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ABSTRACT. Complex function theory and its close companion - potential theory 
- provide a wealth of tools for analyzing orthogonal polynomials and orthogonal 
expansions. This paper is designed to show how the complex perspective leads to 
insights on the behavior of orthogonal polynomials. In particular, we discuss the 
location of zeros and the growth of orthogonal polynomials in the complex plane. 
For some of the basic results we provide proofs that are not typically found in the 
standard literature on orthogonal polynomials. 

1 Introduction 

That the theory of complex variables can provide deeper understanding and use­
ful techniques for analyzing real-variable problems should not be surprising to the 
reader. The computation of (real) integrals via Cauchy's Residue theorem and the 
analysis of power series are but two instances where the broader view from the 
complex plane C is an invaluable aid. Potential theory in the plane, which is a 
blend of real and complex analysis, provides an even greater resource for attacking 
"real problems"; particularly the behavior of orthogonal polynomials and orthogo­
nal expansions. For example, the analysis of polynomials orthogonal on the whole 
real line R with respect to an exponential weight took a quantum step forward 
when x was replaced by z and potential theoretic arguments were introduced (d. 
[MS:I.],[LS],[R],[GR1]). 

Our goal is to illustrate how complex and potential theoretic results can be used 
to analyze orthogonal polynomials and orthogonal expansions. We assume that the 
reader has little background in potential theory; consequently we introduce some 
basic facts from this subject as well as provide references for further study. In 
Sections 2 and 5 we discuss the location and asymptotic behavior of the zeros of 
orthogonal polynomials. Bounds for the modulus of these polynomials are considered 
in Sections 6 and 7. 
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Throughout, fL denotes a finite, positive measure on the Borel subsets of the 
complex plane C. We assume that 

, I S = S(fL) := SUPP(fL) 
'I 

is compact and contains infinitely many points. 
The measure fL gives rise to the inner product 

(f,g):= Jf(z)g(z)dfL (1.1) 

for functions f, g E L 2 (fL). Since S is infinite, the monomials 1, z, . .. ,zn are linearly 
independent in L 2 (fL) for every n 2: O. Hence, by the Gram-Schmidt orthogonaliza­
tion process, there exist unique polynomials 

Pn(Z) = Pn(ZjfL) = In zn +... E Pn, In> 0, (1.2) 

satisfying 

(Pm,Pn) = fim,n, m,n = 0,1, ... , 

where fim,n = 0 if m f:. n, fim,m = 1, and Pn denotes the collection of all polynomials 
(with complex coefficients) having degree at most n. 

As we shall see, several basic properties of the polynomials Pn(z) are simple con­
sequences of the following extremal property which characterizes orthogonal poly­
nomials. 

Theorem 1.1. The polynomial 

1 
Pn(z) := -Pn(Zj fL) = zn +... 

In 

is the unique monic polynomial of degree n of minimal L2 (fL)-norm; that is, P n 
solves the extremal problem 

The proof of this result is straightforward and can be found in [Sz,§2.2]. 
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2 Basic Properties of Zeros 

The zeros of orthogonal polynomials play an important role in quadrature formulae, 
interpolation theory, spectral theory for certain linear operators, and the design of 
digital filters. Thus it is fundamental to ask: What can be said about the location (in 
the complex plane) of the n zeros of Pn(z; Jl)? As a simple consequence of Theorem 
1.1 we shall prove the following result due to Fejer: 

Theorem 2.1. All the zeros of Pn(z; Jl) lie in the convex hull of the support S = 
.supp(Jl). 

By the convex hull Co(S) of S we mean the intersection of all closed half-planes 
containing S. 

Proof of Theorem 2.1. It is more convenient to work with the monic orthogonal 
polynomial Pn = Pnl,n which has the same zeros as Pn. 

Suppose, to the contrary, that Pn(zo) = 0 with Zo (j. Co(S). Write Pn(z) = 
(z - zo)q(z), where q E Pn- l is monic. Since Zo (j. Co(S), there exists a line £­
separating Zo and S. Let Zo be the orthogonal projection of Zo on £- (see Figure 1). 
Then 

Iz - zol < Iz - zol v z E S. 

Hence 

I(z - zo)q(z)1 < I(z - zo)q(z)1 = IPn(z)1 

for all z E S\ {zeros of q}. Since S = supp(Jl) is infinite, it follows that 

JI(z - io)q(zWdJl < JIPn(zWdJl, 

which contradicts Theorem 1.1. • 

Figure 1 
f-

A nice treatment of a generalized version of Theorem 2.1 can be found in the 
text by P. Davis [D,§10.2]. 

As the next example illustrates, the zeros of Pn do not, in general, all lie on S 
(even when S C R). 
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Figure 2 

Example 2.A. Let d/-L = w(x)dx, where w( x) is a positive, even, continuous function 
on [-2,-1] U [1,2]. Then Theorem 2.1 asserts that all the zeros of Pn(z;/-L) lie in 
Co(S) = [-2,2]. Now since w is even, it follows from the uniqueness property of 
orthonormal polynomials that PZn+l (z; /-L) is an odd function for each n = 0,1, .... 
Thus PZn+l vanishes at z = 0 ¢ S. 

Except when Co(S) is an interval, we can strengthen Theorem 2.1 by asserting 
that the zeros of Pn lie strictly inside the convex hull of S. 

Theorem 2.2. IjCo(S(/-L)) is not a line segment, then all the zeros ojPn(z;/-L) lie 
in the interior ojCo(S(/-L))' 

Proof. By Theorem 2.1 we need only show that no zeros of Pn = Pn/'Yn lie on the 
boundary r of Co(S(/-L)). 

Suppose that Pn(zo) = 0 for some Zo E r. By performing a rotation and trans­
lation (see Figure 2) we assume, without loss of generality, that Zo = ro is real and 
that all the points of Co(S(/-L)) lie on or to the left of the vertical line .c through ro; 
i.e. .c is a support line for Co(S(/-L)). Write Pn(z) = (z - ro)q(z), q E Pn- b and for 
rERset 

I(r) .- JIz - r/zlq(zWd/-L 

Z= J(Izl z +r - 2r Re z)lq(zWd/-L. 

By the extremal property of Theorem 1.1, we have 

I'(ro) = J2(ro - Re z)lq(z)1 2d/-L = o. 

But ro - Re z ~ 0 for all z E S(/-L) and so 

(ro - Re z)lq(zW = 0 d/-L - a.e. 

This implies that only finitely many points of S(/-L) lie to the left of.c and, moreover, 
q must vanish in these points. Since Co(S(/-L)) is not an interval, we can therefore 
find a point eo E S(/-L) n r, eo ¢ .c, such that q(eo) = o. But then eo E r is a zero 
of Pn and the preceeding argument (with Zo replaced by eo) shows that only finitely 
many points of S(/-L) can lie in an open half-plane bounded by a support line of 
Co(S(/-L)) through eo. Thus.c contains only finitely many points of S(/-L) and so 
S(/-L) is finite, which gives the desired contradiction. 
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Figure 3 

For example, if C is the unit circle Izi = 1 and S(/L) ~ C, then Theorem 2.2 
asserts that all the zeros of Pn(z;/L) must lie in the open unit disk Izi < 1, which is 
a classical result of Szego [Sz,§11.41. 

How many zeros of Pn(z; f.L) can lie outside S? It is, of course, possible for all 
the zeros of Pn(z; f.L) to lie off of S. But, as we shall show, only a bounded number 
(independent of n) can lie on a fixed compact set exterior to S. For this purpose we 
first introduce some notation. 

With C := C U {oo}, we let Voo(S) denote the component of C\S containing 
00 (thus Voo(S) is an open, connected, unbounded set). The outer boundary of S, 
denoted by oooS, is the boundary of Voo(S), i.e. 

OooS := OVoo(S) 

(see Figure 3). Furthermore, we set 

Pc(S) := C\Voo(S), 

which is called the polynomial convex hull of S. Roughly speaking, Pc(S) is obtained 
from S by filling in all of its "holes". Since Pc(S) is a compact set that does not 
separate the plane, Runge's theorem (cf. [G, p.76]) asserts that any function f 
analytic on Pc(S) can be uniformly approximated (as closely as desired) on Pc(S) 
by polynomials. Notice also that 

S S; Pc(S) S; Co(S). 

The following lemma, implicit in the paper by Widom [Wil, will be used to 
examine the zeros of Pn(z;/L) that lie in Voo(S). 

Lemma 2.3. If E is a compact set such that En Pc(S) = 0 (i.e. E C Voo(S)), 
then there exist an integer m and an 0:, 0 < 0: < 1, with the following property. For 
any m (not necessarily distinct) points Zb" ., Zm E E, there exist Wb.' ., W m E C 
such that 

m IZ -wkl v Z E S. (2.1 ) II -- <0:<1, 
k=l Z - Zk 

Proof. We give a simple argument that is due to V. Totik. 
Assume first that E consists of a single point, say E = {OJ with 0 ¢ Pc(S). 

Then proving (2.1) is equivalent to showing that there exists a monic polynomial 
Q(z) = zm +... E Pm such that 
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v z E S. (2.2) 

With the change of variable ( = 1/z, inequality (2.2) becomes 

v (E S-1 := {(I 1/( E S}. (2.3) 

Since 0 ct Pc(S) it is easy to see that S-1 iscompact and that 0 ct PC(S-I). Now Q 
is monic and so (2.3) can be satisfied iff 3 qm-l E Pm-l such that 

I.e., 

1(111/( - qm-l(OI < a < 1, v (E S-I. (2.4) 

But the function 1/( is analytic on Pc(S-I), and so qm-l exists by Runge's theorem 
(the factor '(I causes no difficulty since it is bounded on S-I). 

Now we turn to the general case where E is compact and En Pc(S) = 0. By 
the first part of the proof, for each z* E E, there exist m(z*), a(z*), and Wk(Z*), 1 :s 
k :s m(z*), such that 

]) Iz ~ :k;:*) 1< a(z*) <1, v z E S. (2.5) 

It then follows, by continuity, that there exists an E-neighborhood N(z*, E) of z* 
such that whenever {ZI, . .. , Zm(z*)} C N(z*, E), we have 

~fi) Iz ~ :k;:*) 1< a(z*) <1, v z E S. 

It is now possible to complete the proof by using a compactness argument.• 

With Lemma 2.3 in hand we can easily establish the following theorem of Widom 
[Wi]. 

Theorem 2.4. If E is a closed set such that En Pc(S) = 0, then the number of 
zeros of Pn(z; J.L) on E is uniformly bounded in n. 

Proof. By Theorem 2.1, we can assume that E is compact. Let m and a be as in 
Lemma 2.3 and suppose that Pn = Pn/in has 2: m zeros in E, say ZI, .•. ,Zm' Then, 
by Lemma 2.3, 3 WI, ... ,Wm such that (2.1) holds for all z E S. Let 

so that Qn is a monic polynomial of degree n. From (2.1) we get 
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v Z E S\ { zeros of Pn }, 

and so 
2JIQnl 2dll < JIPn1 dll· 

As the last inequality contradicts Theorem 1.1, it follows that, for each n, the 
polynomial Pn(Z; Il) has fewer than m zeros on E.• 

Example 2.B. (Szego Polynomials). We use the terminology "Szego polynomials" 
to mean orthonormal polynomials Pn(z; J.1) for which S=supp(J.1) ~ C:= {z: Izi =I}. 
The zeros of these orthonormal polynomials play an important role in digital filter 
design. We consider separately the two cases S = C, S i= C. 

Case 1: S = C. Then Pc(S) = Co(S) = {z : Izi ~ I} and, by Theorem 2.2, all the 
zeros of Pn(Z; Il) lie in the open unit disk. 

In Figure 4 we have plotted the zeros of Pn(z; J.1) for n = 15 and n = 25 for 

dll(e io 
) = Isin(O/2WdO, 0 ~ 0 ~ 211". (2.6) 

Notice that these zeros appear to be approaching the unit circle C and, except near 
Z = 1, are close to being equally space in argument. 

Figure 5 shows the zeros of P15(ZjJ.1) and P25(Z;J.1) for 

dll(e iO 
) = (5/4 - cosO)dO = 11 - eio /21 2dO, 0 ~ 0 ~ 211". (2.7) 

Here the zeros seem to be approaching the circle Izi = 1/2, but again, the arguments 
of the zeros are nearly equally spaced. 

We shall see in Section 5 (d. Theorem 5.3) that the asymptotically uniform 
spacing of the arguments of the zeros of the Pn(z; J.1) is a phenomenon that can be 
proved for a large class of measures J.1 whose support is C. 

Case 2: S i= C. Again, all zeros of Pn(z;J.1) lie in Izi < 1. But now Pc(S) = Sand 
so Theorem 2.4 implies that "most zeros" of Pn (z; J.1) tend to S as n --+ 00. 

In Figure 6 we have plotted the zeros of P6(Z;Il) and PI6(Z;J.1) for 

dll(e iO 
) = Isin(O/2WdO, 0 ~ 0 ~ 11", (2.8) 

which is the restriction to the upper half-circle C+ of the measure in (2.6). Notice 
that most (in fact, all) of the zeros are approaching C+ = S, as predicted by 
Theorem 2.4. 

Figure 7 gives analogous plots for the measure that is the restriction of (2.7) to 
C+. Again, the zeros are seen to be approaching C+. 

Notice further that the distribution of the zeros in Figures 6 and 7 look very 
much alike (there is some bunching near ±1 and the zeros thin out near Z = i). In 
Section 5 we shall show that both zero distributions are, in the limit, the equilibrium 
distribution for C+. For this purpose we will utilize potential theory and norm 
comparisons with Loo (S). 
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3 Completely Regular Measures 

To obtain asymptotic results on the zeros of Pn(z; J.l) we will first compare the monic 
orthogonal polynomials Pn with minimal sup norm polynomials. Let II . lis denote Pr< 
the sup norm over S = S(J.l) and set 

tn(S):= min II zn + ... lis, n = 0, 1, ....	 (3.1 )zn+···E'Pn 

For each n 2: 0 there exists a unique monic polynomial Tn(z) = zn +... E 'Pn, called 
and 

the Chebyshev polynomial of degree n, that satisfies 

(3.2) 

Recalling Theorem 1.1, we note that Tn is just an Loo analogue of Pn and that	 Tog 

Pro' 
(3.3)	 plet< 

witl:where In is the leading coefficient of Pn(z;J.l) (d. (1.2)). We also remark that the 
zero results of Theorems 2.1 and 2.4 hold for the polynomials Tn (the same proofs 1 

apply). cont 

One advantage of working with the sup norm instead of L2 (J.l) is the fact that 
limn->oo[tn(S)j1ln always exists; this follows from the simple inequality 

Exa 

(i) a 
tm+n(S) = II Tm+n lis ~ II Tm . Tn lis ~ tm(S)tn(S), som, 

which shows that log t n ( S) is a subadditive function of n (d. [T, §III.5 D. In (ii) (
contrast, limn->oo 1~/n need not exist. 

andWe write 
(iii)

cheb(S) := lim [tn(S)]lln, (3.4)n->oo 
(iv) 

which is called the Chebyshev constant for S. From (3.3) we immediately obtain to tl 

· . f lIn 11
ImIn In 2: h (S)'	 (3.5)n->oo c eb 

Definition 3.1. The measure J.l is said to be completely regular if 
1 

lim II Pn(z; J.l) Ilsl/(n)= 1. (3.6) com}n--+(X) J1. 

cheb
In other words, for a completely regular measure, there is no essential difference 

between L2 (J.l) and Loo(S) as far as n-th root asymptotics are concerned. Thus we 
might expect that Pn and Tn have some common limiting properties. For example, 
it is easy to see that limn->oo 1~/n exists for such measures. 

Proposition 3.2. If J.l is completely regular, then 
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I· lin 11m 'Y - --:-...,...-,~--,-,-
n--+oo n - cheb (S(Jl)) . (3.7) 

Proof. From the definition of tn(S) in (3.1) we have 

tn(S) = II Tn lis ~ II Pn lis = II Pnhn lis, 
and so, from (3,6), 

I· lin < I' II pn lI.?'n _ 1
 
l~S~P'Yn - l~--+S~P [tn(S)]1/n - cheb(S)"
 

Together with (3.5), this proves (3.7). • 

~We remark that in the paper of H. Stahl and V. Totik that appears in this .. ,~ 

.~Proceedings, property (3.7) is used to define a regular measure Jl. Thus every com­ Ii. 

pletely regular measure is regular. Conversely, if Jl is regular and S(Jl) is regular
 
with respect to the Dirichlet problem for 'Doo(S(Jl)), then Jl is completely regular.
 

Although the class of completely regular measures is quite restrictive, it does
 
contain many important measures that arise in applications.
 

Example 3.A The following are examples of completely regular measures. 

(i) dJl = w dx dy over a bounded Jordan region R, where the weight w k 0) and 
some negative power of ware integrable with respect to area over R (ef. [Wa,§5.7]). 

(ii) dJl = wds, where ds is arclength over a rectifiable curve r and the weight w ~ 0 
and some negative power of ware integrable with respect to ds (d. [Wa,§5.7]). 

(iii) S(Jl) = [-1,1] and Jl' > 0 a.e. on [-1,1] (d. [EF],[ET]) . 

(iv) S(Jl) = C: jzl = 1 and limn--+oo'Y~/n = 1 (d. [LSS]); in particular, if Jl belongs 
to the Szego class, i.e. 

f21r

J log Jl'(eio)d() > -00.
 
o 

To deduce asymptotic properties of orthogonal polynomials with respect to a 
completely regular measure, we shall appeal to an alternate definition of the constant 
cheb(S) that comes from potential theory. 



376 

4 Basics from Potential Theory 

Introductions to potential theory can be found in [He], [Hi] and [T]; a more in depth 
treatment is given in [La]. Here we provide some basic facts. 

Potential theory has its origin in the following 

Electrostatics Problem. Let E c C be compact. Place a unit positive charge 
on E so that equilibrium is reached in the sense that the energy with respect to the 
logarithmic potential is minimized. 

To create a mathematical framework for this problem, we let M(E) denote 
the collection of all positive, unit Borel measures v supported on E (so that M(E) 
contains all possible distributions of charges placed on E). The logarithmic potential 
associated with v E M (E) is 

UV(z) := Jlog Iz -'- t\-ldv(t), (4.1 ) 

which is a superharmonic, lower semi-continuous function on C. The energy of such 
a potential is defined by 

I[vl := JUVdv = JJlog Iz - tl-1dv(t)dv(z). (4.2) 

Thus, the electrostatics problem involves the determination of 

V(E) := inf I[v], 
vEM(E) (4.3) 

which is called the Robin's constant for E. The logarithmic capacity of E, denoted 
by cap(E), is defined by 

cap(E) := e-V(E), (4.4) 

which is finite and nonnegative. 
A fundamental theorem from potential theory asserts that if cap(E) > 0, there 

exists a unique measure VE E M(E) such that 

I[vEl = V(E). (4.5) 

The extremal measure VE is called the equilibrium distribution for E and furnishes 
the solution to the electrostatics problem. 

Some basic facts about cap(E) and VE are: 

(i) S(VE) = SUPP(VE) ~ oooE; moreover, the set oooE\S(VE) has capacity zero. 

(ii) The conductor potential UVE(Z) satisfies UVE(Z) ~ V(E) for all z E C, with 
equality holding on E except possibly for a set of capacity zero. 

(iii) For any compact set E, 
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cap(E) = cheb(E). (4.6) 

'0",1

Assertion (iii) provides the alternate interpretation of the Chebyshev constant 
that will be especially useful for our purposes. That cheb(E) has a plausible connec­
tion with potential theory can be seen from the fact that, for any monic polynomial 
Q(z) = zn + ... E Pn, we can write 

1 1
-log-- = ljv(Q)(z) (4.7)
 
n IQ(z)1 '
 

where v(Q) is the discrete measure with mass lin at each zero of Q. 
To gain some insight into the equilibrium distribution VE we turn to the (hope­

fully) more familiar concept of a Green function. If the outer boundary BooE consists 
of analytic curves, then the Green function with pole at 00 for Doo(E) is denoted by 
gE(Z, 00) and is defined by the following three properties: 

(a) gE(Z,oo) is harmonic in Doo(E)\{oo}. 

(b) gE(Z, 00) -+ 0 as z -+ BooE, z E Doo(E). 

(c) 3 a constant V such that 

(gE(Z, 00) - log Izl) -+ V as z -+ 00. 

Using Green's formula, we can derive the identity (d. [Wa,§4.2]) 

where n denotes the exterior normal for BooE and 

AlB 
dv:= 21rBngE(t,00)!dtl. (4.8) 

The relationship between the Green function and the Conductor potential is given 
III 

Theorem 4.1. If BooE consists of finitely many analytic curves, then V = 
V(E), v= VE and 

ljVE(Z) = V(E) ­ gE(Z,oo) 
1 

log () ­
cap E gE(Z,oo). (4.9) 
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5 

It is, of course, possible to define the Green function for the outer domain of more 
general compact sets. This is done by exhausting Voo(E) by a sequence of open sets 
G1 C G2 C '" containing 00 and having analytic boundaries, and then taking 
the limit of the associated Green functions. Provided this limit is not identically 
infinite, it defines the Green function gE(Z, 00). Moreover, equation (4.9) persists in 
this general setting.
 

It is helpful to keep in mind the following two simple examples.
 

Example 4.A. Let E: Izi = R. Thencap(E) = cheb(E) = R, gE(Z, 00) = loglz/RI 
for Izi 2:: R, and dVE = ds/27rR, where ds is arclength on the circle Izi = R. Notice 
that the formula for dVE follows immediately from (4.8). 

Example 4.B. Let E = [-1,1]. Then cap(E) = cheb(E) 1/2, gE(Z,oo) = 
log Iz +vzr=T1 and 

1 dx
 
dVE = ~' x E [-1,1],


7r 1 - x 2 

which is the arcsine measure. 

Asymptotic Behavior of Zeros 

If Q is a polynomial of degree n with zeros Zr, Z2, .. . , Zn, the normalized zero distri­
bution associated with Q is defined by 

(5.1) 

where 8Zk denotes the unit point mass at Zk. 

As we shall see, the following theorem due to Blatt, Saff and Simkani [BSS] not 
only leads to asymptotic results for the zeros of certain sequences of orthogonal 
polynomials, it is useful in many other contexts. 

Theorem 5.1. Let S be a compact set with positive capacity and suppose that the 
monic polynomials Qn(z) = zn +... E Pn satisfy the following two conditions: 

(a) limsup II Qn Ilyn~ cap(S); 
n-+oo 

(b) lim v(Qn)(A) = 0 for all closed sets A contained in the (2-dimensional)n-+oo 

interior of Pc(S). 

Then, in the weak-star sense, 

V(Qn) --+ Vs as n -+ 00, (5.2) 
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1 the (2-dimensional) 

(5.2) 

where Vs is the equilibrium distribution for S. 

By (5.2) we mean that, for all continuous functions f on C having compact 
support, 

lim jfdv(Qn) = jfdvs.n-+oo 

~ssumption (a) states that the Loo norms of the Qn are asymptotically minimal 
(recall (3.4) and (4.6)), and (b) means that only o(n) zeros of Qn can lie on a 
compact subset of int(Pc(S)). 

The proof of Theorem 5.1 proceeds roughly along the following lines. First one 
shows that assumption (a) implies 

lim v(Qn)(B) = 0 V Be 'Doo(S), B closed.n-+oo 

This fact together with assumption (b) implies that any limit measure of the v(Qn)'s 
is supported on oooS (which is the case for the equilibrium measure vs). Next, if v* 
is any limit measure of {v(Qn)}f, one can use assumption (a), the representation 
(4.7), and the minimum principle for superharmonic functions to prove that 

• 1 
U" (z) :$ log cap(S) = V(S) V z E oooS. (5.3) 

Finally, on integrating this last inequality with respect to v* we obtain 

I[v*] = j U,,· dv* :$ j V(S)dv* = V(S) = I[vs], 

that is, v* E M(S) has minimal energy. Consequently, by the uniqueness of the 
solution to the electrostatics problem, we get v* = Vs. 

Notice that if fL is a completely regular measure, then the monic orthogonal 
polynomials Pn(z) = Pn(zjfL)hn satisfy condition (a) of Theorem 5.1 for S = S(fL); 
indeed from (3.6) and (3.7), 

lim sup II Pn II~:)
 
limsup II Pn II~:):$ n-+oo. lin = cheb(S(fL)) = Cap(S(fL))·


n-+oo hm Inn-+oo 

Moreover, if the interior of PC(S(fL)) is empty, then condition (b) of Theorem 5.1 is 
vacuously satisfied. Thus we obtain (compare [BSS, Cor. 2.1]) 

Theorem 5.2. Let fL be a completely regular measure. If S(fL) = SUPP(fL) has 
positive capacity and PC(S(fL)) has empty interior, then 

V(Pn(jfL)) ~ VS(Jl) as n ~ 00. 
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This result explains the behavior of the zeros plotted in Figures 6 and 7; they 
have limit distribution equal to IIc+. Moreover, it will follow from Theorem 5.1 that 

Ithe limiting distribution for the zeros plotted in Figure 4 is dllC = dO /21r, provided 
one can show that condition (b) is satisfied. That this indeed the case can be seen t 

from the next result due to Mhaskar and Saff [MS4]. € 

1: 

Theorem 5.3. Let {Pn(z; JL)}f be a sequence of SzeglJ polynomials (i.e. S(JL) ~ C : 1 
Izi = 1) so that Pn(O) = Pn(OjJL)!Jn is the n-th 'reflection coefficient'. Set 

(lim sup IPn(O)II/n =: p(5. 1),	 (5.4)
n-+oo 

}and let A c N satisfy 

lim IPn(O)l l/n = p. 
g 

nEA f 

(a) If p < 1, then II(Pn('j JL)) --t IIcp as n --t 00, n E A, where dllCp = ds/(21rp), for
 
p > 0, is the equilibrium distribution on the circle Cp : Izi = p (cf Example 4.A),
 
and IIco := 80 • 

e.
 

(b)	 Ifp= 1 and 

1 n 

lim - E IPk(O)1 = 0,	 (5.5) 
n-+oo n k=O 

then II(Pn(·jJL)) --t IICI as n --t 00, n E A. 

The proof of this result follows by applying Theorem 5.1 to the polynomials E 
Qn = P;'/Pn(O),n E A, on the set S = Clip, where P;'(z) := znPn(l/z) are the S€ 

reverse polynomials. 
For the Jacobi type weight dJL(e i9 

) = Isin(O/2WdO, 05. 0 5. 21r (ef. (2.8)), the 
reflection coefficients are Pn(O) = 2/(n + 2) so that p = 1, A = N, and condition IS 

(5.5) is satisfied. Thus by part (b) of the above theorem, II(Pn(·j JL)) --t IIc
l 

= dO /21r	 pI 
as	 n --t 00, which confirms our expectations from the plots in Figure 4. 

Concerning the plots in Figure 5 where 

(5.6) 

it turns out that p = 1/2 and A = N, so that from part (a) of Theorem 5.3 we get 
II(Pn(·j JL)) --t IICI/2 , the uniform distribution on the circle of radius 1/2. In 

We remark that it is not necessary to have an explicit form for the reflection 
coefficients in order to determine the constant p of (5.4). As observed in [NT], 
for measures JL belonging to the Szego class, p can be deduced from the analytic 
properties of the SzeglJ function D(JL; z) (ef. [Sz, §10.2]). Recall that D(JLj z) is 
analytic and nonzero in Izl < 1, and satisfies 
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By considering the orthogonal expansion for the reciprocal D(/-lj z t 1 , it is easy
 
to see that p in (5.4) is the smallest number such that D(/-lj Z)-l has an analytic
 
extension to the disk Izi < 1/p. For example, the Szego function for the weight (5.6)
 
is D(/-lj z) = 1 - z/2, from which we see that Izi < 2 is the largest disk for which
 
D(/-l; zt1 = 1/(1 - z/2) is analytic; hence p = 1/2.
 

6 Bounds for Polynomials 

Another important application of potential theory is in determining bounds for the 
growth of polynomials in the complex plane; that is, for attacking the following 

Problem. Let E C C be compact with cap(E) > O. Given that qn E Pn and , . 
Iqn(z)1 ~ M, VZ E E, (6.1) 

estimate Iqn(z)1 for z ¢ E. 

i 
t~In analyzing this problem we shall make use of the Green function gE(Z, 00) 

with pole at 00 for Voo(E) (d. Section 4). The level curves of this function shall be 
i 

denoted by f p, that is, 

f p := {z E C19E(z,00) = logp}, p> 1. (6.2) i 
Example 6.A. If E = [-1,1], then fp(p > 1) is the ellipse with foci at ±1 and 
semi-major axis equal to (p +p-l)/2 (d. Example 4.B). 

The following result, known as the Bernstein- Walsh lemma [Wa, p. 77, 87], 
is a simple application of the maximum principle for subharmonic functions that 
provides an answer to the above problem. 

Lemma 6.1. Let E C C be compact and have positive capacity. If qn E P satiSfies n
(6.1), then 

Iqn(z)1 ~ M exp(ngE(z, 00)), V z E Voo(E). 

In particular, 
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Proof. From (6.1) we have 

1 1 
-log Iqn(z)1 ::; -log M, V Z E E,	 locall 
n n 

and so	 Proo 
the n1	 1

-loglqn(z)l-gE(z,oo)::; -logM	 (6.3) cos( (1n	 n 
[Wa,~ 

holds for z E BooE except possibly for a set of capacity zero (recall property (ii) of 
UVE(Z) in Section 4 and the representation (4.9)). But the left-hand side of (6.3) is 
subharmonic in Voo(E) (including 00), and so the maximum principle (d. [T, p.77]) 
implies that (6.3) holds for all z E Voo(E). • when 

We now show how the above lemma can be used to establish the convergence of 
certain Fourier expansions. Let f E L 2 (fl), i.e. 

we de 

Then the Fourier expansion of f is given by 
Fr 

00 

f'" E akPk(z; fl),	 (6.4) 
k=O 

and scand its partial sums 

n 

sn(z) = sn(Z;J):= EakPk(Z;fl)	 (6.5) 
k=O 

HencE 
are best polynomial approximants to fi more precisely, we have the following well­
known result: 

Theorem 6.2. The partial sum Sn is the best L 2(fl) approximant to f out ofPn in 
whichthe sense that 

Fo 
To simplify our discussion (yet still convey the general spirit) we assume through­ W 

out the remainder of this section that SUPP(fl) = [-1,1] and that fl is completely when, 
regular; we denote this by writing fl E CR[-I, 1]. and L, 

The next theorem describes the convergence of the Fourier expansion (6.4) for 
analytic functions f. 

In Fig
Theorem 6.3. Let fl E CR[-I, 1] and assume f is analytic inside the ellipse rp(p > the CJ 
1) of Example 6.A. Then 
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n 

Sn(ZjJ)=L>kPk(Zill)-+f(z) as n-+oo 
o 

locally uniformly inside r p' 
, . 
, . 

Proof. Let Qn-l denote the unique polynomial in Pn- l that interpolates f in 
,, .. 

the n points that are the extrema on [-1,1] of the classical Chebyshev polynomial ::: 
~ Il •cos((n - 1) arccos x). Using the analyticity of f and the Hermite error formula (d.	 I', 
~ ..[Wa,§3.1]) for f - Qn-b it is easy to verify the following fact:	 
~ .. 
f.::li~s~p II f - Qn-l 1I[~~,11~ lip < 1,	 (6.6) 
~: : 
~where II ·11[-1,1] denotes the sup norm over [-1,1]. Since	 
;- . . 
;,.' 

I • 

i • 

we deduce from (6.6) that l 
I 

limsuPlanll /n ~ lip.	 (6.7) ! 
n_oo 

From the assumption that Il is completely regular we also have	 ,r: 

lim II Pn 11[I~nll]= 1,
n .....oo ' iand so, for the sup norm over any ellipse (level curve) r u, Lemma 6.1 yields 

~ limsup II Pn IIt~ a. n_oo 

Hence, for 1 < a < p, we get from (6.7) that 

lim sup II anPn lI~n~ alp < 1,
n-+oo 

00 

which implies that L>nPn(Z) converges uniformly on r u for each a < p. Letting 
o 

a -+ p, the theorem follows. • 

For the case of Jacobi series, the above result is given in [Sz,Chap. 9]. 
What can be said about the behavior of the partial sums Sn in the complex plane 

when f is not analytic on [-1, I]? To gain some insight, let's consider the Chebyshev 
and Legendre expansions of 

f(x) = Ixl on [-1,1]. 

In Figure 8 we have plotted the zeros of the partial sums SlO(Z; J) and S20(Z; J) for 
the Chebyshev expansion and, in Figure 9, the analogous plots are given for the 
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Legendre expansion. We observe that these zeros seem to surround and approach (a) an 
the orthogonality interval [-1,1] as n increases. Moreover, the distributions of the 
zeros in Figures 8 and 9 are very much alike. This phenomenon is explained in the 
following theorem due to Li, Saff and Sha [LSS]. 

Frc
Theorem 6.4. Let p, E CR[-I, 1]. If f E L2 (p,) is not equal dp,-a.e. to a function 

distrib
analytic on an open set containing [-1,1]' then there exists a subsequence AU) ~ 
N for which the zero measures v(sn) of the partial sums sn(z; J) satisfy Corol 

1 dx analyt 
v(sn) -t ~ asn -t 00, n E AU). (6.8) of the 

7r 1 - x2 

Co 
neighb

Proof. We first claim that the Fourier coefficients an of f satisfy 

Th
lim sup Ian Il/n = 1. (6.9)

n-+oo orem I 

dimen: 
If not, then lim SUPn-+oo lani l/n = 1/p < 1 and the argument used in the proof of ana: 
of Theorem 6.3 shows that I:g" anPn converges inside the ellipse r p to an analytic 
function. As this contradicts the assumption on f, equation (6.9) follows. MOR 

Now choose A ~ N so that 

lim la Il/n = 1 
To 

n-oo n , (6.10) Sha dl 
nEA 

[-I,IJ 
and let f over 

Since p, E CR[-I, IJ and the polynomials Sn have uniformly bounded L 2 (p,)-norm, 
it is easy to see (d. (3.6)) that 

li~s~p II Sn 11[~~,11~ 1. 

Then'Hence, from (3.7) and (6.10) we get 

Theor r II 1I[~~,11
li~_s~p II Qn 11[~~,11 Sn 

IT_s~p la Il/n ,",lin
nEA nEh n ,n , 

n< cap([-I,I]) = 2'1 1. 

for eVE 
But now we are in position to apply Theorem 5.1: we have just verified condition Mo 

replacf 
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rround and approach 
e distributions of the 
In is explained in the 

dp -a. e. to a junction 
t subsequence AU) ~ 

f) satisfy 

(6.8) 

.isfy 

(6.9) 

:nt used in the proof 
pse r p to an analytic 
6.9) follows. 

(6.10) 

just verified condition 

(a) and condition (b) holds vacuously. Thus 

1 dx •v(sn) = v(Qn) ---T V[-ll] = -~ as n ---T 00, n E A. 
, 1r 1 - x 2 

From Theorem 6.4 we see that the zeros plotted in Figures 8 and 9 have limiting 
distribution equal to the arcsine measure. We also obtain the following 

Corollary 6.5. If p E CR[-I, 1] and f E L 2 (p) is not equal dp-a.e. to a junction 
analytic on an open set containing [-1, 1], then every point of[-I, 1] is a limit point 
of the zeros of the partial sums {sn(z;J)}f. 

Consequently, {sn(Z; f)}f does not converge uniformly in any (2-dimensional) 
neighborhood of a point of[-I, 1] . 

This result illustrates a shortcoming of the partial sums Sn' Although, by The­
orem 6.2, they are globally best approximants to f on [-1,1]' locally (in the 2­
dimensional sense) the sequence {sn}f cannot imitate f; it is useless for the purpose 
of analytic continuation. We therefore have an example of the following 

MORAL: WHAT'S BEST GLOBALLY IS LOCALLY NOT SO GOOD. 

To lend further support to this moral we mention a recent result of Li, Saff and 
Sha dealing with the rate of convergence of the Fourier series on subintervals of 
[-1,1]. Let sn(z; J) denote, as above, the partial sums of the Fourier expansion for 
f over [-1,1] and set 

Then we have (d. [LSS]) 

Theorem 6.6. If p' > 0 a.e. on [-1,1] and f is not (dp- a.e.) a polynomial, then 

f (II f - Sn = 00.IIL2(1'.[a,bJ)) 2 (6.11) 
n=O II f - Sn IIL2(1') 

for every subinterval [a,b] ~ [-1,1] (a =I- b). 
Moreover, (6.11) is sharp in the sense that the exponent 2 cannot, in general, be 

replaced by any larger constant. 
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The proof of this theorem is based upon a lemma of Mate, Nevai and Totik 
[MNT]. 

Notice that the divergence of the series in (6.11) implies that infinitely many of 
its terms must exceed l/nI+<, to> O. Indeed we have (d. [LSS]) 

Corollary 6.7. With the assumptions of Theorem 6.6, for each to > 0 , there exists 
a subsequence A ~ N such that for any [a, b] ~ [-1,1] (a =1= b), 

C
II f - Sn IIL2(1',[a,b))~ 1+< II f - Sn IIL2(1')' n E A, (6.12) (see Fi~ 

n2 an can 
where the constant C > 0 depends only on b - a. asympt, 

Returning to the moral mentioned above, we see from (6.12) that, with reference Ie 
to the partial sums Sn, what is globally best cannot locally be much better (only 

What v
improvements of order 1/Vii are possible for the rate of convergence on subintervals). 

followir 
In a 

is to iII7 Weighted Polynomials over Unbounded Sets 
the pro 

Thus far we have restricted our discussion to orthogonal polynomials over a com­ apply t 
pact subset of C. In this section we describe an approach for analyzing orthogonal 

wpolynomials with respect to unbounded sets; for example, when supp(JL) = R. 
Let E ~ C be a closed (but not necessarily bounded) set having positive capacity where ( 

and let W(z) be a nonnegative weight function on E. We now wish to attack the 
continu

following generalized version of the problem stated at the beginning of Section 6. 
become 

Problem. Given that qn E Pn and 
Lemm 

IW(z)qn(z)1 ~ M, V z E E, 

estimate Iqn(z)1 for z E C. 
then Iw 

For example, if 

(7.1) 
Furthel 

then what can be said about Iqn(z)1 for z E C? The first point to observe is that 
(7.1) contains superfluous information. That is, since /e- x2 qn(x)1 -t 0 as Ixl -t 00, 

I~
 

inequality (7.1) is only needed over some finite interval. Indeed, if qn =1= 0 and ~ E R
 
is a point for which Proof.
 

u 
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Figure 10 

(see Figure 10), then ~ must belong to a finite interval [-an, an]' Moreover, such an 
an can be found that is independent of qn E Pn. As shown in [MSl], an =,fii is an 
asymptotically sharp (smallest) choice. Consequently (7.1) should be replaced by 

le-X2 qn(x)1 ~ M, V x E [-,fii,vnJ. 

What we wish to emphasize is that the above problem is intimately related to the 
following question: Where does the sup norm of a weighted polynomial live? 

nIn answering this question it is convenient to fix n and write W = w . Our goal 
is to imitate the Bernstein-Walsh lemma (Lemma 6.1) and in order to carryover 
the proof we shall assume that the weight w is of a special form that allows us to 
apply the maximum principle. Namely, we assume that 

w(z) = exp(UO'(z) - Fw ), z E E, (7.2) 

where 0" is some probability measure with compact support S(O") ~ E, UO'(z) is 
continuous on C, and Fw is a constant. Then the generalization of Lemma 6.1 
becomes 

Lemma 7.1. Let w : E --t [0,00) be of the form (7.2). If qn E P n satisfies 

Iw(ztqn(z)1 ~ M, V z E S(O"), (7.3) 

then Iw(z)nqn(z)1 ~ M for all z E E. Consequently, 

(7.4) 

Furthermore, 

(7.5) 

Proof. Inequality (7.3) and the representation (7.2) yield 

UO'(z) - Fw +.!. log Iqn(Z)1 ~ .!.logM, V z E S(O"). (7.6) 
n n 
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But the left-hand side of (7.6) is subharmonic in C\S(a), even at infinity. Thus, Vw(E) :
 
since U" is continuous, we can apply the maximum principle to deduce that (7.6)
 
holds for all z E C\S(a), which completes the proof. • (d. (4.2) and
 

Iw[aw]= 
Analyzing the above proof we see that it is not necessary to assume that w is of 

For such a m~the form (7.2) for all z E E. Indeed, Lemma 7.1 remains valid provided 

Definition 7w(z) = exp(U"(z) - Fw), V z E S(a) (7.7) 
three conditio 

and (i) w is upper 
(ii) The set {, 

w(z) :s exp(U"(z) - Fw), V z E E\S(a). (7.8) (iii) If E is un 

In fact, it's enough to assume that, on the indicated sets, (7.7) and (7.8) hold quasi­ Since the ( 
everywhere (q.e)j that is, with the possible exception of a set having capacity zero. w = 0, the as 
Thus to handle general weight functions w we are lead to the following to prevent cha 

The theorj
Question. Given w : E ---+ [0,00), how do we find a probability measure a and a [MS3],[GR2] a 
constant Fw so that (7.7) and (7.8) hold? for the case w 

Readers familiar with the Szego theory for orthogonal polynomials on the unit Theorem 7.~ 

circle will recognize that what we seek is essentially a generalized version of the (a) :3 a unique 
Szego function D(p.j z). (b) S(O"w) = Sl 

It turns out that the above question is related to the following (c) w(z) = eXJ 
and 

Generalized Electrostatics Problem. Let E ~ C be closed. Place a unit charge 
w(z) :s e 

on E so that equilibrium is reached in the presence of an external field due to w (see
 
Figure 11). where the con~
 

( W 
Notice thai 

( equilibrium di~
< From Lemr 

Corollary 7.4Figure 11 
Iqn(z)1 :s 

As before, we let M(E) denote the collection of all positive, unit Borel measures 
supported on E. Then the energy integral that takes into account the field due to We remark 
w IS Corollary 7 

beginning of t 
Iw[O"] := JJlog[lz - tlw(z)w(t)t1dO"(z)dO"(t) orthogonal pol: 

analysis", it lei
and the generalized Robin's constant is weights on R ( 

,'. 



--

--

en at infinity. Thus, 
to deduce that (7.6)

• 
) assume that w is of 
provided 

(7.7) 

(7.8) 

and (7.8) hold quasi­
flaving capacity zero. 
following 

lity measure u and a 

ynomials on the unit 
alized version of the 

ving 

!. Place a unit charge 
wi field due to w (see 

( W 
( 
( 

, unit Borel measures 
:ount the field due to 
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Vw(E):= inf Iw[u]
<7eM(E) 

(d. (4.2) and (4.3)). What we therefore seek is a measure U w E M(E) such that 

Iw[uw]= Vw(E). (7.9) 

For such a measure to exist we need to make some mild assumptions on w. 

Definition 7.2. A weight w : E ---t [0,00) is said to be admissible if the following 
three conditions hold: 
(i) w is upper semi-continuous; 
(ii) The set {z E E: w(z) > O} has positive (inner) capacity; 
(iii) If E is unbounded, then Izlw(z) ---t °as Izl---t 00, z E E. 

Since the external field due to w has a strong repelling effect near points where 
w = 0, the assumption (iii) physically means that this repelling effect is sufficient 
to prevent charges placed on E from rushing to 00. 

The theory of weighted polynomials and potentials is developed in [GRl],[MS2], 
[MS3],[GR2] and [STM]. The basis for this theory is the following result (d. [MS2] 
for the case when E ~ R). 

Theorem 7.3. Let E ~ C be closed and w : E ---t [0,00) be admissible. Then 
(a) 3 a unique U w E M(E) such that (7.9) holds. 
(b) S(uw ) = supp(uw ) is compact. 
(c) w(z) = exp(U<7,.,(z) - Fw ) q.e. on S(uw ) 

and 

w(z) :5 exp(U<7,.,(z) - Fw ) q.e. on E, 

where the constant Fw is given by 

Fw := Vw(E) + Jlogw duw' 

Notice that if E is compact, cap(E) > °and w == 1 on E, then U w = IJE, the 
equilibrium distribution for E. 

From Lemma 7.1 and Theorem 7.3 we get 

Corollary 7.4. If w : E ---t [0,00) is admissible and qn E Pn, then 

Iqn(z)1 :511 wnqn liE exp{-n(U<7,.,(z) - Fw )}, V z E C. 

We remark that in the above inequality, II wnqn liE can be replaced by' II wnqn Ils(<7,.,) . 
nCorollary 7.4 (with W = w ) gives an answer to the problem stated at the 

beginning of this section. Thus it provides a starting point for the analysis of 
orthogonal polynomials on unbounded sets. For example, together with some "hard 
analysis", it leads to the solution of the Freud conjecture dealing with exponential 
weights on R (d. [LMS]). 
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