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Potential and Discrepancy Estimates
for Weighted Extremal Points

M. Gotz and E. B. Saff

Abstract. We derive estimates for Green and logarithmic potentials of measures as-
sociated with extremal points. These results are applied to obtain discrepancy estimates
for weighted Fekete and Tsuji points on quasiconformal arcs or curves.

1. Introduction

Much research has been devoted to Fekete as well as Tsuji points and estimates for the
respective logarithmic and Green potentials (see, for instance, [PS31], [P065], [KK83],
[Me83], [KI84], and [AB97]). These points can be viewed as the special case of extremal
points for a discrete weighted energy problem with weight equal to 1. Allowing an
arbitrary weight is the starting point for this paper.

SupposeX C C is a simply connected domain. ¥ = C we denote byk(x, y) =
g(x, y) the Green function oX. In the caseX = C, k(x, y) will stand for the logarithmic
kernel logjx — y| L.

Let L be a compact Jordan arc or Jordan curvX iand suppose thdt is continuous
onL.

Itis known [ST97, Theorems I.1.3 and 11.5.10] that there exists a unique unit measure
wt on L minimizing the Gauss—Frostman energy functional

(o) = ff KO, y) A0 dia(y) —2] fdu

with respect to all unit Borel measurgson L. Its (Green or logarithmic) potential

Ky (X) =/k(x, y) du () (x € X),

has the property that

> f(x)+c¢s foreveryx eL,

1) Ky (X) {: f(x)+ci foreveryx e suppus),
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where suppu+) denotes the support off and the constart; is given by

o = / / KO, y) dier (00 dier (y) — / fdur.

We are interested in approximating this measguydy certain point measures which

we introduce now. Let > 2 and denote by, a set of pointsq“), ..., X" e L having
minimal discrete weighted energy in the sense that

Mo 2N g .
2) Zk(x&% XM=t = inf Zk(ykyn——Zf(yk)

k,j=1 k=12 727 k,j=1
K] K]

Denote byug, the unit measure associating the mags Wwith each poimxi(”) and by
I{(ue,) the discrete weighted energy appearing on the left-hand side df{®ill be
referred to as a set oth weighted extremal points for the functidnIn the caseX = C
the pomtsx(“) reduce to the well-investigated weighted Fekete points.

Example. Let X = C, L = [-1,1], a,b > 0. Thenth weighted Fekete points
associated with the weight

o) =exp(f(x) =1 -x)3L+x°  (xe[-1,1),

are given by the zeros of the Jacobi ponnonﬁéﬂ& with the parameterad = 2a(n —
1) — 1 andb = 2b(n — 1) — 1 (see [ST97, p. 187)).

Itis shown in [ST97] and [FS99] that the measykgsconverge tqs s in the weak-star
sense. In particular, the corresponding potentials

Ky, (X) = / k(x. y) dutr, ()

will converge tdk,,, locally uniformly in X\ L. Itis worth pointing out thatit. is a closed
curve and supfut) = L, then the potentials,. will be approximations to the solution
of the Dirichlet problem in the domain interior towith boundary values + c;.

We raise the question of how to quantify these two types of convergence.

We shall assume throughout this paper that f &dér continuous on L

In the caseX = C quantitative estimates for the potential difference between the
logarithmic potential of.; andu g, were given by Kleiner [KI64]. Under more restrictive
assumptionsl( aC?-curve, suppus) = L, f e C1(L)) his results contain estimates of
orderO(logn/./n), that we are able to improve significantly.

2. Statement of the Results

Theorem 1. There exists a constanG- 0 depending only on XL, and f, such that

foralln > 2,
logn logn Gy 1

—Co— <k, ) —k, ng——|——I _ X € X),
0 e (X) — Ky (X) = Co gmm(%,d(x,L)) ( )

whered(x, A) denotes the distance from a point x to a set &.



Potential and Discrepancy Estimates for Weighted Extremal Points 543

One should compare Theorem 1 with estimates for unweighted points due to Pom-
merenke [P065], Blatt and Mhaskar [BM93], Monterie [M095, Part A], Korevaar and
Monterie [KM98, Remark 5.1], and Kloke [KI84, Satz 3.5], respectively. See also the
papers of Korevaar and Kortram [KK83] as well as Korevaar and Monterie [KM99] con-
taining a discussion of when in the unweighted case tha logterm can be replaced by
1/n. For potential estimates for Fekete points in higher dimensions we refer to Korevaar
and Monterie [KM98] as well as [@98].

The proof of Theorem 1 is based on the following separation result, which is of
independent interest. In the unweighted calse=(0), it already appears in the paper of
Kovari and Pommerenke [KP68, Theorem 1] (cf. a similar estimate in [KI84, Satz 3.3]).

Theorem 2. There exist constantssC> 0, yo > 0 depending only on XL, and f,
such that for all n> 2:

Co

; (n) (m
min |x; — X | > TS

1<i<j<n

Remark. The proof of Theorem 2 together with well-known facts concerning the
boundary behavior of harmonic functions actually reveals the following: Suppose that
L is a smooth curve or arc of clags*.

(i) If f is Holder continuous with ider constang (1 > g > 0), then one can
choosgyy = B in the case of a curve ang = min(3, %) in the case of an arc.
(ii) If f is smooth of clasg'*¢, then

min [ — x| > Codjn,
i#]

whered; , denotes the distance of a poi(j{'f') from the level curve. 1/, (see (3))

andCy = Cy(f, L, X). In particular, ifL = [—1, 1], this yields an estimate in

the form of Lemma 2.15 in [DKM98] and, consequently (see [DKM98, p. 413]),

wu¢ has bounded density with respect to the arcsine distributior-@an1].

To state the discrepancy results we need to introduce some notions and definitions.
Denote byA the exterior of the closed unit disk with respect@oand consider
® : ext(L) — A mapping the exterior of. (with respect toC) conformally and
univalently ontoA with standard normalization

0]
®(00) = o0, @' (c0) := lim g > 0.
Z— 00
Consider the level lines
3) Ly i ={zeC: |®@)|=1+Tr} r >0,

and choosg > ro > 0 such that.,, C X.
Finally, denote by, = u ¢ the equilibrium distribution oL (with respect taC),
which is the unit measure dn minimizing the Gauss—Frostman energy in the special
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case of the external field being identically equal to 0 ankl being the logarithmic
kernel.

Now, suppose thalt is a quasiconformal curve or arc X, which by definition is
the image of the unit circle or of a subarc of the unit circle under a quasiconformal
mapping of the extended complex plabD@nto itself (see the standard work [Ah66] for
the definition of a quasiconformal mapping).

The following metric characterization (see [LV71, p. 100]) shows that, in particular,
convex curves, curves of bounded variation without cusps and rectifiable Jordan curves
which have locally the same order of arc- and chord-length are quasiconformal.

A Jordan curvd” C C is quasiconformal if and only if there is ax 1 such that for
all zy, z, € T, 21 # z:

min(diam(T"(z, 2), diam(I"(z, 1)) < €|z — 23|,
wherel'(z1, z2), I'(z2, ;) denote the two subarcs Bfhaving endpointsiz z,.

We now want to formulate a corresponding discrepancy estimate. For two (unit) mea-
suresu andv on L we call

D[ — v] :=sud|ud) —v()| : | asubarc ofL}

thediscrepancyetweernu andv.

A connection between double-sided bounds for logarithmic potentials and discrepancy
on quasiconformal curves was given by Andrievskii and Blatt. Analogous results related
to Green potentials were obtained by the first author of this paper in his PhD thesis. We
combine the statements of these results in the following:

Theorem ([AB97, Theorem 1], [@98, Satz 4.2.1]). Let L be a quasiconformal curve
or arc. Let i be a unit measure on L and suppose that c arate positive constants
such thatfor all subarcs | of L:

(4) pd) = cuL)”.

Then there exist positive constantand ¢, depending only on,co, X, and L, such
that, for all unit measures on L and all0 <r < rg:

5) Dlu — v] < co(e(r) log(1/r) +r°7),
where

e(r) =e(r, u,v) == suplk,(2) — k,(2)|.

zel,

By Theorem 1 the quantity(r, ¢, ig,) can be estimated as follows. Since forx0
r <ro, there holds

(6) ar?<dx,L)  (xely),
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with ¢; > 0 independent aof [ABD95, Corollary 2.7], it follows that

logn C 1
suplK,, (2) = Kir, ()] = Co—on + 2 log = (0 <T =To)

zel,

Inserting this estimate into (5) one can deduce:

Theorem 3. Suppose L is a quasiconformal curve or arben there exists a constant
Co > Osuch thatforalln > 2:

logn)?
D[Mf_MFn]SCO( ?1).

In the unweighted case this statement coincides with those of Andrievskii and Blatt
for Fekete points [AB97, Theorem 3] and the first author for Tsuji points. But it also
generalizes these results to Fekete and Tsuji points defined for more general sets. More
precisely, ifK is a compact subset of a quasiconformal curvand such that the equi-
librium potential is Holder continuous in a neighborhood lof then for the unweighted
extremal points forK, a discrepancy estimate of ordex(logn)?/n) holds. In fact,
such points can be interpreted as weighted extremal points under the influence of a
Holder continuous external field that coincides with the equilibrium potentid @amd
is smaller onL\ K. A particularly interesting case is whé&hconsists of a finite number
of mutually disjoint quasiconformal arcs.

Finally, note that Kleiner uses an approach contrary to ours: He first derives a discrep-
ancy estimate of orded (logn/./n) and from this he obtains the potential estimates.

3. Proofs

For the proofs of our estimates for weighted extremal points we may without loss of
generality assume that the constantis equal to 0 and thu§ = k,, on the support
of u¢. Indeed, for every constaotwe haveus . = us, and the extremal points also
remain unchanged when adding in (2) a constarft to

Occasionally we will use that

K(x,y) =log —hx,y) X,y € X),

IX =yl

with a functionh harmonic in both variables.

For a Jordan curve or aft; we denote by ext") the domain exterior t&' with respect
to C. In addition, if" is a curve, then ") stands for the domain interior 0.

Let Cy denote a positive constant depending at mostph, and f, possibly different
at different occurrences. The numbess y1, . .. will be positive numbers depending
only on X, L, and f. For convenience, when dealing with the extremal points, we omit
the upper index and writex; instead ofxi(”).

The proofs will be partly based on properties of the modulus of continuity of the
solution to certain Dirichlet problems in terms of the modulus of continuity of the
boundary values.
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Here, we refer to a result of Johnston [Jo80, Corollary 3] that for our purposes we
want to formulate in the following way:

Lemma. Suppose that G is a simply connectbdunded domainf u is a function
continuous or_lG, harmonic in G and Holder continuous ordG, then u is Hblder
continuous orG.

By means of an inversion+— 1/(z— zp) this result can also be formulated for simply
connected domains i@ containing the point at infinity and such that the complement
has nonempty interior.

We will make use of the fact that this lemma is actually rather of a local character.
More precisely, we have:

Lemma 1. If for a neighborhood U of the Jordan curve or arg u is continuous in
U, harmonic in U\L, and Hdlder continuous on Lthen u is Hlder continuous in a
neighborhood of L

Proof. Without loss of generality we may assurbeto be bounded and that is
harmonic even in a neighborhood &@f . We want to show that fox € U andy € U
there holds

[u(x) —u(y)| < Colx —y/|™.

Here, it suffices to consider only the case tkat L. To justify this, let§ > 0 and
consider the modulus of continuity

w(d) = Sup lu(@ —u@)l-

Letz, ¢ € U be such thab(8) = |u(z) — u(¢)|. Sets := min(d(z, L U dU), d(¢, L U
aU)), says = |¢ — ¢*| with ¢* € LU dU. If s > 0, consider the auxiliary function

u(z+sé) —u@ +sé)
lu(@) —u(@)l

h() 1= (¢ €D).

This function is harmonic in the open unit diBk continuous and in modulus bounded
by 1 onD. By the mean value principle,

1 2 0 1 2 »
1=1h0)| = E/o h(0+sé?) dg| < 5/0 Ih(0+sé”)|do < 1.

Thus,|h| = 1 onaD and, in particular,
u@Z—¢+¢") —u"l =Iu@ —u@)l.

This equality trivially also holds in the case tlsat 0. Now,¢* is a point onL UdU and
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z— ¢ + ¢* apoint fromU. It remains to note that we have assurngd be harmonic in
a neighborhood ofU. Thus, it suffices to consider onkye L.

Now that we have reduced our problem we first consider the caselwisercurve. Let
x € L andy € ext(L) NU. Denote by, the logarithmic potential of the equilibrium dis-
tribution of L with respect tcC. For the so-called Robin constavit = —log capL, C),
we have thati,, =V, onL andu,, < V_ inext(L). Now, denoting by, the solution
to the Dirichlet problem in ext.) with boundary values on L, the maximum principle
yields that for a sufficiently large constadg > O:

hy —Co (VL — U, ) <u<hy+Co(VL —u,) in UnextL).

But hy is Holder conti_nuous by the lemma of Johnston, and it is well knownupats
Holder continuous itJ with exponent% (this follows, e.g., from (6)). Thus,

[ux) —u(y)| < Coluy, (y) — Vil + Colx — y"* < Colx — y|™.

If, however,y e int(L) N U, then one may use a suitable inversior> 1/(z — 7o) to
transform the problem to the situation that we just dealt with.

Suppose now thdt is an arc. Denote by, z, its endpoints. Choose a closed proper
subarcL; of L containingz; and consider a simply connected dom@&ncontaining
L\{zz} such thatL N dG = {z} andG* := G\L is simply connected. Then choose
a Holder continuous continuation* of u to dG* and denote by the solution to
the Dirichlet problem inG* with these boundary valuas‘. Then, by the maximum
principle, if Cy is chosen sufficiently largeh,- + Co(Vi, — Uy ) will be a Holder
continuous majorant foa in G* andhy- — Co(V, — Uy, ,) Will be @ minorant. For
X € Li one can now reason as in the case of a curve.4f L, := L\Lq, a similar
construction leads to the desired estimate. ]

We do not dwell on how the blder exponents of the solutions to the Dirichlet problem
depend on the blder exponents of the boundary values. For a discussion, see [Jo80],
and [An88], [An90a] concerning quasiconformal curves and arcs.

Lemma 2. If f is Holder continuous on |then the potential k is Holder continuous
in a neighborhood of L

Proof. For abbreviation, set := k,,,. By Lemma 1, it suffices to show thais Holder
continuous ori, i.e.,

(7) ux) —uy)l < colx —yl” X,y el),

with ¢, ¥ > 0. Letx, y € L. Sinceu coincides with the ldlder continuous function

f on& = supfu+), it is enough to establish (7) for ¢ . In addition, reasoning as

in the proof of Lemma 1, where it was shown that (roughly speaking) the modulus of
continuity is attained on the boundary of the region of harmonicity, we see that it suffices
to prove (7) forx € & only.
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Letr :=d(y, &) and choosg* € & such that = |y — y*|. If we denote byg; the
Holder exponent off onL, then

lu(x) — u(y)l < Colx — y*I?* + Ju(y) — u(y")| < Co2* [x — y|P* + |u(y) — u(y")|.

Therefore, it is enough to prove (7) withreplaced byy*.

Now that we have reduced our problem, d&be a bounded (simply or doubly con-
nected) domain such thatc Q@ c X. We may certainly assume thats so small that
{z. |z—y*| < 2r} C Q. Denote byg; the solution to the Dirichlet problem i€\ L
with boundary values on L andu on 9. By Lemma 1,g; is Holder continuous in a
neighborhood of. with Holder exponeng, > 0. According to the maximum principle,
u > gr in €, and, consequently,

(8) uly ) = gr(y) <u@ +Coly* — 21”2 (ze Q).

In particular, this estimate holds far= y. In what follows we establish the desired
reverse inequality.
Sinceu is harmonic infz: |z—y| <r}:

uly) = u(z) dmy(2),

2
e Jz—yl<r)

wherem, denotes the planar Lebesgue measure. Sinsesuperharmonic, the mean-
value inequality property implies that

! f u(z) dmy(2)
A7 12 Jizye<2r) '

Thus, taking into account the estimate (8):

uly”) =

Uy > 47rr2_7rr2(u( Y — Gyt + wr? ")
V)= e y 0 dprz Y

which implies that
u(y*) > u(y) — Cor” = u(y) — Coly — y*|.

The proof of Lemma 2 is complete. [ ]

Lemma 2 allows us to henceforth assume thas a curve. In fact, ifL is an arc,
then it can be continued to a Jordan cutvlying in X, and one may extenél Holder
continuously to a functiorf on L such thatf < k,, on [\L. Then by the uniqueness
result [ST97, Theorems 1.3.3 and I1.5.12} = w ;. But extremal points forf onL are

extremal points forf on L and vice versa, as follows from:

Lemma 3. All extremal points ¥’ are contained in the set

{zeL: k(2 =ci + (D).
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Thatk,, (x™) > ¢t + f(x™) is clear, since the extremal points are supposed to lie
on L (see (1)). In the case of logarithmic potentials, the reverse inequality is given in
[ST97, Theorem 111.1.2]. We will present a sketch of a proof in the caseXhgtC at
the end of this paper.

Proof of Theorem 2. Suppose first thaK # C. Then the kernek(., -) is given by

the Green functiomy(-, -). Making use of a conformal mapping &f onto the unit disk

D = {z |z| < 1} and taking into account the invariance of the Green function under
such transformations in both arguments we may without loss of generality assume that
X is the unit disk. For the Green function bDfwe have the formula

.
9(z ¢) = log fzg‘

(z, ¢ € D).

Fix 1 < j < nand consider the rational function

- _ n n Xk
q,(Z)-—]_[ — ]_[1 % 2€O.

k=1
k#j k#J

having poles exactly in the poinig/|x|2, k # j. From the extremal property of the
weighted extremal points:

19 (2)] = eXp{Z 90, %) — Y 9(2, Xk)} =expin(f(x) - f(2)}  (zel).

k#] k#]

Denote byG(., -) the Green function of the exterior €kt of the curveL with respect
to C. Denote byh;(z) the solution to the Dirichlet problem in gxt) with boundary
valuesf. The function

log|q; (2)| — ZG( —|2> —n(f(x) —hi(2)

ki

is subharmonic (even harmonic) in éixj with boundary values 0 onL. Consequently,
this function is nonpositive in et ) which implies that

n
oy (@) < exp{ze ( T |2) +n(f(xp) — hf<z))} (z e ext(L)).
o
Sinceh; () and the function&(z, x«/|x«|?) are Hilder continuous in a neighborhood

of L relative toext(L) with the same ldlder constant and sameotdér exponen, we
find that

gj (D) = exp{n %} <Co (zeext(l), [z—x| <1/n'7).
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Similarly,
92| <Co  (zeint(L), |z— x| < 1/n'/7).
Thus, setting/s := min(yz, y3), then forg with |x; — ¢| < 1/(2n%7):

, 1 g (2)] 1
IQ-(C)IS—/ |dz] < Con/7-.
J 21 Jizx =1 12— ¢ °

Now, letk # j. If |x; — x| > 1/(2nY/#) nothing is to be proved. Otherwisgj — x| <
1/(2n*/7+) and (using the trick in [KP68, p. 71]) it follows that

f qi(¢) d¢
[%j, %]

This is the assertion in the caXe+ C.
The proof in the casX = C follows the same lines. However, instead of the rational
functiong; one has to consider the polynomials

1=1g;(x) —gi(x)| = < ColXj — x| n¥/7.

The details are left to the reader. |

Proof of Theorem 1. From the minimality of the weighted extremal points it follows
thatforalli =1,...,n:

2% K(xi,x) —2nf(x) <2 k., x) —2nf(x)  (xeL).
T "

Adding thesen inequalities and denoting by
2 n
1 (ur) =1 (nr) + = 3 F ()
i=1
the unweighted discrete energyaf, we obtain that
n—1 C
9) I*(upn)—/ fdur, < ——Kue, 0= (%) =< K, (X)—f(X)+7° (xel).

Lower Potential Bounds From Energy Estimédtes

Letr > O be sufficiently small and denote By the unit mass, uniformly spread on the
circle of radius, centered a;. Setyy, := (1/n) Y[, & .

* One of the referees has pointed out that the following technique of sweeping to small circles is due to
Tsuji and further developed by Siciak.
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By Lemma 2,
(10) [Kup (X) = Ky (X)] < Cor 7 (x—=xl<r,i=1..., n,

‘/kmdMFn _/kﬂfd/’l“;

From the superharmonicity of the kerrl, -) it follows that

and, consequently,

< Cor?s.

() = 22 [ [ koxyyds, o0 ds, )

i,j=1
j#

C 1
> / K(x, y) diuh ) duh(y) — = log -

The energy principle [ST97, Lemma 1.1.8, Theorem I1.5.6] implies that

f / K(x, y) du,(0) dialy () + / k(. y) dier (%) dpas ()

>2 / k(. y) dier (%) Al (y).

Combining the last three inequalities and inserting 1/n/7s gives

logn
I (ur,) /kuf dur, > /km dur, — /kuf dut — COL

Taking into account (9) as well as

[ o e, [ £ dur, =0

(see Lemma 3) and denoting bythe residue

€n ::/k,” dur, _fkltf dps,

we thus obtain the lower potential bound

lo
(A1) Ky () — Ky, (00 = Ky (00 — F(X) > £ — CO% (X € Supg:)).

If we denote by the equilibrium measure for su@p;) with external field 0, then for
some constart, k, < cin X with equality . -almost-everywhere. Now, (11) implies

|
(12) Oz/kv dupn—/kv dyer :/kwn /k,” dv > ey — COE

Therefore, the principle of domination is applicable so that the estimate (11) holds in all
of X:

(13) Ky (%) — Ky (X) > en — Co '% (X € X).
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Upper Potential Bounds

To some extent we follow an idea of Dahlberg [Da78]. Because of Theorem 2, one can
determine a constant1 ¢y > 0 so that

(14) .min IXj —Xi| > 4c/n*  (j=1,....n,n>2).
ij=1..n
i#]

Assume without loss of generality that < Ry/2 foralln > 2, where O< 4Ry is chosen
smaller than the distance fromto the boundary oK. For 1 < i < n we consider the
function

1 n
(15) hi (0 = = Z;k(x, x)  (xeX).
T
The norm

2
|Vhi| =) [ohi/ay;]|
j=1

of its first partial derivatives satisfies the estimate

n

(16) [Vhi ()| < Co

— +C x e X, dix, L) < Ry).
2 xS b =R
Ke£i

Taking into account (14), it follows that

(17) sup  |Vhi(x)| < Con/7.

[X—X;|<Co/nY/70
Next, we claim that
(18) kuf(xi)+8n+%Ehi(xi)ikuf(xi)-i‘gn—colo%-
Indeed, from (1) and the minimizing property of the weighted extremal points we have
hi (i) < Ky (%) +hi(X) =Ky (X) (X € suppus)),
so that after integrating with respectig:

C
hi(Xi) =< k/,Lf(Xi) +/(h| - k/lf)dl"(’f = kuf(xi)+3n+ FO

On the other hand, fdx — x;| = 1/nY"s, whereys := min(yo, ¥s), it follows from (10)
and (13) that

1
hi () = Kug, (x) — — log X x| + - hex. %)
- |
logn 1
> Ky (9 + & — Co — " = Co =
logn 1
= k;Lf(Xi)+8n_CO%_COH~
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Hence, by the mean-value inequality property for superharmonic functions:

logn
hi (%) = Ky, (X)) + én —co%.

Let 0 < a < co/n**Y/76 andx be such thatx — x;| = «. From (17) it follows that

C
(19) lhi () — hi (x)] < Coxr  sUp |Vhi(y)| < Coan¥/? < 7"
ly—xXi |<a
Since
log(l/a) 1

hi (y) =Ky, () —

+ohGiy) (yly —xil=a),
it follows from (18) and (19) that

< ¢, Iog(;/a).

|kMFn (X) - ka (Xi) - 8n| = CO (IOg(l/a) —+ loﬁ)

n n

Hence, taking into account (10):

K, () = Ky (%) — el < Co (% 4 '°g(§/ “)) <G 'Og(rf/ 2}

We have shown that

log(1 n
K 00 — Ky 00 = £ = Co 2l (x eUty:ly—xi= a}).
i=1

Reasoning as in (12) with replaced by the unweighted equilibrium measure of the
union of the circlegy : |y — Xi| = «} we find that

(20) e > —Co 'Og(rf/ Iy

Therefore, the maximum principle applied to the subharmonic funkfion-k,,, yields

(21) kﬂrn (X) — kﬂf X) <en+Co |0g(:l-/0l) (X S

i=1

{y e X:ly—xi Za})-
In addition, by virtue of (12) and (20):
(22) len] < Co——.

The assertion of Theorem 1 in the case that,d) =: « < co/n'tY/7 follows from
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(13), (21), and (22). In the other case, the assertion also follows from (21), namely, by
merely insertingy := co/n**+%7e, [

Proof of Theorem 3. The assertion of Theorem 3 follows by inserting= ¢, v =
ie, as well as the double-sided potential bounds of Theorem 1 into (5) and choosing
r = n~Y7. However, it has to be checked that an estimate of the form (4) holds.

For 0 < r < ro denote byu!” the balayage measure gf to L, i.e., u{" is the

unique unit measure dpo, satisfying

(23) kwfn =k, on ext(L,)N X.

It is well known that ag — 0, the measureﬁ(f” converge tous in the weak-star
sense.

Now, letl be an arbitrary subarc &fwith endpoints, say; andz,. Write ®(z;) = e,
j = 1,2, where 0< 0; < 6, < 2m. Since the equilibrium measupe_ on L is
given by the image measure of the normalized arclengti@munder®—1, we have
uL() = (62 — 61)/(2). Thus, there is no loss in generality, if we henceforth assume
thatd, — 6, < 7 /2. Set

Al) :={zeext(L): ®(2) = L4+r)€? 6, <0 <6, 0<r < ro}.
Thenl, := A(l) N L, is a subarc oL,, and we denote its endpoints &’ andz)’.
Since,u?)(lr) — wu (1), we have in some sense reduced our problem to the estimation
of a measure on a smooth (even analytic) curve. Hence, we can use the representation
[ST97, Theorem I1.1.5] to find that

1 0 1 0
(r) _ = v _
(24) Mt (Ir) = o . an+ k/,‘f ds —27[ v/Ir —ani kli(fr) ds.

Here,d/an, (3/0n_, respectively) denotes differentiation in the direction of the outward
unit normal (inward unit normal, respectively), and we have made use of (23). Note that
the representation [ST97, Theorem 11.1.5] is stated only for logarithmic potentials, but is
of course valid also for Green potentials, since these potentials differ only by a harmonic
function in a neighborhood of the sets under consideration.

The first integral in (24) can be estimated in the following way. Consider the four
annular sectors

S::iw:w:(1+r)ei9,059—j%§n,0§r§ro} (j=0123).

Since 0< 6, — 61 < 7/2, both,6; andf,, will be in the parameter set of one of these
sectors. For convenience, assume that th$.is

Now, Qg := ®~(int(S)) is a simply connected region bounded by a quasiconformal
curve. By a result of Gehring and Martio [GM83, Cor. 2.3], Privaloff's theorem is valid
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in such domains: The harmonic conjunge of k,, in Qo is also Hilder continuous,
even with the same élder exponent as that &f,, .

Thus, denoting by /a1 tangential differentiation and using the Cauchy—Riemann
conditions:

1 0 ~ ~
@ |5 [ o= = R @) K. @)

A

< Colzy’ -1

Now, we turn to an estimation of the second integral in (24). The mappiogn be
extended to & 2-quasiconformal mapping of the extended complex plane onto itself.
In particular, the setk, are level lines of thisk 2-quasiconformal mapping. The afore-
mentioned Privaloff-type result of Gehring and Martio states that the harmonic conjugates
kwfn of ku(fm inint(L,) are Holder continous with the same exponent as tha%ai‘ and

the Holder constant depending only on thalkgl:n and onK 2 But the Hilder exponent
of kugr) inint(L,) depends only on that of the boundary valkgsonL,, and the Hider

constant depends only on that of the boundary values and on the diaméte(swe
[Jo80, Cor. 3]). We have thus seen that it is possible to chooseotdleid parameters
independent of .

Now, as in the previous reasoning,

1 a
— | —Kk,, ds
21 /|: 8n+ H

Inserting (25) and (26) into (24), setting := min(y7, yg) and taking the limit as
r — O yields

(26) < Col2)) — 2.

wi(l) < Colzy — 22| < Co(ur (1)),

where the last inequality follows, for instance, from a combination of [ABD95, Theo-
rems 2.1 and 4.2]. ]

Sketch of the Proof of Lemma 3. Let 1 < i < n and consider the functioh; as
defined in (15). Since we have assumed that 0 so thak,, coincides withf on the
support ofus:

(27) hi() = 00 = inf(hi(2) = F@) +k, ) = F(x)  (x € suppuy)).
Reasoning as in (12) we deduce that
in[(hi (20— f(@@) <0

Therefore, after a cancellation 6{x) on both sides of (27), we may apply the principle
of domination to obtain that

hi (x) > Lgi(hi (2 — () + Kk, () (x € X).
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In particular,
(28) hi (%) — f(x) — in[(hi (2 — f(2) = Ky, (i) — F(X).

But the left-hand side of inequality (28) is equal to zero by the definition of the extremal
points. ]
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