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Potential and Discrepancy Estimates
for Weighted Extremal Points

M. Götz and E. B. Saff

Abstract. We derive estimates for Green and logarithmic potentials of measures as-
sociated with extremal points. These results are applied to obtain discrepancy estimates
for weighted Fekete and Tsuji points on quasiconformal arcs or curves.

1. Introduction

Much research has been devoted to Fekete as well as Tsuji points and estimates for the
respective logarithmic and Green potentials (see, for instance, [PS31], [Po65], [KK83],
[Me83], [Kl84], and [AB97]). These points can be viewed as the special case of extremal
points for a discrete weighted energy problem with weight equal to 1. Allowing an
arbitrary weight is the starting point for this paper.

SupposeX ⊂ C is a simply connected domain. IfX 6= C we denote byk(x, y) =
g(x, y) the Green function ofX. In the caseX = C, k(x, y)will stand for the logarithmic
kernel log|x − y|−1.

Let L be a compact Jordan arc or Jordan curve inX and suppose thatf is continuous
on L.

It is known [ST97, Theorems I.1.3 and II.5.10] that there exists a unique unit measure
µ f on L minimizing the Gauss–Frostman energy functional

I f (µ) =
∫ ∫

k(x, y) dµ(x) dµ(y)− 2
∫

f dµ

with respect to all unit Borel measuresµ on L. Its (Green or logarithmic) potential

kµ f (x) =
∫

k(x, y)dµ f (y) (x ∈ X),

has the property that

kµ f (x)

{≥ f (x)+ cf for everyx ∈ L ,
= f (x)+ cf for everyx ∈ supp(µ f ),

(1)
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where supp(µ f ) denotes the support ofµ f and the constantcf is given by

cf =
∫ ∫

k(x, y) dµ f (x) dµ f (y)−
∫

f dµ f .

We are interested in approximating this measureµ f by certain point measures which
we introduce now. Letn ≥ 2 and denote byFn a set of pointsx(n)1 , . . . , x(n)n ∈ L having
minimal discrete weighted energy in the sense that

1

n2

n∑
k, j=1
k 6= j

k(x(n)k , x(n)j )− 2

n

n∑
k=1

f (x(n)k ) = inf
y1,...,yn∈L

1

n2

n∑
k, j=1
k 6= j

k(yk, yj )− 2

n

n∑
k=1

f (yk).(2)

Denote byµFn the unit measure associating the mass 1/n with each pointx(n)i and by
I ∗f (µFn) the discrete weighted energy appearing on the left-hand side of (2).Fn will be
referred to as a set ofnth weighted extremal points for the functionf . In the caseX = C
the pointsx(n)j reduce to the well-investigated weighted Fekete points.

Example. Let X = C, L = [−1,1], a,b > 0. The nth weighted Fekete points
associated with the weight

ω(x) = exp( f (x)) = (1− x)a(1+ x)b (x ∈ [−1,1]),

are given by the zeros of the Jacobi polynomialP(ã,b̃)
n with the parameters̃a = 2a(n−

1)− 1 andb̃ = 2b(n− 1)− 1 (see [ST97, p. 187]).

It is shown in [ST97] and [FS99] that the measuresµFn converge toµ f in the weak-star
sense. In particular, the corresponding potentials

kµFn
(x) =

∫
k(x, y) dµFn(y)

will converge tokµ f locally uniformly inX\L. It is worth pointing out that ifL is a closed
curve and supp(µ f ) = L, then the potentialskµFn

will be approximations to the solution
of the Dirichlet problem in the domain interior toL with boundary valuesf + cf .

We raise the question of how to quantify these two types of convergence.

We shall assume throughout this paper that f is Hölder continuous on L.

In the caseX = C quantitative estimates for the potential difference between the
logarithmic potential ofµ f andµFn were given by Kleiner [Kl64]. Under more restrictive
assumptions (L aC2-curve, supp(µ f ) = L, f ∈ C1(L)) his results contain estimates of
orderO(logn/

√
n), that we are able to improve significantly.

2. Statement of the Results

Theorem 1. There exists a constant C0 > 0 depending only on X, L , and f, such that
for all n ≥ 2,

−C0
logn

n
≤ kµFn

(x)− kµ f (x) ≤ C0
logn

n
+ C0

n
log

1

min( 1
2,d(x, L))

(x ∈ X),

whered(x, A) denotes the distance from a point x to a set A⊂ C.
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One should compare Theorem 1 with estimates for unweighted points due to Pom-
merenke [Po65], Blatt and Mhaskar [BM93], Monterie [Mo95, Part A], Korevaar and
Monterie [KM98, Remark 5.1], and Kloke [Kl84, Satz 3.5], respectively. See also the
papers of Korevaar and Kortram [KK83] as well as Korevaar and Monterie [KM99] con-
taining a discussion of when in the unweighted case the logn/n-term can be replaced by
1/n. For potential estimates for Fekete points in higher dimensions we refer to Korevaar
and Monterie [KM98] as well as [G¨o98].

The proof of Theorem 1 is based on the following separation result, which is of
independent interest. In the unweighted case (f = 0), it already appears in the paper of
Kövari and Pommerenke [KP68, Theorem 1] (cf. a similar estimate in [Kl84, Satz 3.3]).

Theorem 2. There exist constants C0 > 0, γ0 > 0 depending only on X, L , and f,
such that for all n≥ 2:

min
1≤i< j≤n

|x(n)i − x(n)j | ≥
C0

n1/γ0
.

Remark. The proof of Theorem 2 together with well-known facts concerning the
boundary behavior of harmonic functions actually reveals the following: Suppose that
L is a smooth curve or arc of classC1+ε.

(i) If f is Hölder continuous with H¨older constantβ (1 > β > 0), then one can
chooseγ0 = β in the case of a curve andγ0 = min(β, 1

2) in the case of an arc.
(ii) If f is smooth of classC1+ε, then

min
1≤i≤n

i 6= j

|x(n)i − x(n)j | ≥ C0 dj,n,

wheredj,n denotes the distance of a pointx(n)j from the level curveL1/n (see (3))
andC0 = C0( f, L , X). In particular, ifL = [−1,1], this yields an estimate in
the form of Lemma 2.15 in [DKM98] and, consequently (see [DKM98, p. 413]),
µ f has bounded density with respect to the arcsine distribution on [−1,1].

To state the discrepancy results we need to introduce some notions and definitions.
Denote by1 the exterior of the closed unit disk with respect toC and consider

8 : ext(L) → 1 mapping the exterior ofL (with respect toC) conformally and
univalently onto1 with standard normalization

8(∞) = ∞, 8′(∞) := lim
z→∞

8(z)

z
> 0.

Consider the level lines

Lr := {z ∈ C: |8(z)| = 1+ r } (r > 0),(3)

and choose12 ≥ r0 > 0 such thatLr0 ⊂ X.
Finally, denote byµL = µL ,C the equilibrium distribution ofL (with respect toC),

which is the unit measure onL minimizing the Gauss–Frostman energy in the special
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case of the external fieldf being identically equal to 0 andk being the logarithmic
kernel.

Now, suppose thatL is a quasiconformal curve or arc inX, which by definition is
the image of the unit circle or of a subarc of the unit circle under a quasiconformal
mapping of the extended complex planeC onto itself (see the standard work [Ah66] for
the definition of a quasiconformal mapping).

The following metric characterization (see [LV71, p. 100]) shows that, in particular,
convex curves, curves of bounded variation without cusps and rectifiable Jordan curves
which have locally the same order of arc- and chord-length are quasiconformal.

A Jordan curve0 ⊂ C is quasiconformal if and only if there is a c≥ 1 such that for
all z1, z2 ∈ 0, z1 6= z2:

min(diam(0(z1, z2),diam(0(z2, z1)) ≤ c|z1− z2|,

where0(z1, z2), 0(z2, z1) denote the two subarcs of0 having endpoints z1, z2.

We now want to formulate a corresponding discrepancy estimate. For two (unit) mea-
suresµ andν on L we call

D[µ− ν] := sup{|µ(l )− ν(l )| : l a subarc ofL}

thediscrepancybetweenµ andν.
A connection between double-sided bounds for logarithmic potentials and discrepancy

on quasiconformal curves was given by Andrievskii and Blatt. Analogous results related
to Green potentials were obtained by the first author of this paper in his PhD thesis. We
combine the statements of these results in the following:

Theorem ([AB97, Theorem 1], [G¨o98, Satz 4.2.1]). Let L be a quasiconformal curve
or arc. Letµ be a unit measure on L and suppose that c andρ are positive constants
such that, for all subarcs l of L:

µ(l ) ≤ c(µL(l ))
ρ.(4)

Then there exist positive constantsτ and c0, depending only on c, ρ, X, and L, such
that, for all unit measuresν on L and all0< r ≤ r0:

D[µ− ν] ≤ c0(ε(r ) log(1/r )+ r τ ),(5)

where

ε(r ) = ε(r, µ, ν) := sup
z∈Lr

|kµ(z)− kν(z)|.

By Theorem 1 the quantityε(r, µ f , µFn) can be estimated as follows. Since for 0<
r ≤ r0, there holds

c1r
2 ≤ d(x, L) (x ∈ Lr ),(6)
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with c1 > 0 independent ofr [ABD95, Corollary 2.7], it follows that

sup
z∈Lr

|kµ f (z)− kµFn
(z)| ≤ C0

logn

n
+ C0

n
log

1

r
(0< r ≤ r0).

Inserting this estimate into (5) one can deduce:

Theorem 3. Suppose L is a quasiconformal curve or arc. Then there exists a constant
C0 > 0 such that, for all n ≥ 2:

D[µ f − µFn ] ≤ C0
(logn)2

n
.

In the unweighted case this statement coincides with those of Andrievskii and Blatt
for Fekete points [AB97, Theorem 3] and the first author for Tsuji points. But it also
generalizes these results to Fekete and Tsuji points defined for more general sets. More
precisely, ifK is a compact subset of a quasiconformal curveL and such that the equi-
librium potential is Hölder continuous in a neighborhood ofL, then for the unweighted
extremal points forK , a discrepancy estimate of orderO((logn)2/n) holds. In fact,
such points can be interpreted as weighted extremal points under the influence of a
Hölder continuous external field that coincides with the equilibrium potential onK and
is smaller onL\K . A particularly interesting case is whenK consists of a finite number
of mutually disjoint quasiconformal arcs.

Finally, note that Kleiner uses an approach contrary to ours: He first derives a discrep-
ancy estimate of orderO(logn/

√
n) and from this he obtains the potential estimates.

3. Proofs

For the proofs of our estimates for weighted extremal points we may without loss of
generality assume that the constantcf is equal to 0 and thusf = kµ f on the support
of µ f . Indeed, for every constantc we haveµ f+c = µ f , and the extremal points also
remain unchanged when adding in (2) a constant tof.

Occasionally we will use that

k(x, y) = log
1

|x − y| − h(x, y) (x, y ∈ X),

with a functionh harmonic in both variables.
For a Jordan curve or arc0, we denote by ext(0) the domain exterior to0 with respect

to C. In addition, if0 is a curve, then int(0) stands for the domain interior to0.
Let C0 denote a positive constant depending at most onX, L, and f, possibly different

at different occurrences. The numbersγ0, γ1, . . . will be positive numbers depending
only on X, L, and f . For convenience, when dealing with the extremal points, we omit
the upper indexn and writexi instead ofx(n)i .

The proofs will be partly based on properties of the modulus of continuity of the
solution to certain Dirichlet problems in terms of the modulus of continuity of the
boundary values.
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Here, we refer to a result of Johnston [Jo80, Corollary 3] that for our purposes we
want to formulate in the following way:

Lemma. Suppose that G is a simply connected, bounded domain. If u is a function
continuous onG, harmonic in G, and Hölder continuous on∂G, then u is Ḧolder
continuous onG.

By means of an inversionz 7→ 1/(z−z0) this result can also be formulated for simply
connected domains inC containing the point at infinity and such that the complement
has nonempty interior.

We will make use of the fact that this lemma is actually rather of a local character.
More precisely, we have:

Lemma 1. If for a neighborhood U of the Jordan curve or arc L, u is continuous in
U , harmonic in U\L, and Hölder continuous on L, then u is Ḧolder continuous in a
neighborhood of L.

Proof. Without loss of generality we may assumeU to be bounded and thatu is
harmonic even in a neighborhood of∂U . We want to show that forx ∈ U andy ∈ U
there holds

|u(x)− u(y)| ≤ C0|x − y|γ0.

Here, it suffices to consider only the case thatx ∈ L. To justify this, letδ > 0 and
consider the modulus of continuity

ω(δ) := sup
|z−ζ |≤δ
z,ζ∈U

|u(z)− u(ζ )|.

Let z, ζ ∈ U be such thatω(δ) = |u(z)− u(ζ )|. Sets := min(d(z, L ∪ ∂U ),d(ζ, L ∪
∂U )), says= |ζ − ζ ∗| with ζ ∗ ∈ L ∪ ∂U . If s> 0, consider the auxiliary function

h(ξ) := u(z+ sξ)− u(ζ + sξ)

|u(z)− u(ζ )| (ξ ∈ D).

This function is harmonic in the open unit diskD, continuous and in modulus bounded
by 1 onD. By the mean value principle,

1= |h(0)| =
∣∣∣∣ 1

2π

∫ 2π

0
h(0+ sei θ ) dθ

∣∣∣∣ ≤ 1

2π

∫ 2π

0
|h(0+ sei θ )| dθ ≤ 1.

Thus,|h| = 1 on∂D and, in particular,

|u(z− ζ + ζ ∗)− u(ζ ∗)| = |u(z)− u(ζ )|.

This equality trivially also holds in the case thats= 0. Now,ζ ∗ is a point onL ∪∂U and
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z− ζ + ζ ∗ a point fromU . It remains to note that we have assumedu to be harmonic in
a neighborhood of∂U . Thus, it suffices to consider onlyx ∈ L.

Now that we have reduced our problem we first consider the case whenL is a curve. Let
x ∈ L andy ∈ ext(L)∩U . Denote byuµL the logarithmic potential of the equilibrium dis-
tribution of L with respect toC. For the so-called Robin constantVL = −log cap(L ,C),
we have thatuµL = VL on L anduµL < VL in ext(L). Now, denoting byhu the solution
to the Dirichlet problem in ext(L) with boundary valuesu on L, the maximum principle
yields that for a sufficiently large constantC0 > 0:

hu − C0 (VL − uµL ) ≤ u ≤ hu + C0(VL − uµL ) in U ∩ ext(L).

But hu is Hölder continuous by the lemma of Johnston, and it is well known thatuµL is
Hölder continuous inU with exponent12 (this follows, e.g., from (6)). Thus,

|u(x)− u(y)| ≤ C0|uµL (y)− VL | + C0|x − y|γ1 ≤ C0|x − y|γ1.

If, however,y ∈ int(L) ∩ U , then one may use a suitable inversionz 7→ 1/(z− z0) to
transform the problem to the situation that we just dealt with.

Suppose now thatL is an arc. Denote byz1, z2 its endpoints. Choose a closed proper
subarcL1 of L containingz1 and consider a simply connected domainG containing
L\{z2} such thatL ∩ ∂G = {z2} andG∗ := G\L is simply connected. Then choose
a Hölder continuous continuationu∗ of u to ∂G∗ and denote byhu∗ the solution to
the Dirichlet problem inG∗ with these boundary valuesu∗. Then, by the maximum
principle, if C0 is chosen sufficiently large,hu∗ + C0(VL1 − uµL1

) will be a Hölder

continuous majorant foru in G∗ and hu∗ − C0(VL1 − uµL1
) will be a minorant. For

x ∈ L1 one can now reason as in the case of a curve. Ifx ∈ L2 := L\L1, a similar
construction leads to the desired estimate.

We do not dwell on how the H¨older exponents of the solutions to the Dirichlet problem
depend on the H¨older exponents of the boundary values. For a discussion, see [Jo80],
and [An88], [An90a] concerning quasiconformal curves and arcs.

Lemma 2. If f is Hölder continuous on L, then the potential kµ f is Hölder continuous
in a neighborhood of L.

Proof. For abbreviation, setu := kµ f . By Lemma 1, it suffices to show thatu is Hölder
continuous onL, i.e.,

|u(x)− u(y)| ≤ c0 |x − y|γ (x, y ∈ L),(7)

with c0, γ > 0. Let x, y ∈ L. Sinceu coincides with the H¨older continuous function
f on Sf := supp(µ f ), it is enough to establish (7) fory /∈ Sf . In addition, reasoning as
in the proof of Lemma 1, where it was shown that (roughly speaking) the modulus of
continuity is attained on the boundary of the region of harmonicity, we see that it suffices
to prove (7) forx ∈ Sf only.
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Let r := d(y, Sf ) and choosey∗ ∈ Sf such thatr = |y− y∗|. If we denote byβ1 the
Hölder exponent off on L, then

|u(x)− u(y)| ≤ C0|x − y∗|β1 + |u(y)− u(y∗)| ≤ C02β1 |x − y|β1 + |u(y)− u(y∗)|.

Therefore, it is enough to prove (7) withx replaced byy∗.
Now that we have reduced our problem, letÄ be a bounded (simply or doubly con-

nected) domain such thatL ⊂ Ä ⊂ X. We may certainly assume thatr is so small that
{z: |z− y∗| ≤ 2r } ⊂ Ä. Denote bygf the solution to the Dirichlet problem inÄ\L
with boundary valuesf on L andu on ∂Ä. By Lemma 1,gf is Hölder continuous in a
neighborhood ofL with Hölder exponentβ2 > 0. According to the maximum principle,
u ≥ gf in Ä, and, consequently,

u(y∗) = gf (y
∗) ≤ u(z)+ C0|y∗ − z|β2 (z ∈ Ä).(8)

In particular, this estimate holds forz = y. In what follows we establish the desired
reverse inequality.

Sinceu is harmonic in{z: |z− y| < r }:

u(y) = 1

π r 2

∫
{|z−y|<r }

u(z) dm2(z),

wherem2 denotes the planar Lebesgue measure. Sinceu is superharmonic, the mean-
value inequality property implies that

u(y∗) ≥ 1

4π r 2

∫
{|z−y∗|<2r }

u(z) dm2(z).

Thus, taking into account the estimate (8):

u(y∗) ≥ 4πr 2− πr 2

4πr 2
(u(y∗)− C0r

β2)+ πr 2

4πr 2
u(y),

which implies that

u(y∗) ≥ u(y)− C0r
β2 = u(y)− C0|y− y∗|β2.

The proof of Lemma 2 is complete.

Lemma 2 allows us to henceforth assume thatL is a curve. In fact, ifL is an arc,
then it can be continued to a Jordan curveL̃ lying in X, and one may extendf Hölder
continuously to a functionf̃ on L̃ such that f̃ < kµ f on L̃\L. Then by the uniqueness
result [ST97, Theorems I.3.3 and II.5.12],µ f = µ f̃ . But extremal points forf on L are

extremal points forf̃ on L̃ and vice versa, as follows from:

Lemma 3. All extremal points x(n)i are contained in the set

{z ∈ L: kµ f (z) = cf + f (z)}.
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Thatkµ f (x
(n)
i ) ≥ cf + f (x(n)i ) is clear, since the extremal points are supposed to lie

on L (see (1)). In the case of logarithmic potentials, the reverse inequality is given in
[ST97, Theorem III.1.2]. We will present a sketch of a proof in the case thatX 6= C at
the end of this paper.

Proof of Theorem 2. Suppose first thatX 6= C. Then the kernelk(·, ·) is given by
the Green functiong(·, ·). Making use of a conformal mapping ofX onto the unit disk
D = {z: |z| < 1} and taking into account the invariance of the Green function under
such transformations in both arguments we may without loss of generality assume that
X is the unit disk. For the Green function ofD we have the formula

g(z, ζ ) = log

∣∣∣∣1− zζ̄

z− ζ
∣∣∣∣ (z, ζ ∈ D).

Fix 1≤ j ≤ n and consider the rational function

qj (z) :=
n∏

k=1
k 6= j

z− xk

1− zxk

/
n∏

k=1
k 6= j

xj − xk

1− xj xk
(z ∈ C),

having poles exactly in the pointsxk/|xk|2, k 6= j . From the extremal property of the
weighted extremal points:

|qj (z)| = exp

 n∑
k=1
k 6= j

g(xj , xk)−
n∑

k=1
k 6= j

g(z, xk)

 ≤ exp{n( f (xj )− f (z))} (z ∈ L).

Denote byG(·, ·) the Green function of the exterior ext(L) of the curveL with respect
to C. Denote byhf (z) the solution to the Dirichlet problem in ext(L) with boundary
values f . The function

log |qj (z)| −
n∑

k=1
k 6= j

G

(
z,

xk

|xk|2
)
− n( f (xj )− hf (z))

is subharmonic (even harmonic) in ext(L)with boundary values≤ 0 onL. Consequently,
this function is nonpositive in ext(L) which implies that

|qj (z)| ≤ exp

 n∑
k=1
k 6= j

G

(
z,

xk

|xk|2
)
+ n( f (xj )− hf (z))

 (z ∈ ext(L)).

Sincehf (z) and the functionsG(z, xk/|xk|2) are Hölder continuous in a neighborhood
of L relative toext(L) with the same H¨older constant and same H¨older exponentγ2 we
find that

|qj (z)| ≤ exp

{
n

C0

n

}
≤ C0 (z ∈ ext(L), |z− xj | ≤ 1/n1/γ2).
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Similarly,

|qj (z)| ≤ C0 (z ∈ int(L), |z− xj | ≤ 1/n1/γ3).

Thus, settingγ4 := min(γ2, γ3), then forζ with |xj − ζ | ≤ 1/(2n1/γ4):

|q′j (ζ )| ≤
1

2π

∫
|z−xj |=1/n1/γ4

|qj (z)|
|z− ζ |2 |dz| ≤ C0 n1/γ4.

Now, letk 6= j . If |xj − xk| ≥ 1/(2n1/γ4) nothing is to be proved. Otherwise,|xj − xk| <
1/(2n1/γ4) and (using the trick in [KP68, p. 71]) it follows that

1= |qj (xj )− qj (xk)| =
∣∣∣∣∣
∫

[xj ,xk]
q′j (ζ ) dζ

∣∣∣∣∣ ≤ C0|xj − xk|n1/γ4.

This is the assertion in the caseX 6= C.
The proof in the caseX = C follows the same lines. However, instead of the rational

functionqj one has to consider the polynomials

pj (z) =
n∏

k=1
k 6= j

z− xk

xj − xk
.

The details are left to the reader.

Proof of Theorem 1. From the minimality of the weighted extremal points it follows
that for all i = 1, . . . ,n:

2
n∑

j=1
j 6=i

k(xi , xj )− 2n f (xi ) ≤ 2
n∑

j=1
j 6=i

k(x, xj )− 2n f (x) (x ∈ L).

Adding thesen inequalities and denoting by

I ∗(µFn) := I ∗f (µFn)+
2

n

n∑
i=1

f (xi )

the unweighted discrete energy ofµn, we obtain that

I ∗(µFn)−
∫

f dµFn ≤
n− 1

n
kµFn

(x)− f (x) ≤ kµFn
(x)− f (x)+C0

n
(x ∈ L).(9)

Lower Potential Bounds From Energy Estimates∗

Let r > 0 be sufficiently small and denote byδr
xi

the unit mass, uniformly spread on the
circle of radiusr , centered atxi . Setµr

n := (1/n)
∑n

i=1 δ
r
xi

.

∗ One of the referees has pointed out that the following technique of sweeping to small circles is due to
Tsuji and further developed by Siciak.



Potential and Discrepancy Estimates for Weighted Extremal Points 551

By Lemma 2,

|kµ f (x)− kµ f (xi )| ≤ C0r
γ5 (|x − xi | ≤ r, i = 1, . . . ,n),(10)

and, consequently, ∣∣∣∣∫ kµ f dµFn −
∫

kµ f dµ
r
n

∣∣∣∣ ≤ C0r
γ5.

From the superharmonicity of the kernelk(·, ·) it follows that

I ∗(µFn) ≥
1

n2

n∑
i, j=1

j 6=i

∫ ∫
k(x, y) dδr

xi
(x) dδr

xj
(y)

≥
∫ ∫

k(x, y) dµr
n(x)dµr

n(y)−
C0

n
log

1

r
.

The energy principle [ST97, Lemma I.1.8, Theorem II.5.6] implies that∫ ∫
k(x, y) dµr

n(x)dµr
n(y)+

∫ ∫
k(x, y) dµ f (x)dµ f (y)

≥ 2
∫ ∫

k(x, y) dµ f (x)dµr
n(y).

Combining the last three inequalities and insertingr = 1/n1/γ5 gives

I ∗(µFn)−
∫

kµ f dµFn ≥
∫

kµ f dµFn −
∫

kµ f dµ f − C0
logn

n
.

Taking into account (9) as well as∫
kµ f dµFn −

∫
f dµFn = 0

(see Lemma 3) and denoting byεn the residue

εn :=
∫

kµ f dµFn −
∫

kµ f dµ f ,

we thus obtain the lower potential bound

kµFn
(x)− kµ f (x) = kµFn

(x)− f (x) ≥ εn − C0
logn

n
(x ∈ supp(µ f )).(11)

If we denote byν the equilibrium measure for supp(µ f ) with external field 0, then for
some constantc, kν ≤ c in X with equalityµ f -almost-everywhere. Now, (11) implies

0≥
∫

kν dµFn −
∫

kν dµ f =
∫

kµFn
dν −

∫
kµ f dν ≥ εn − C0

logn

n
.(12)

Therefore, the principle of domination is applicable so that the estimate (11) holds in all
of X:

kµFn
(x)− kµ f (x) ≥ εn − C0

logn

n
(x ∈ X).(13)
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Upper Potential Bounds

To some extent we follow an idea of Dahlberg [Da78]. Because of Theorem 2, one can
determine a constant 1> c0 > 0 so that

min
i, j=1,...,n

i 6= j

|xj − xi | ≥ 4c0/n1/γ0 ( j = 1, . . . ,n, n ≥ 2).(14)

Assume without loss of generality thatc0 ≤ R0/2 for alln ≥ 2, where 0< 4R0 is chosen
smaller than the distance fromL to the boundary ofX. For 1≤ i ≤ n we consider the
function

hi (x) := 1

n

n∑
j=1
j 6=i

k(x, xj ) (x ∈ X).(15)

The norm

|∇hi | :=
2∑

j=1

|∂hi /∂yj |

of its first partial derivatives satisfies the estimate

|∇hi (x)| ≤ C0

n∑
k=1
k 6=i

1

n

1

|x − xk| + C0 (x ∈ X, d(x, L) ≤ R0).(16)

Taking into account (14), it follows that

sup
|x−xi |≤c0/n1/γ0

|∇hi (x)| ≤ C0n1/γ0.(17)

Next, we claim that

kµ f (xi )+ εn + C0

n
≥ hi (xi ) ≥ kµ f (xi )+ εn − C0

logn

n
.(18)

Indeed, from (1) and the minimizing property of the weighted extremal points we have

hi (xi ) ≤ kµ f (xi )+ hi (x)− kµ f (x) (x ∈ supp(µ f )),

so that after integrating with respect toµ f :

hi (xi ) ≤ kµ f (xi )+
∫
(hi − kµ f ) dµ f ≤ kµ f (xi )+ εn + C0

n
.

On the other hand, for|x− xi | = 1/n1/γ6, whereγ6 := min(γ0, γ5), it follows from (10)
and (13) that

hi (x) = kµFn
(x)− 1

n
log

1

|x − xi | +
1

n
h(x, xi )

≥ kµ f (x)+ εn − C0
logn

n
− C0

1

n

≥ kµ f (xi )+ εn − C0
logn

n
− C0

1

n
.



Potential and Discrepancy Estimates for Weighted Extremal Points 553

Hence, by the mean-value inequality property for superharmonic functions:

hi (xi ) ≥ kµ f (xi )+ εn − C0
logn

n
.

Let 0< α ≤ c0/n1+1/γ6 andx be such that|x − xi | = α. From (17) it follows that

|hi (x)− hi (xi )| ≤ C0α sup
|y−xi |≤α

|∇hi (y)| ≤ C0αn1/γ0 ≤ C0

n
.(19)

Since

hi (y) = kµFn
(y)− log(1/α)

n
+ 1

n
h(xi , y) (y : |y− xi | = α ),

it follows from (18) and (19) that

|kµFn
(x)− kµ f (xi )− εn| ≤ C0

(
log(1/α)

n
+ logn

n

)
≤ C0

log(1/α)

n
.

Hence, taking into account (10):

|kµFn
(x)− kµ f (x)− εn| ≤ C0

(
1

n
+ log(1/α)

n

)
≤ C0

log(1/α)

n
.

We have shown that

kµFn
(x)− kµ f (x)− εn ≤ C0

log(1/α)

n

(
x ∈

n⋃
i=1

{y : |y− xi | = α}
)
.

Reasoning as in (12) withν replaced by the unweighted equilibrium measure of the
union of the circles{y : |y− xi | = α} we find that

εn ≥ −C0
log(1/α)

n
.(20)

Therefore, the maximum principle applied to the subharmonic functionkµFn
−kµ f yields

kµFn
(x)− kµ f (x) ≤ εn + C0

log(1/α)

n

(
x ∈

n⋂
i=1

{y ∈ X : |y− xi | ≥ α}
)
.(21)

In addition, by virtue of (12) and (20):

|εn| ≤ C0
logn

n
.(22)

The assertion of Theorem 1 in the case that d(x, L) =: α ≤ c0/n1+1/γ6 follows from
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(13), (21), and (22). In the other case, the assertion also follows from (21), namely, by
merely insertingα := c0/n1+1/γ6.

Proof of Theorem 3. The assertion of Theorem 3 follows by insertingµ = µ f , ν =
µFn as well as the double-sided potential bounds of Theorem 1 into (5) and choosing
r = n−1/τ . However, it has to be checked that an estimate of the form (4) holds.

For 0 < r ≤ r0 denote byµ(r )f the balayage measure ofµ f to Lr , i.e.,µ(r )f is the
unique unit measure onLr satisfying

k
µ
(r )
f
= kµ f on ext(Lr ) ∩ X.(23)

It is well known that asr → 0+, the measuresµ(r )f converge toµ f in the weak-star
sense.

Now, letl be an arbitrary subarc ofL with endpoints, say,z1 andz2. Write8(zj ) = ei θj,
j = 1,2, where 0≤ θ1 < θ2 < 2π . Since the equilibrium measureµL on L is
given by the image measure of the normalized arclength on∂D under8−1, we have
µL(l ) = (θ2 − θ1)/(2π). Thus, there is no loss in generality, if we henceforth assume
thatθ2− θ1 ≤ π/2. Set

A(l ) := {z ∈ ext(L) : 8(z) = (1+ r )ei θ , θ1 ≤ θ ≤ θ2, 0≤ r ≤ r0}.

Then lr := A(l ) ∩ Lr is a subarc ofLr , and we denote its endpoints byz(r )1 andz(r )2 .
Sinceµ(r )f (lr )→ µ f (l ), we have in some sense reduced our problem to the estimation
of a measure on a smooth (even analytic) curve. Hence, we can use the representation
[ST97, Theorem II.1.5] to find that

µ
(r )
f (lr ) = −

1

2π

∫
lr

∂

∂n+
kµ f ds− 1

2π

∫
lr

∂

∂n−
k
µ
(r )
f

ds.(24)

Here,∂/∂n+ (∂/∂n−, respectively) denotes differentiation in the direction of the outward
unit normal (inward unit normal, respectively), and we have made use of (23). Note that
the representation [ST97, Theorem II.1.5] is stated only for logarithmic potentials, but is
of course valid also for Green potentials, since these potentials differ only by a harmonic
function in a neighborhood of the sets under consideration.

The first integral in (24) can be estimated in the following way. Consider the four
annular sectors

Sj :=
{
w : w = (1+ r )ei θ , 0≤ θ − j

π

2
≤ π, 0≤ r ≤ r0

}
( j = 0,1,2,3).

Since 0≤ θ2 − θ1 ≤ π/2, both,θ1 andθ2, will be in the parameter set of one of these
sectors. For convenience, assume that this isS0.

Now, Q0 := 8−1(int(S0)) is a simply connected region bounded by a quasiconformal
curve. By a result of Gehring and Martio [GM83, Cor. 2.3], Privaloff’s theorem is valid
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in such domains: The harmonic conjugatek̃µ f of kµ f in Q0 is also Hölder continuous,
even with the same H¨older exponent as that ofkµ f .

Thus, denoting by∂/∂τ tangential differentiation and using the Cauchy–Riemann
conditions:∣∣∣∣ 1

2π

∫
lr

∂

∂n+
kµ f ds

∣∣∣∣ = ∣∣∣∣ 1

2π

∫
lr

∂

∂τ
k̃µ f ds

∣∣∣∣ = |̃kµ f (z
(r )
2 )− k̃µ f (z

(r )
1 )|(25)

≤ C0|z(r )2 − z(r )1 |γ7.

Now, we turn to an estimation of the second integral in (24). The mapping8 can be
extended to aK 2-quasiconformal mapping of the extended complex plane onto itself.
In particular, the setsLr are level lines of thisK 2-quasiconformal mapping. The afore-
mentioned Privaloff-type result of Gehring and Martio states that the harmonic conjugates
k̃
µ
(r )
f

of k
µ
(r )
f

in int(Lr ) are Hölder continous with the same exponent as that ofk
µ
(r )
f

and

the Hölder constant depending only on that ofk
µ
(r )
f

and onK 2. But the Hölder exponent

of k
µ
(r )
f

in int(Lr ) depends only on that of the boundary valueskµ f on Lr , and the H¨older

constant depends only on that of the boundary values and on the diameter ofLr (see
[Jo80, Cor. 3]). We have thus seen that it is possible to choose all H¨older parameters
independent ofr .

Now, as in the previous reasoning,∣∣∣∣ 1

2π

∫
lr

∂

∂n+
kµ f ds

∣∣∣∣ ≤ C0|z(r )2 − z(r )1 |γ8.(26)

Inserting (25) and (26) into (24), settingγ9 := min(γ7, γ8) and taking the limit as
r → 0+ yields

µ f (l ) ≤ C0|z1− z2|γ9 ≤ C0(µL(l ))
γ10,

where the last inequality follows, for instance, from a combination of [ABD95, Theo-
rems 2.1 and 4.2].

Sketch of the Proof of Lemma 3. Let 1 ≤ i ≤ n and consider the functionhi as
defined in (15). Since we have assumed thatcf = 0 so thatkµ f coincides withf on the
support ofµ f :

hi (x)− f (x) ≥ inf
z∈L
(hi (z)− f (z))+ kµ f (x)− f (x) (x ∈ supp(µ f )).(27)

Reasoning as in (12) we deduce that

inf
z∈L
(hi (z)− f (z)) ≤ 0.

Therefore, after a cancellation off (x) on both sides of (27), we may apply the principle
of domination to obtain that

hi (x) ≥ inf
z∈L
(hi (z)− f (z))+ kµ f (x) (x ∈ X).
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In particular,

hi (xi )− f (xi )− inf
z∈L
(hi (z)− f (z)) ≥ kµ f (xi )− f (xi ).(28)

But the left-hand side of inequality (28) is equal to zero by the definition of the extremal
points.
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