i

c( j )

)

=
(

dV−
∑
j 6=i

d( j )

)
n−

(
cV−

∑
j 6=i

c( j )

)
=d(i )n−

(
cV−

∑
j 6=i

c( j )

)

= d(i )n −
(

cV −
m∑

j=1

c( j )

)
= d(i )n − CV ,

and so

0≤ d(i )n − n(i )τ ≤ CV .(3.13)

Our first purpose is to obtain the limiting distribution of the normalized counting
measure

ν(τn) := 1

dE
n

dE
n∑

k=1

δxk,n

assuming that each setE( j ), j = 1,m, has an AIM.
Fix j and, forn large enough, consider the interpolation problem onE( j ) with nodes

τ ( j )
n = {x( j )

k,n}n
( j )
τ

k=1.

(Note that forn large enoughτ ( j )
n 6= ∅ thanks to (3.13) and (3.9).)
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If n( j )
τ < d( j )

n , denote byL( j )
i,n , i = 1,n( j )

τ , the polynomialsL E
l (i ),n restricted toE( j ).

ThenL ( j )
i,n ∈ Πn(E( j )) and, clearly,

max
x∈E( j )

m∑
i=1

|L( j )
i,n(x)| ≤ λE

n ,(3.14)

whereλE
n denotes the Lebesgue constant associated withτn. We now use Corollary 2.2

with S = E( j ), m = n( j )
τ , p = r = d( j )

n , Xr = Πn(E( j )), τ = τ
( j )
n , and Li = L( j )

i,n

to complete the setτ ( j )
n by adjoining points{x( j )

k,n}d
( j )
n

k=n( j )
τ +1

. Then, forE( j ), the Lebesgue

constantsλE( j )

n associated with the nodes{x( j )
k,n}d

( j )
n

k=1 satisfy

λE( j )

n ≤ (d( j )
n − n( j )

τ + 1)λE
n + (d( j )

n − n( j )
τ ) ≤ (CV + 1)λE

n + CV ,

thanks to (3.14) and (3.13). From (1.3) it then follows that

lim sup
n→∞

(λE( j )

n )1/n ≤ lim sup
n→∞

((CV + 1)λE
n + CV )1/n ≤ 1.

Therefore, (1.3), withE replaced byE( j ), is also satisfied. In addition, sinceE( j ) has an
AIM, we get

ν(τ ( j )
n )→ µE( j )

as n→∞,
in the weak-star topology, whereν(τ ( j )

n ) is the normalized counting measure in the points

{x( j )
k,n}d

( j )
n

k=1.
Note that by (3.9) and (3.10),

lim
n→∞

d( j )
n

dE
n

= d( j )

dV
.(3.15)

Thus, we have

lim
n→∞ ν(τn) = lim

n→∞
1

dE
n

 m∑
j=1

d( j )
n∑

k=1

δx( j )
k,n
−

m∑
j=1

d( j )
n∑

k=n( j )
τ +1

δx( j )
k,n

(3.16)

+
 dE

n∑
k=1

δxk,n −
m∑

j=1

n( j )
τ∑

k=1

δx( j )
k,n


= lim

n→∞

 m∑
j=1

d( j )
n

dE
n

ν
(
τ ( j )

n

)− 1

dE
n

m∑
j=1

d( j )
n∑

k=n( j )
τ +1

δx( j )
k,n

+ 1

dE
n

 dE
n∑

k=1

δxk,n −
m∑

j=1

n( j )
τ∑

k=1

δx( j )
k,n

 .



Asymptotic Distribution of Nodes for Near-Optimal Polynomial Interpolation 267

Regarding the second measure we note that its total mass satisfies∥∥∥∥∥∥ 1

dE
n

m∑
j=1

d( j )
n∑

k=n( j )
τ +1

δx( j )
k,n

∥∥∥∥∥∥ = 1

dE
n

m∑
j=1

(d( j )
n −n( j )

τ )=
1

dE
n

[(
n

m∑
j=1

d( j )−
m∑

j=1

c( j )

)
−

m∑
j=1

n( j )
τ

]

= 1

dE
n

(
dVn−

m∑
j=1

c( j ) − dE
n

)
= CV

dE
n

→ 0 as n→∞.

The total mass of the third term can be estimated using (3.11):∥∥∥∥∥∥ 1

dE
n

 dE
n∑

k=1

δxk,n −
m∑

j=1

n( j )
τ∑

k=1

δx( j )
k,n

∥∥∥∥∥∥ ≤ 1

dE
n

(
m∑

j=1

n( j )
τ − dE

n

)
≤ CV

dE
n

→ 0 as n→∞.

For the first measure on the right-hand side of (3.16), using (3.15) and (1.4) we get

lim
n→∞

m∑
j=1

d( j )
n

dE
n

ν(τ ( j )
n ) =

m∑
j=1

lim
n→∞

(
d( j )

n

dE
n

ν(τ ( j )
n )

)
= 1

dV

m∑
j=1

d( j )µE( j )
.

Consequently,

lim
n→∞ ν(τn) = 1

dV

m∑
j=1

d( j )µE( j )
,

and (3.8) is proved.

Remark 3.3. The converse of Theorem 3.2 also holds provided the set
⋃

i 6= j (E
(i ) ∩

E( j )) of intersection points of theE( j )’s has zeroµE-measure. In this case, the existence
of µE implies that eachµE( j )

exists and is given by

µE( j ) = dV

d( j )
µE

∣∣∣
E( j )
.

This can be shown by applying Corollaries 2.6 and 2.2 to a setτ
( j )
n of “good nodes” on

E( j ) to get a complete set of nodes onE and then using the AIM property ofE along
with simple arguments regarding weak-star convergence of restricted measures.

V. Totik [12] has constructed the following example which shows that Theorem 3.2 is
not true for the union of arbitrary compact setsE( j ).

Example 3.4. First we list some simple assertions which will be used in the construc-
tion:

(i) If a setE contains infinitely many triangles, then for alln the dimension ofΠn(E)
is maximal, i.e.,dE

n = (n+ 1)(n+ 2)/2.
(ii) If E consists of finitely many segments and of a disk, and if for a system of

(n+1)(n+2)/2 points inE the interpolation problem is solvable for polynomials
of degree≤ n, thenn2/2− O(n) of the interpolation points lie in the disk. In
fact, each segment can only contain at mostn+ 1 interpolation points.
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(iii) If E consists of an interval [a,b] and infinitely many trianglesT1, T2,. . . , such that
these triangles converge to one of the endpoints, say toa (i.e., every neighborhood
of a contains all but finitely many of theTj ’s), then the limit distribution for
nearly optimal interpolation points isδa. Indeed, by (i) the dimension of the
polynomials onE is maximal, and, as we have just mentioned, each segment of
E can only contain at mostn + 1 interpolation points. Thus, there are at most
O(n) interpolation points outside any neighborhood ofa.

(iv) If τn, cardτn = (n+ 1)(n+ 2)/2, is a set of interpolation nodes on a setE for
degreen with Lebesgue constantλn and ifx ∈ E is any point, then we can place
a small diskB(x, ε) aroundx so that the Lebesgue constant forτn on the set
B(x, ε) ∪ E is at most(1+ 1/n)λn.

We now give the construction of two disjoint compact setsE(1) andE(2) with the AIM
property for which the unionE(1) ∪ E(2) does not have this property.E(1) will consist of
the segment [0,1] together with infinitely many triangles converging to 0, andE(2) will
consist of the segment [2,3] together with infinitely many triangles converging to 3. By
(iii) these sets have the AIM property.

Let E0 = [0,1]∪ [2,3], and suppose we have already constructedEm−1 that consists
of E0 and some finitely many triangles. Suppose also that we have already defined two
positive radiirm−1 andρm−1. If m is even (odd), then consider the unionEm−1∪B(0, rm)

(Em−1 ∪ B(3, ρm)) of Em with the closed diskB(0, rm) (B(3, ρm)) of radiusrm ≤
rm−1/m (ρm ≤ ρm−1/m) with center at 0 (at 3). For eachn, take an optimal set of
interpolation nodesτn,m for this setEm−1 ∪ B(0, rm) (Em−1 ∪ B(3, ρm)). Thenτn,m

contains(n + 1)(n + 2)/2 points, and by (ii) most of them lie inB(0, rm) (B(3, ρm)).
Hence, if we choosenm sufficiently large, then there holds

ν(τnm,m)(C\B(0, rm)) < 1/m if m is even,(3.17)

ν(τnm,m)(C\B(3, ρm)) < 1/m if m is odd.(3.18)

By (iv), if ρm (rm) is sufficiently small, then the Lebesgue constant for the nodesτnm,m

on the setEm−1 ∪ B(0, rm) ∪ B(3, ρm) is at most(1+ 1/n)-times the corresponding
Lebesgue constant on the setEm−1 ∪ B(0, rm) (Em−1 ∪ B(3, ρm)). This means that the
sequence{τnm,m}∞m=1 is a nearly optimal sequence of interpolation nodesfor any compact
set Hwith the propertyH ⊂ Em−1 ∪ B(0, rm) ∪ B(3, ρm) andτnm,m ⊂ H for all m.

Now the setτnm,m\Em−1 consists of finitely many points lying inB(0, rm) (B(3, ρm)).
For each such point select a small triangle that passes through that point and is contained
in B(0, rm) (B(3, ρm)). Let Em be the union of all these triangles withEm−1.

This completes the definition of the setsEm and the sequences{rm} and {ρm}. We
define the setE := ⋃∞m=0 Em. It is clear thatE consists of [0,1] ∪ [2,3] and infinitely
many triangles converging either to 0 or 3. Since the construction gives thatE ⊂ Em−1∪
B(0, rm)∪ B(3, ρm) for everym, the sequence{τnm,m}∞ is a nearly optimal sequence of
interpolation nodes forE. But the sequence{ν(τn2k,2k)}∞k=1 converges toδ0 (see (3.17)),
while {ν(τn2k+1,2k+1)}∞k=1 converges toδ3 (see (3.18)), so the setE does not have the AIM
property.

Finally, let E(1) (resp.,E(2)) be the portion ofE lying to the left (resp., to the right)
of the linex = 3/2.
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4. Algebraic Curves of Genus 0

In this section we shall show that compact subsets of planar irreducible algebraic curves
of genus 0 have an asymptotic interpolation measure and we find a formula for this
measure.

Irreducible algebraic curves of genus 0 can be characterized by the following.

Theorem 4.1([8, Th. 5.27]). An irreducible algebraic curve inR2 is rational if and
only if it has genus0.

Let I = R or I = S1 := {z ∈ C : |z| = 1}. SupposeL := {(x, y) ∈ R2 : Q(x, y) =
0} is an irreducible (over the complex field) real algebraic curve of genus 0, and

x = x(t) = p1(t)

q(t)
, y = y(t) = p2(t)

q(t)
(t ∈ I ),(4.1)

is its proper rational parametrization with (possibly complex) polynomialsp1, p2, q
in the sense that for all but at most a finite number of points(x, y) ∈ L, there is a
uniquet ∈ I such thatx = x(t), y = y(t) and, conversely, for all but at most finitely
manyt ∈ I , (x(t), y(t)) is a point onL. Note that by Lüroth’s theorem (see, e.g., [14,
Ch. V, Th. 7.3]), every irreducible rationally parametrizable curve also has such a proper
parametrization. Moreover, we may of course, in the following, assume that the greatest
common divisor of the parametrizing polynomials satisfies

gcd(p1, p2,q) = 1.(4.2)

By [6, Th. 4.4], if L does not only consist of a single point, this implies that

max(deg(p1),deg(p2),deg(q)) = deg(Q) = dL =: d.(4.3)

Let E ⊂ L be a compact set of positive logarithmic capacity. According to (3.9), for
n ≥ d, the dimension of the linear spaceΠn(E) is given by

dE
n = dn− cL .(4.4)

If n < d, thenΠn(E) has full dimension, i.e.,

dE
n =

(
n+ 2

2

)
= (n+ 2)(n+ 1)

2
.

Note that in either case

dimΠdn(I )− cL − 1≤ dE
n < dimΠdn(I ) = dn+ 1 if d ≥ 3.(4.5)

(For d = 1,2 one hasdE
n = dimΠdn(I ) = dn+ 1 for all n.)

Suppose that a scheme of interpolation pointsτn := {(xi,n, yi,n)}d
E
n

i=1, n = 0,1 . . . ,
is given onE such that the interpolation problem is solvable on eachτn and the cor-
responding Lebesgue constantsλE

n satisfy (1.3). According to Proposition 3.1, we can
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assume without loss of generality (w.l.o.g.) thatE does not contain isolated points of the
algebraic curve (if such points exist). Denoting byLs the set of points of self-intersection
of L we can also assume that

E′ := {t ∈ I : (x(t), y(t)) ∈ E\Ls}(4.6)

is compact. This is clearly the case ifI = S1; otherwise, it can be easily established by
reparametrizing via the circle (see Example 6.2). So for any

(
xi,n, yi,n

) ∈ τn, i = 1,dE
n ,

there existsti,n ∈ E′ such that

(xi,n, yi,n) =
(

p1(ti,n)

q(ti,n)
,

p2(ti,n)

q(ti,n)

)
,

and ti,n is unique except, possibly, for the case when(xi,n, yi,n) is a point of self-
intersection of the curve (in such a case, any of the preimages can be chosen).

We define a discrete measureν(τ̃n) on E′ associated withν(τn) as the normalized

counting measure of the setτ̃n := {ti,n}d
E
n

i=1, i.e.,

ν(τ̃n) := 1

dE
n

dE
n∑

i=1

δti,n .

The subsequent results are formulated in terms of potential theoretic notions, such as
weighted equilibrium measure, Robin equilibrium measure, balayage. For their intro-
duction and discussion, the reader is referred to [10].

Theorem 4.2. If E ′ is compact and conditions(1.3)and(4.3)hold, then the weak-star
limit as n→∞ of the measuresν(τ̃n) exists, and it is the weighted equilibrium measure
µw on E′ with the weight

w(t) = 1

|q(t)|1/d .(4.7)

More precisely,

lim
n→∞ ν(τ̃n) = µw = deg(q)

d
ν̂q +

(
1− deg(q)

d

)
ωE′ ,(4.8)

whereωE′ is the Robin equilibrium distribution on E′ and ν̂q denotes the balayage of
the normalized counting measureνq of the zeros of q onto E′.

Corollary 4.3. If E is a compact subset of an algebraic curve of genus0 and E has
positive logarithmic capacity, then E has anAIM. Moreover, µE is given by

µE(B) = µw(B′), B′ := {t ∈ E′ : (x(t), y(t)) ∈ B},(4.9)

for any Borel subset B of E, whereµw is as in(4.8).
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Remark 4.4. Frequently, it is possible to find the density ofµw explicitly. For instance,

(a) if E′ is an interval [a,b] andq has only real rootst1, . . . , tdq , dq := deg(q), which
due to (4.2) are not in [a,b], thenµw has density

1

πd

1√
(t − a)(b− t)

(
dq∑

j=1

√
(tj − a)(tj − b)

|t − tj | + d − dq

)

with respect to the Lebesgue measure on [a,b] (see [10, p. 122]);
(b) if the curveL is compact (as in Examples 6.4 and 6.5 of Section 6) andE = L,

using the complex parametrization and denoting the roots ofq by ζj := r j ei θj ,
j = 1,dq, for the density ofµw with respect to the arclength on the unit circle,
we obtain the formula

1

d

(
dq∑

j=1

|P(z, ζj )|+ d − dq

2π

)
1

2πd

(
dq∑

j=1

|1− r 2
j |

1− 2r j cos(ϕ − θj )+ r 2
j

+ d − dq

)
,

z := eiϕ,

whereP(·, ·) is the Poisson kernel.

The proof of Theorem 4.2 (see below) can be carried over to dimensionss > 2 and
yields the following.

Theorem 4.5. Suppose the curve L inRs is rationally parametrizable via

x1 = p1(t)

q(t)
, . . . , xs = ps(t)

q(t)
(t ∈ I ),(4.10)

and assume that for a compact set E⊂ L, whose preimage has positive capacity, we
have

d := max{deg(p1), . . . ,deg(ps),deg(q)} = dimΠn(E)

n
+ O

(
1

n

)
.

Then the weak-star limit of the normalized counting measures associated with interpola-
tion nodes on E having Lebesgue constants of polynomial growth can be characterized as
the image under the transformation(4.10)of the|q|−1/d-weighted equilibrium measure
on the(w.l.o.g. compact) preimage of E under(4.10).

Proof of Theorem 4.2. As in Section 3,{L E
i,n(x, y)}dE

n
i=1 denotes the basis of Lagrange

polynomials associated withτn. We have

L E
i,n

(
p1(t)

q(t)
,

p2(t)

q(t)

)
= Pi,dn(t)

q(t)n

with polynomialsPi,dn(t) in t of degree at mostdn.
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If d ≥ 3, thendE
n < dn+1 (see (4.5)) and we use Corollary 2.2 withS = E′, m= dE

n ,
p = r = dn+1,Xr = q−n

Πdn(I ), the weighted space of polynomials of degree at most
dn on I , τ = τ̃n, andLi = q−n Pi,dn to find pointsti,n ∈ E′, i = dE

n + 1,dn+ 1, with
Lagrange fundamental functionsl i (t) ∈ Xr , i = 1,dn+ 1, satisfying

dn+1∑
i=1

|l i (t)| ≤ (dn− dE
n + 2)max

t∈E′

dE
n∑

i=1

|Pi,dn(t)|
|q(t)|n + (dn− dE

n + 1)

≤ (cL + 2)max
x∈E

dE
n∑

i=1

|L E
i,n(x)| + (cL + 1) ≤ 2(cL + 2)λE

n (t ∈ E′).

Ford = 2 ord = 1 we havedE
n = dn+1, and there is no need to adjoin additional points.

Next, withw defined as in (4.7), consider the sequence ofw-weightedkth Chebyshev
polynomialsTw

k on E′ which by definition are the monic polynomials of degreek with
minimal weighted norm‖wkTw

k ‖E′ (see [10, p. 163]). Using the standard estimation of
the interpolation error by the interpolation norm and error in best approximation, we find∥∥∥∥∥w(t)dn

dn+1∏
j=1

(t − tj,n)

∥∥∥∥∥
E′

≤
(

1+ sup
t∈E′

dn+1∑
j=1

|l j (t)|
)
‖wdnTw

dn+1‖E′ .

By assumption (1.3) and estimate (4.11) it follows that

lim sup
n→∞

∥∥∥∥∥w(t)dn
dn+1∏
j=1

(t − tj,n)

∥∥∥∥∥
1/(dn)

E′

≤ lim sup
n→∞

‖wdnTw
dn+1‖1/(dn)

E′ ,

which implies that the weak-star limit distribution of the normalized counting measures
of the points{ti,n}dn+1

i=1 is thew-weighted equilibrium distribution onE′ (combine [10,
Th. III.3.1] and [10, Th. III.4.2]). Finally we remark that removing the previously added
points ti,n, i = dE

n + 1,dn+ 1, which are of uniformly bounded cardinality, does not
change the weak-star limiting behavior.

Combining Theorems 4.2 and 3.2 we obtain

Corollary 4.6. Let V and E be as in Theorem3.2,and assume that the curves V( j ),
j = 1,m, are rational. Then E has theAIM property andµE is given by(3.8),where,
for each j, the measureµE( j )

is defined on E( j ) via (4.9).

5. Constructing “Good Points” for Interpolation

Now we prove an inverse statement to Theorem 4.2. Namely, assuming that the asymp-
totic interpolation measureµE is known for a compact subsetE of an algebraic curve of
genus 0, our purpose is to show how one can easily obtain “good points” for interpolation
on E in the sense that the corresponding sequence of Lebesgue constants satisfies (1.3).
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For a setτ of m points onI we set

ετ := min
u,v∈τ
u6=v
|u− v| and ν(τ) := 1

m

∑
t∈τ
δt .(5.1)

Recall that thediscrepancyof a signed Borel measureσ on I with compact support
S⊂ I is defined by

D[σ ] := sup
J
|σ(J)|,

where the supremum is taken over all intervals (arcs)J ⊂ I (see [10, Sec. VIII.7]).
We need the following simple inequality (which is analogous to Koksma’s inequality

[7, p. 143]) regarding the discrepancy of signed measures:

Let S⊂ R be a compact set, let σ be a signed measure on S, and let f(t) ≥ 0 be
monotonic and continuous on S. Then∣∣∣∣∫

S
f (t)dσ(t)

∣∣∣∣ ≤ D[σ ] max
t∈S
| f (t)|.(5.2)

For a discrete measureσ := ∑p
k=1 akδtk the estimate (5.2) follows immediately from

Abel’s identity

p∑
k=1

akbk =
p−1∑
k=1

Ak(bk − bk+1)+ Apbp, Ak :=
k∑

j=1

aj ,

and the general case can now be verified by discretizingσ .
The estimate (5.2) also holds forS⊂ S1 with a suitable definition of monotonicity.

Lemma 5.1. Let S⊂ I be a compact set of positive logarithmic capacity, and letµw
denote the weighted equilibrium measure on S for the continuous positive weightw(t).
Suppose that:

(a) S= Sw := suppµw; and
(b) there exist constants C> 0, ρ > 0, and c∈ (0,1) such that, for any Borel set

U ⊂ S with one-dimensional Lebesgue measure|U | ≤ c,

µw(U ) ≤ C(−log |U |)−(1+ρ).

Let a sequenceγk = {ti,k}k+1
i=1 ⊂ S, k = 0,1, . . ., be such that:

(c) D[ν(γk)− µw] log εγk → 0 as k→∞.

Then the sequence of Lebesgue constantsλk corresponding toγk in the spacewk
Πk(I ),

k = 0,1, . . . , satisfies

lim sup
k→∞

λ
1/k
k ≤ 1.(5.3)
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Proof. Note that condition (c) impliesν(γk)→ µw in the weak-star sense ask→∞.
Moreover, for fixedi , the setsγi,k := γk\{ti,k} have the same limit distribution as the
γk’s, i.e.,

νi,k := 1

k

∑
t∈γi,k

δt → µw as k→∞.

We consider the case whenI = R. For a parametrization using the circleS1 the proof is
similar.

It is easy to verify from the definition of discrepancy, and the fact thatµw is absolutely
continuous with respect to Lebesgue measure, that

D[ν(γk)− µw] ≥ 1

k+ 1
.(5.4)

In particular, it follows from (c) that log(1/εγk) = o(k) ask → ∞, i.e., points inγk

cannot become exponentially close to each other. Also, since

νi,k − µw = (ν(γk)− µw)+ (ν(γk)− δti,k)/k,

using (5.4) we get

D[νi,k − µw] ≤ D[ν(γk)− µw] + 2/k ≤ (3+ 2/k)D[ν(γk)− µw].(5.5)

The weighted fundamental Lagrange polynomials corresponding toγk are given by

Li,k(x) := w(x)k

w(ti,k)k
∏
j 6=i

x − tj,k

ti,k − tj,k
(i = 1, k+ 1, k = 0,1, . . .).

Let xi,k ∈ Sw be a point where
∣∣Li,k(x)

∣∣ attains its maximum onSw. Then

Ii := log(‖Li,k‖1/k
Sw
) = log

∣∣∣∣w(xi,k)

w(ti,k)

∣∣∣∣+ 1

k

∑
j 6=i

log

∣∣∣∣xi,k − tj,k

ti,k − tj,k

∣∣∣∣
= −Q(xi,k)+ Q(ti,k)+

∫
Sw

log

∣∣∣∣xi,k − t

ti,k − t

∣∣∣∣dνi,k(t)

= −Q(xi,k)+ Q(ti,k)−Uµw(xi,k)+Uµw(ti,k)

+
∫

Sw

log

∣∣∣∣xi,k − t

ti,k − t

∣∣∣∣ (dνi,k − dµw)(t),

whereQ(x) := −logw(x) andUµw denotes the logarithmic potential ofµw.
It can be shown that (b) implies thatUµw is continuous onI , and so

Uµw(x)+ Q(x) ≡ const onSw

(see [10, Th. I.4.4]). Writeεk := εγk . Then puttingBi,k := B(ti,k, εk) ∪ B(xi,k, εk/2),
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whereB(x, r ) := (x − r, x + r ), we get

Ii =
∫

Sw

log

∣∣∣∣xi,k − t

ti,k − t

∣∣∣∣ (dνi,k − dµw)(t)

=
(∫

Sw\Bi,k

+
∫

Bi,k

)
log

∣∣∣∣xi,k − t

ti,k − t

∣∣∣∣ (dνi,k − dµw)(t)

=
∫

Sw\Bi,k

log

∣∣∣∣xi,k − t

ti,k − t

∣∣∣∣ (dνi,k − dµw)(t)+
∫

Bi,k

log

∣∣∣∣ ti,k − t

xi,k − t

∣∣∣∣dµw(t)
+
∫

B(xi,k,εk/2)
log

∣∣∣∣xi,k − t

ti,k − t

∣∣∣∣dνi,k(t) =: I (1)i + I (2)i + I (3)i .

The second integral can be estimated by

I (2)i ≤
∫

B(xi,k,εk)

log

∣∣∣∣ ti,k − t

xi,k − t

∣∣∣∣dµw(t) ≤ ∫
B(xi,k,εk)

log
diamS

|xi,k − t | dµw(t).

Then by partitioningB(xi,k, εk) via the intervals{t : 2m+1 logεk ≤ log |xi,k − t | <
2m logεk}, m= 0,1, . . ., and using (b) we get

I (2)i ≤ C1

(
log

C2

εk

)−ρ
(5.6)

with constantsC1, C2 > 0 independent ofi , k.
For the third integral we have

I (3)i =


0 if dist(xi,k, γi,k) ≥ εk/2,

1

k
log

∣∣∣∣xi,k − t∗

ti,k − t∗

∣∣∣∣ < − log 2

k
if dist(xi,k, γi,k) < εk/2,

(5.7)

wheret∗ denotes the point ofγi,k closest toxi,k.
Finally, assuming for definiteness thatti,k < xi,k and applying (5.2) toS∩{t ≤ ti,k−εk},

S∩{t ≥ xi,k+εk/2}, andS∩{ti,k+εk ≤ t ≤ xi,k−εk/2} (separately fort ≤ (xi,k+ti,k)/2
andt ≥ (xi,k + ti,k)/2) if xi,k − ti,k ≥ 3εk/2 we obtain, from (5.5), that

|I (1)i | ≤ 4 log

(
2 diamS

εk

)
D[νi,k − µw] ≤ C3 log

(
C4

εk

)
D[ν(γk)− µw],(5.8)

whereC3 andC4 are constants independent ofi , k.
So it follows from (5.6), (5.7), (5.8), and (5.2) that

log(λ1/k
k ) ≤ 1

k
log

(
(k+ 1) max

i=1,k+1
‖Li,k‖Sw

)

= log(k+ 1)

k
+ max

i=1,k+1
Ii ≤ log(k+ 1)

k
+ max

i=1,k+1
(I (1)i + I (2)i )

≤ log(k+ 1)

k
+ C3 log

(
C4

εk

)
D[ν(γk)− µw] + C1

(
log

C2

εk

)−ρ
→ 0

ask→∞, which implies (5.3).



276 M. Götz, V. V. Maymeskul, and E. B. Saff

Theorem 5.2. Let L be a rational curve parametrized by(4.1),let d denote the degree
of L as defined in(4.3),let E ⊂ L be a compact subset of positive logarithmic capacity, let
µE be the limit measure determined in Corollary4.3,and let EµE := suppµE. Suppose
ρ := card(E\EµE ) <∞ and that the corresponding weighted measureµw on I satisfies
condition (b) of Lemma5.1. For n = 0,1, . . ., let γn = {ti,n}dn+1

i=1 ⊂ Sw be a set of
interpolation nodes satisfying(c) of Lemma5.1,and defineτn := {(x(t), y(t)) : t ∈ γn}.
Then there exist sets̃τn, n ≥ dL , of interpolation nodes on E such that:

(i) cardτ̃n = dE
n andcard(τn\τ̃n) ≤ ρ + cL + 1, where cL is defined in(4.4);and

(ii) the interpolation problem is solvable onτ̃n and the corresponding Lebesgue con-
stants satisfy

lim sup
n→∞

λ̃1/n
n ≤ 1.

Proof. By Corollary 4.3, for the set(EµE )′ defined forEµE via (4.6) we have

Sw := suppµw = (EµE )′.

So according to Lemma 5.1 (withS= Sw), the Lebesgue constantsλn corresponding to
γn satisfy (5.3).

If ρ > 0, denote bŷΠn(E) the subspace ofΠn(E) consisting of polynomials vanishing
on E\EµE . Then

dE
n − ρ ≤ d̂E

n := dim Π̂n(E) ≤ dE
n .

(Forρ = 1 we have (3.4), and forρ > 1 it can be shown by induction.)
If d ≥ 3 ord < 3 andρ > 0, for eachn, let Bn be a basis in̂Πn(E), and denote

B′n := {p(x(t), y(t)) : p(x, y) ∈ Bn}, B′n := spanB′n.(5.9)

Applying Corollary 2.6 withS = Sw, m = d̂E
n , p = dn+ 1, τ = γn, Yp = q−n

Πdn(I ),

andXm = B′n we get a subset̂γn = {t̂i,n}d̂
E
n

i=1 of γn such that its Lebesgue constantλ̂n

satisfies (2.13), i.e.,

λ̂n ≤ ((d̂E
n + 1)(dn+ 1− d̂E

n )+ 1)λn ≤ ((dE
n + 1)(cL + ρ + 1)+ 1)λn ≤ C1nλn,

whereC1 > 0 is a constant independent ofn. Hence, if

L̂l ,dn(t) =
∑

pj∈Bn

cl , j pj (x(t), y(t)) (l = 1, d̂E
n ),

are the fundamental Lagrange functions corresponding toγ̂n, then the polynomials

L̂l ,n(x, y) :=
∑

pj∈Bn

cl , j pj (x, y) ∈ Π̂n(E)(5.10)

are the fundamental Lagrange polynomials corresponding toτ̂n := {(x(t), y(t)) : t ∈
γ̂n} ⊂ τn having the same Lebesgue constantλ̂n on EµE and, hence, onE.
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Now, if d̂E
n < dE

n , we use Corollary 2.2 withS = E, m = d̂E
n , p = r = dE

n ,
Xr = Πn(E), andτ = τ̂n to get a complete setτ̃n of dE

n nodes onE and the fundamental
Lagrange polynomials̃L E

i,n, i = 1,dE
n , with the Lebesgue constants satisfying

λ̃n ≤ (dE
n − d̂E

n + 1)λ̂n + (dE
n − d̂E

n ) ≤ C2nλn.

Thus, (ii) follows from Lemma 5.1. Clearly,

card(τn\τ̃n) ≤ (dn+ 1)− d̂E
n ≤ ρ + cL + 1.

Remark 5.3. If d ≥ 3, thendE
n < dn+ 1 (see (4.5)). This fact is essential for the

solvability statement in (ii). Furthermore, the use of Corollary 2.6 in choosing a setγ̂n

of “good nodes” forE amongdn+ 1 of those onE′ is extremely helpful. We illustrate
these assertions in Example 5.4.

Theorem 4.2 and the proof of Theorem 5.2 suggest the following algorithm for the
construction of “good” interpolation points on a compact subsetE of an algebraic curve
L of genus 0 (provided, of course, that the setE itself is “good enough” in the sense that
its AIM measureµE is known and satisfies the conditions of Theorem 5.2).

• Givenn, choose a setγn of dLn+1 points onE′ such that condition (c) of Lemma 5.1
is satisfied. To make such a choice, one can, say, discretizeµw using the method
described in [10, Sec. VI.4]. Alternatively, one can use zeros of weighted Chebyshev
polynomials (or other weighted monic polynomials not growing exponentially fast
on E′).
• With Ei denoting the set of isolated points ofE andρ := cardEi , choose a setBn

of dE
n − ρ linearly independent polynomials inΠn(E) vanishing onEi (this can be

done inductively using (3.5)) and use Remark 2.7 (withB = B′n defined in (5.9)
andXm = B′n) to select a subset̂γn of γn consisting ofdE

n − ρ points.
• Apply Remark 2.4 withXr = Πn(E), τ = τ̂n := {(x(t), y(t)) : t ∈ γ̂n}, and

any (say, monomial) basis{pi (x, y)}dE
n

i=1 in Πn(E) to addρ missing nodes, thereby
constructing a complete setτ̃n of dE

n nodes onE.

Then, for anyn, the interpolation problem with the set of nodesτ̃n is solvable inΠn(E)
and the sequenceλE

n , n ≥ dL , of the corresponding Lebesgue constants satisfies (1.3),
i.e., points in the sequence{τ̃n} are “good points” for interpolation. Actually, the above
algorithm is designed not only to achieve (1.3) but to preserve the slow growth of the
Lebesgue constants for the parametric interval problem.

Example 5.4. Let E := {(x, y) : y = x3, x ∈ [−1,1]} be the subarc of the cubic
curve with the natural parametrizationx = t , y = t3, t ∈ R. ThendE

n = 3n, ρ = 0,
E′ = [−1,1], w(t) ≡ 1, andµ := µw is the Robin (arcsine) measure on [−1,1]. It
is well-known that the zeros of the Chebyshev polynomialsTk(t) = cos(k arccost),
k = 1,2, . . ., are uniformly distributed with respect toµ on E′ in the weak-star sense
and, clearly, satisfy the discrepancy-separation condition (c) of Lemma 5.1. Denote by
γ̂n the set of zeros ofT3n, and letτ̂n := {(t, t3) : t ∈ γ̂n}. Since, for anyn, T3n ∈ B′n =
span{1, t, . . . , t3n−2, t3n}, the polynomialT̂n ∈ Bn(= Πn(E)) corresponding toT3n via
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(5.10) is identically zero on̂τn. Therefore, the interpolation problem isnot solvable on
τn for anyn = 1,2, . . . . So we should start with a setγn of 3n+1 nodes on [−1,1] and
then apply Remark 2.7 in order to choose a node to be omitted.

It is worth mentioning that the procedure described in Remark 2.7 can be easily
implemented in this particular case. Indeed, for a setγ of k points on [−1,1], let Vγ
denote the usualkth order Vandermonde determinant corresponding toγ . We shall
chooseγn = {tk,n}3n+1

k=1 to be the set of min/max points ofT3n on [−1,1], i.e., tk,n :=
cos((k − 1)π/(3n)). Denoting by1l , l = 1,3n+ 1, the determinants presented in
(2.14), we note that1l can be obtained fromVγn by omitting the 3nth row and thel th
column. LetP(t, l ) = cl ,0t3n + cl ,1t3n−1+ · · · be the polynomial obtained by replacing
in Vγn the nodetl ,n by t . Then1l = (−1)3n+l cl ,1. SinceP(tk,n, l ) = 0 for k 6= l and
P(tl ,n, l ) = Vγn , we have

P(t, l ) = VγnÄ3n+1(t)

Ä′3n+1(tl ,n)(t − tl ,n)
= 23n−13nVγn

Ä′3n+1

(
tl ,n
) ∏

1≤k≤3n+1
k 6=l

(t − tk,n)

= cl ,0t3n + 23n−13nVγn tl ,n
Ä′3n+1(tl ,n)

t3n−1+ · · · ,

whereÄ3n+1(t) = (t2− 1)T ′3n(t). Consequently,

1l = (−1)3n+l 23n−13nVγn tl ,n
Ä′3n+1

(
tl ,n
) (l = 1,3n+ 1).

With t = cosθ , we haveÄ3n+1(t) = 3n sinθ sin(3nθ), and so

Ä′3n+1(t) = −
3n

sinθ
(cosθ sin(3nθ)+ 3n sinθ cos(3nθ)).

Thus

1l = (−1)3n23n−1Vγn tl ,n
3nml

,

whereml = 2 if l = 1,3n + 1, andml = 1 otherwise. So the node to be excluded is
t2,n = cos(π/3n) (or−t2,n = t3n,n).

Similar arguments can be applied in the case of an arbitrary compact subsetE on the
cubic curve without isolated points. Givenγn = {tk,n}3n+1

k=1 ⊂ E′, we have

|1l | =
∣∣∣∣Vγn

tl ,n − sγn

Ä′3n+1(tl ,n)

∣∣∣∣ ,
whereÄ3n+1(t) :=∏3n+1

k=1 (t−tk,n) andsγn :=∑3n+1
k=1 tk,n. So the problem of maximizing

the determinants is an easy task.

Now letV be as defined in Theorem 3.2. Assuming that its componentsV ( j ), j = 1,m,
are rational, by Corollary 4.6 we know the limiting distribution of “good” interpolation
points onV . This fact along with Theorem 5.2 allows us to generate such points.
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Theorem 5.5. With the notation of Theorem3.2, suppose that m≥ 2 and that each
curve V( j ), j = 1,m, has genus0 and satisfies the assumptions of Theorem5.2. For
each j, let γ ( j )

n = {t ( j )
i,n }d

( j )n+1
i=1 ⊂ Sw( j ) be sets of interpolation nodes satisfying condition

(c) of Lemma5.1,and defineτ ( j )
n := {(x( j )(t), y( j )(t)): t ∈ γ ( j )

n }, τn :=⋃m
j=1 τ

( j )
n . Then

there exist sets̃τn, n ≥ dV , of interpolation nodes on E such that:

(i) cardτ̃n = dE
n andcard(τn\τ̃n) ≤

∑m
j=1 ρ

( j ) + cV +m; and
(ii) the interpolation problem is solvable oñτn and the corresponding sequence of

Lebesgue constants satisfies

lim sup
n→∞

λ̃1/n
n ≤ 1.(5.11)

Proof. For eachj , we apply Theorem 5.2 to the setE( j ) in order to determine sets of
nodesτ̃ ( j )

n , n ≥ d( j ), satisfying

cardτ̃ ( j )
n = d( j )

n , card(τ ( j )
n \τ̃ ( j )

n ) ≤ ρ( j ) + c( j ) + 1,(5.12)

wherec( j ) is defined in (3.9), and

lim sup
n→∞

(λ̃( j )
n )1/n ≤ 1.(5.13)

With Q(k) defined as in Theorem 3.2, forn ≥ dV denote

Π̂n(E
( j )) := Πn−dV+d( j ) (E( j ))

∏
1≤k≤m

k 6= j

Q(k)|V ( j ) .

ThenΠ̂n(E( j )) is ad( j )
n−dV+d( j ) -dimensional subspace ofΠn(E( j )). We consider polyno-

mials inΠ̂n(E( j )) as polynomials inΠn(E) vanishing onE\E( j ). Applying Corollary 2.6
with p = d( j )

n , m = m( j ) := d( j )
n−dV+d( j ) , Yp = Πn(E( j )), Xm = Π̂n(E( j )), andτ = τ̃ ( j )

n

we find a set̂̃τ ( j )
n ⊂ τ̃ ( j )

n of m( j ) interpolation nodes such that the interpolation problem
is solvable inΠ̂n(E( j )) and the corresponding Lebesgue constant satisfies

̂̃
λ
( j )
n ≤ λ̃( j )

n ((m( j ) + 1)(p−m( j ))+ 1) ≤ (dV )2d( j )
n λ̃( j )

n .

Set

τ̂n :=
m⋃

j=1

̂̃
τ
( j )
n .

Then using (3.9), (3.10), and (3.12), after some computations, we get

cardτ̂n =
m∑

j=1

m( j ) =
m∑

j=1

d( j )
n−dV+d( j )(5.14)

=
m∑

j=1

[d( j )(n− dV + d( j ))− c( j )] = dE
n − CV ,

whereCV is defined by (3.12).
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Further, with L̂( j )
k,n ∈ Π̂n(E( j )), k = 1,m( j ), denoting the fundamental Lagrange

polynomials corresponding tõ̂τ ( j )
n , we define the fundamental Lagrange polynomials

L̂ i,n for τ̂n by setting

L̂ i,n := L̂( j )
k,n

if the corresponding nodexi from τ̂n satisfiesxi = zk ∈ ̂̃τ ( j )
n . Then the Lebesgue constant

λ̂n (on E) for the set of nodeŝτn satisfies

λ̂n ≤ max
1≤ j≤m

̂̃
λ
( j )
n ≤ (dV )2dV

n max
1≤ j≤m

λ̃( j )
n ≤ 2(dV )3n max

1≤ j≤m
λ̃( j )

n .

Finally, taking into account (5.14), we use Corollary 2.2 withXr = Πn(E), r = p = dE
n ,

m = dE
n − CV , andτ = τ̂n to obtain a set̃τn of dE

n nodes for which the interpolation
problem is solvable and its Lebesgue constantλ̃n satisfies

λ̃n ≤ (CV + 1)λ̂n + CV ≤ C1(V)n max
1≤ j≤m

λ̃( j )
n .

Now (5.11) follows from (5.13). For (i), using (5.12) we obtain

card(τn\τ̃n) ≤
m∑

j=1

ρ( j ) +
m∑

j=1

c( j ) +m+ CV =
m∑

j=1

ρ( j ) + cV +m.

6. Examples

Example 6.1. Suppose the curveL is the graph ofy = p(x)/q(x), wherep, q are real
polynomials having no common factor. From the natural parametrization,x = tq(t)/q(t),
y = p(t)/q(t), we see then that Theorem 4.2 applies withd = max(deg(p),deg(q)+1).
For the special casey = xm with a positive integerm, the observation in [3] concerning
the distribution of Fekete points can thus also be obtained by means of Theorem 4.2.

Example 6.2. SupposeL is the unit circlex2 + y2 = 1. Then we may parametrizeL
in two essentially different ways: in a complex setting via

x = z2+ 1

2z
, y = z2− 1

2i z
(|z| = 1),

which follows from the familiar trigonometric representation, or in a real setting via

x = 2t

t2+ 1
, y = t2− 1

t2+ 1
(t ∈ R),

which one obtains from its stereographic representation. Using the first parametrization,
it is easily seen that the limiting distribution of interpolation points onE′ ⊂ L with
Lebesgue constants of polynomial growth is just the classical Robin equilibrium distri-
bution for the setE′. It is shown in [9, Th. 14.7] that Auerbach–Fekete points for the
unit circle are exactly the equally spaced points.
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Fig. 6.1. AIM distribution for E = {(x, y) : x3 = y5,−1≤ x ≤ 1}.

Example 6.3. SupposeL is the graph of an equation of the formxm = yp with m, p
integers (not necessarily positive). Here, a parametrization is

x = t p, y = tm (t ∈ R).

This example already shows that contrary to the behavior of “good” interpolation points
in polynomial interpolation in one complex variable, the problem in the bivariate case
depends on the precise algebraic structure of the curve.

For instance, ifp, m ≥ 2 are such thatxm − yp is irreducible and if the origin is an
interior point ofE, then the density ofµE with respect to arclength

dµE

ds
= dωE′

dt

/
ds

dt

will blow up at the origin, sincedωE′/dt remains bounded from below by a positive
constant in a neighborhood oft = 0, while ds/dt = √t2p−2+ t2m−2 tends to zero as
t → 0. This effect is illustrated in Figure 6.1 whereE is the subset of the curvex3 = y5

for x ∈ [−1,1]. Note that as, for instance,p = m+ 2→∞, the curvexm = yp looks
locally more and more like a straight line. Thus “geometry” is less an issue than the fine
algebraic structure.

With the aid of Examples 6.1–6.3 and the invariance of the AIM property under affine
transformations, it is possible to solve the problem for all compact setsE of positive
capacity, which are subsets of conic sections.

Example 6.4. Suppose that the curveL is the image of the unit circleS1 under a
polynomial mappingP2(z) = α + βz+ γ z2, |β| + |γ | 6= 0. Then the equations

x = x(z) := <(P2(z)) = 1

2

γ z4+ βz3+ 2<(α)z2+ β̄z+ γ̄
z2

,

y = y(z) := =(P2(z)) = 1

2i

γ z4+ βz3+ 2i=(α)z2− β̄z− γ̄
z2

,

(6.1)
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z ∈ S1, give a complex parametrization ofL. It can be easily verified that the algebraic
equation determining this curve is

Q(x, y) := (|P2− α|2− |γ |2)2− |β|2|P2− α|2− |βγ |2− 2<(β̄2γ (P2− α)) = 0.

Assuming thatγ 6= 0 andβ 6= 0 (so thatL is not just a circle or a circle passed twice),
one can conclude thatQ(x, y) is irreducible overC. SoL is a rational algebraic curve of
order 4, and (6.1) represents its proper parametrization. It follows from Remark 4.4 that,
for E = L, the density ofµw onS1 is 1/2π , i.e.,µw is the uniform (Robin) measure on
S1.

Note that if P2(z) is one-to-one onS1 (i.e., L is a Jordan curve), then it maps the
open unit disk conformally and one-to-one onto the interior ofL. Thus the AIM in this
case is the image of the uniform measure onS1 under aninterior Riemann mapping. We
remark that for the complex polynomial interpolation the limit distribution of “good”
interpolation nodes is given by the Robin measure onL which is the image of the uniform
measure onS1 under anexteriorRiemann mapping function. This fact demonstrates the
substantial difference in the distribution of “good” nodes for bivariate and complex
polynomial interpolation.

Example 6.5. Due to applications in computer graphics and geometric modeling, there
is a substantial interest in feasible algorithms for the parametrization of algebraic curves
(see, for instance, [1], [11], [13]). Maple contains subroutines (based on [13]) with the
aid of which one can check if an algebraic curve has genus 0, and find appropriate
parametrizations. For example, the trisectrix(x2 + y2 − 2x)2 − x2 − y2 = 0, which is
a particular case of thelimaçon of Pascal, can be parametrized via

x(t) = 2t (t2+ 4t + 1)

(t2+ 1)2
, y(t) = (t2− 1)(t2+ 4t + 1)

(t2+ 1)2
(t ∈ R).(6.2)

(In fact, Maple gives a more complicated but equivalent representation for this curve.) But
if E is the whole curve, a complex parametrization should be used instead. From (6.2), one
can easily verify that this curve is the image ofS1 under the mappingP2(z) = z2+z+1.
Hence, it follows from the previous example thatµw is just a normalized arclength on

Fig. 6.2. AIM distribution for the trisectrix(x2 + y2 − 2x)2 − x2 − y2 = 0.
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the unit circle and so the density of the AIM on the trisectrix is given by

dµE(S)

dS
= 1

2π

1

|2z+ 1| =
1

2π

1√
5+ 4 coss

(z= eis, s ∈ [0,2π)),

whereSdenotes the length of the arc connectingP2(1) = 3 andP2(z) (see Figure 6.2).
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Katholische Universit¨at Eichstätt
Ostenstraße 26
85071 Eichst¨att
Deutschland
Mario.Goetz@ku-eichstaett.de

V. V. Maymeskul
Center for Constructive Approximation
Department of Mathematics
Vanderbilt University
Nashville, TN 37240
USA
vmay@math.vanderbilt.edu

E. B. Saff
Center for Constructive Approximation
Department of Mathematics
Vanderbilt University
Nashville, TN 37240
USA
esaff@math.vanderbilt.edu


