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ABSTRACT

For the infinite triangular arrays of points whose rows consist of (i) the nth roots of unity, (ii) the
extrema of Chebyshev polynomials 7,(x) on [—1,1], and (iii) the zeros of T,(x), we consider the
corresponding sequences of divided difference functionals {/,}{° in the successive rows of these arrays. We
investigate the totality of such functionals as well as the convergence of the generalized Taylor series
Y@ NP, ,(2) for a function f, where the P, are basic polynomials satisfying I, P, = d,,. Explicit
formulae are given for the basic polynomials involving the Mébius function (of number theory), and
examples of non-trivial functions f for which I, f=0, n= 1,2, ..., are constructed.

Introduction

Let /' be a function defined on the distinct complex points z,, ..., z,. Recall that if
my, ...,m, are positive integers with ) ¥ m, = n, there exists a unique pe?,_, (%,
denotes the set of polynomials of degree at most k), p(z) = ay+a,z+...+a,_, "%,

satisfying
POz = fO(z), i=0,1,...m—1;j=1,..,k 0.1)

(An assumption that f has the required derivatives at z, when m, > 1 is implicit in
(0.1).) The leading coefficient of p, that is, a,_,, is called the divided difference of f with
respect to z,,...,z, (where each z, appears m, times in this sequence). In a more
familiar notation we have a,_, = f(z,, ..., z,), and it is clear that a,_, is a symmetric
function of z,,...,z,. We shall also use the notation

Inf: = an—l‘
It is obvious that [, is a linear functional which satisfies ,q =0if ge Z,,m <n—1;
and I, z"' = 1. Note that if z, = ... =z, =0, then I f = f"V(0)/(n—1)!

Let g denote an infinite triangular array of complex numbers whose jth row,
J=0,1,2,...,is B9 = (B, ..., f2)) and suppose that fis a function defined on all the
entries in f. It is easy to see that, in view of the elementary properties of the divided
difference functionals I, f = f(f""7, ..., V), which we have just mentioned, there
exist unique basic polynomials, P,e ?,, k =0, 1,2, ..., that are monic and satisfy

L,P.=6, k=012 .. 0.2)
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Thus {P,(2), I,,,}=, is @ normalized biorthogonal system, and, given B, each f defined
on it has the biorthogonal expansion

S (1) Pad) ©03)
J=1

associated to it. In particular, if all entries in f are zero, (0.3) becomes the Taylor
series of £, and so we call (0.3) the generalized Taylor series of f with respect to . A
study of generalized Taylor series with respect to certain arrays is one of our themes
in this work.

Another prominent theme in what follows is the question of the totality of the
sequence of divided differences I, 4, j=1,2,... (where the notation indicates the
underlying triangular array of points) for some specified set of functions. That is, if
foreach fe X, [f=0,j=1,2,..., implies that f = 0, then {I}{2, is called total for X.
The totality of {I; z} for functions having convergent biorthogonal expansions, such
as generalized Taylor series, or series of orthogonal polynomials will be examined.
Background material about divided differences may be found in (3, 7].

Before sketching the contents of the five subsequent sections of this paper we
present some of the notation that will be used. We write 7,(x) and U, (x) for the
Chebyshev polynomials of degree n, of the first and second kinds, respectively. We set

D,:={zeC:lz|<p}, C,i={zeC:lz|=p}, L:=[-11], e(x):=e";

¢ is the infinite triangular array of points of I with &Y™V = cos((2k—1)(n/2))),
k=1,...,j,j =1 (zeros of T(x)); n is the infinite triangular array of points of I with
n? =cos((k—Dn/j), k=1,...j+1, j=1 (extrema of T(x)), n” =0; o is the
infinite triangular array of points of C, with o = e((k—1)/(+1)), k=1,...,j+1,
Jj =0, (roots of unity); N denotes the positive integers. The Maébius function u(n) is
defined for neN by

1, n=1,
u(n):={ (=1)*, nisthe product of & distinct primes,
0, all other ne N.

The function u(n) is multiplicative, that is, u(nm) = u(n) u(m) if 1 is the greatest
common divisor of m and n (written (m, n) = 1). The Mébius inversion formula says
that if ne N
n I, n=1
= -1=3" ’ 4
%;‘#(d) MZH#(d) {0’ ntl, (0.4)
where d|n means that d is a divisor of n. Finally, d(n):= }_,,1; that is, d(n) is the
number of positive integers that are divisors of n. If ¢ > 0, then d(n) = O(n°), as
n— 00, with a constant that depends on &. Proofs of these number-theoretic results
may be found in [8].

In Section 1 we exhibit the connection between the divided differences of a
function with respect to points on C, and those of a related function with respect to
the projections of those points on /. Expressions for the divided differences, with
respect to &, 5, , in terms of the coefficients of the expansion of the function in
Taylor series or Chebyshev series are also given.

Section 2 contains results about the totality of the {I, j° (B = &, n, ®) for various
classes of functions, while connections between divided differences and analyticity of
the function are examined in Section 3. Section 4 is devoted to the explicit
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construction of the basic polynomials for £, # and w, bounds for these polynomials
and convergence of the corresponding biorthogonal expansions. Section 5 presents
some counterexamples which delimit the sharpness of the totality results of
Section 2.

1. Relationship between divided differences on I and on C,

If fis a complex-valued function defined on a subset of C, we define operators L,
and M, as follows:

L(f,2):=2"Z-1)f(@), M, (f,2):=2""(2) (1.1)
For points x,e[—1, 1] we write
x;=cosd, 0<¢ <m, z:=e% (1.2)

THEOREM 1.1. Suppose that
Px) =Y A, T(x) and q(2)= ) A,2".
k=0 k=0
If{x}y c[—1,1], n >0, then
P(xgs oy Xa) = 2" L (207 -0 Z0s Z)s (1.3)

where x; and z, are related as in (1.2).

Proof. Because of the linearity of the divided difference operator, it suffices to
prove (1.3) for p(x) = T,(x). Thus g(z) = z* and L,(g,2) = 2" (z*—1). Ifk =n =0,
then both sides of (1.3) are equal to 1.

Suppose, then, that k+n = 1. If p > 1, we denote by C~,, the image of the circle C,
under the Joukowski mapping

w=¢(z):=z+(2*— 1)3, z=¢ (W) =w+w). (1.4)
Put
h(z):=[](z—x,), Hw):=[[(w—z)(w—2).
Then 0 0

hGw+w™)) = 2w)"* H(w),
and, by the Hermite formula for divided differences (cf. [7]), we have

L[ L@, _ 1 [ Tew+w)

= — —_— LAY AR LA P | -1
A o WD) T 2mi ) hGHwrw) dGw+w™)
1 W +w™) _1 o
= 201w o <O
1 wrw (w2 —1)
— yn-1__
=% ), Hw dw-+0

= 2”—1Lﬂ q(ZO, Z)! RS zﬂ’ Z)'

Theorem 1.1 allows us to relate the divided differences of two functions fand g,
defined on I and C,, respectively, whenever they can be simultaneously approximated
by corresponding polynomials p and g. For example, we have the following.
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COROLLARY 1.2. Suppose that {x};}<[—1,1] are n+1 distinct points. If
Y@ .14, < oo, then

f0)i= Y A TeCU), &)=Y A, FeCD))

k=0 k=0
and
S(Xgs -5 x,) =27 L, 8(20, %55 -5 205 Z1)s (1.5)

where x, and z, are related as in (1.2).

Proof. The result follows by applying Theorem 1.1 to the polynomials
pm(x) = Z Ak T;c(x)! qm(z) = Z Akzks
k=0 k=0

and then taking the limit as m — 0o. That the limiting process yields (1.5) is obvious
for the case of divided differences in distinct points. But, when x, = 1 (or x, = —1),
we have z;=2z;=1 (or z, =7, = —1), and repeated nodes occur in the divided
difference on the right-hand side of (1.5). It is easy to check, however, that these
repeated nodes cause no difficulties because L,g is differentiable at 1 and —1
whenever g is continuous.

CoROLLARY 1.3.  Suppose that {x}; = [—1,1] are n+1 distinct points and that

@)= ¥, a,*eC(D)),

k=0
where the a, are real. Then (1.5) holds with
f(x) = Re g(etarccosz).

Proof. For each ¢> 0 there exists geZ, with real coefficients such that
lg—qllp, < e Writing g(z) = } it 4, 2", we put

p(x):= ) A, T(x).
k=0
Then || f—p||, < ¢, and the corollary follows from Theorem 1.1 just as in the preceding
proof.

For the case when both 1 and —1 are nodes in the divided difference we have the
following alternative relation which involves the operator M, of (1.1).

THEOREM 1.4. If p(x) = Y7 A, T(x) and q(z) = Y.y A, 2%, then
plxy, Xy, —1)=2"M_q(1,2,,7;, ..., 2,1, Tys — 1), (1.6)

where x, and z, are related as in (1.2).

Proof. Let h(z):=z—a,g(z) be any polynomial, and y,,y,,...,y, be arbitrary
points of C. Then the Leibniz formula for divided differences (cf. [3]) yields

&R (Yos -5 1) = 8(¥gs s VI H(Y) + 8(Vos -5 Vi) 1.7
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Putting g(z) = (z+ 1) M ,(q;2), h(z) = z—1, and y, = 1 in (1.7) we obtain

Lo g(yes s 710 1) = ((2+ 1) M (9, 2)) (Yo, -5 Y10)- (1.8)
Substituting g(z) = M,(q,2), h(z) = z+1, and y, = —1 in (1.7) gives
((Z+ D) M (4,2) (Vos s Yiors — 1) = Mo g(Yos -5 y120)- (1.9)

Keeping in mind that a divided difference is a symmetric function of its nodes, we see

that (1.3), (1.8) and (1.9) imply (1.6).

We show next that for the special choice of nodes § = &, #, the relation (1.3) can
be simplified further. Suppose that ¢, =jz/n, j=0,...,n, so that x, =7,
j=0,...,n. Then we have (cf. (1.2))

(1,2,,75, s 2y oy, — 1} = {€(0), e(1/2n), ..., e((2n—1)/(2n))},
which is the set of zeros of y(z):= z?"—1. Hence
— _ % M, (g, elk/2n)
M,q(1,2,,75, ..y 2,1, 5,5, — 1) kZ_O “ek/n)
_ 1 ¥t gle(k/2n)) (e(k/2n))" !
T (elk/2m)™

1 2n-1

=5, L (=1"qle(k/2n)).

k-0

This identity, Theorem 1.4, and the representation of the divided difference
Fle(0),e(1/N), ...,e((N—=1)/N)) = = Z Fle(k/N))e(k/N) (1.10)
Ic-O

now yield the following.
THEOREM 1.5. Let p(x) = Y7 A, T(x), 9(z) = Y™ A, z*, and

D40 _F 4, (1.11)

k=0

§(2):=

Then for the points n{® = cos((j—1)n/n), n > 1,

PO, ) = 2 B (=1 gt/ 20)
)5 o)

(1.12)

When x,_, = & = cos((2j—1)n/2n), j = 1,...,n, the zeros of T,(x), we obtain
from Theorem 1.1 in an analogous way the following.

THEOREM 1.6. Let p(x) = Y 0 A, Ti(x), q(2) = Y. " A, z*. Then, for n > 1,

- _— 23 2 2k—1 2k—1 2k—1
et =S S el o) o(55)

2; 2:2_;"1( 1)"“q(e(2]1;1))sin (2’;;17:). (1.13)
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These results can be extended to functions defined on C, and on 7 in the same way
as Theorem 1.1 yielded Corollaries 1.2 and 1.3. For example, Theorem 1.5 has the
following consequence.
COROLLARY 1.7. Suppose that g(z) = .2, a,z*€ C(D,), where the a, are real, and
f(x): — RC g(etarccos z)'
2n ~-22n-1 k
s, i) = 25 <1 (e(55))

k=0

[iiég( Gl ZelG)) o

For future reference, we state the following result which is a straightforward
consequence of the properties of divided differences.

Then

PROPOSITION 1.8. Suppose that g(z) = Y2 ,a,z*€ C(D,), where the a, are real,
and set . N
J():=Img(e"™ =), f(x):=f(x)/(1-x")".

Then, forn> 1,

nln

L (D)

- 225 oe(o(Fr) (115)

We further remind the reader of two elementary formulae (cf. [11]) that hold for
any complex-valued function f defined on # or &:

FE, b =

st = 2220+ E -1y + S -0) e
S, g =TS o a-eepier .

Now suppose that f(x) =Y 2,4, T,(x), where the Chebyshev expansion is
uniformly convergent on I. Applying the respective divided difference functionals
term-by-term to the Chebyshev expansion yields

\%

f(ﬂ(") o) =27 Z A5-1yns n (1.18)
5=1

and

a0
f(é(ln_l)’ caes -fi;"_”) =2t Z (- l)j (A(Zj—l)n+1 _A(‘Zj-l)n—l)’ nz2 (1.19)
J=1

(cf. [11]). We also mention that the corresponding formula for the divided difference
in the nth roots of unity, derived from (1.10), is

f(e(0),e(1/n), ...,e((n—1)/n)) = ia,,,_l, (1.20)
J=1

where f(z) = ) 2,4z’ and the power series is uniformly convergent on C;.
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Theorem 1.6 and (1.19) can be somewhat simplified by considering representations
in terms of the U,(x), the Chebyshev polynomials of the second kind, rather than the
T.(x). Thus we have the following.

THEOREM 1.9. If p(x) = Y7 B, U(x) and r(z) = z )™, B, 2", then

_ e 2n 1 2n 2k—1
Proof. 1t is easy to verify that

T(xX) = XUx)-Uy(x), i=0,1,... (U,=-1,U,=0) (121)
and, therefore, if

p(x) = —+ZA T,(x),
k=1
we obtain
2B,=A,— A, j=0,...;m (Apyy = Apyg =0). (1.22)
Put

A m
q(2):= 7°+ Y A,z
k=1

Then in view of the identities

Eorg)-fones)

k=1
and Y2, = 0, we deduce from Theorem 1.6 and (1.22) that

n-2 2n

=5 o e (252)
x<e(2'z;‘>—e(—2a:>>>
g P25

4, (14, 5 (-1re(B0)
)

-G S A (Bt o)

1=0
vl (]
== zkz-:l(—l) r(e(————4n ))

2 1Bl < o, (1.23)

k=0

pETY, .Y =

+Y.4, AM)Z(—I)" (

=1

Notice that if

then Y 2, B, U,(x) is absolutely convergent on any compact subset of (—1, 1) since
U (cos @) = (sin(k+1) ¢)/sin ¢, 0<¢<m.
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If (1.23) holds and we set
e}
f() =} B, Uyx), (1.24)
k=0

then Theorem 1.9 and the identity

. i(—1)2n, s=Qj—-Dn-1,j=12,..,
Z(“) ( o+ ”) { s#Qj-n—1

yield
SEED, L EpD) =2t Z (=1 Bgy_syners nzl, (1.25)
J=1

since the series in (1.24) is uniformly convergent on [&*D, £(*~D)],

The simpler representation (1.25) cannot be obtained directly from Theorem 1.6
via (1.19) and (1.22) since the condition f(x) = Y. 2,4, T(x), Y. 2,14,| < o0, is much
stronger than conditions (1.24) and (1.23). The former condition implies that fe C(I)
while the latter allows f to tend to infinity at 1 or —1.

2. Totality of divided differences

A sequence of linear functionals %, j = 1,2, ..., acting on a linear space F'is called
total if £,f=0,j=1,2,..., implies that f= 0 for any fe F. In this section we show
that the divided dlﬁ"erenoes {I, g}, j=1,2,... (where the notation indicates the
underlying triangular array of points), for p=ow,n,& are total, each for an
appropriately chosen function space.

Suppose that " = e((j—1)/(n+1)), j=1,...,n+1; n=0,1,.., so that f = w.
The following result is due to Katai [9], but we present an equally brief proof which
suggests the approach to the cases f = 5,& that will follow.

THEOREM 2.1.  Iff(2) = Y. 2, a, 2", Y .2 la] < 00,and 1, ,f=0,n=1,2,..., then
f=o. '

Proof. According to (1.20) we have
Lo=Ya,,=0, n=12.. .1
=1

Let p,, p,, ... denote the prime numbers in increasing order and let N,:= p, p,*..."p,.
Then

Yo ud) L, f= ), /t(d)Za,d,, )

a|N, a|N,
o0 0
= Z Ay L MA) =Y Oy L Md)= ) @, (22)
k=1 dlk k=1 d|(k, N ) -
a|N, (k, N )y=1

where we use (0.4) to obtain the last equality. In view of the hypothesis that
In.wf= 09 n= l, 2, ceny (2.2) yleldS

Z Akn-15 (2.3)

(k N,) 1

since while (1, N,) =1, (k,N)>1for 1 <k <p,.
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Suppose that the theorem is false and that a,_, # 0 for some n. Choose m so large
that Y"° |a,| < la,_,]. Then, if we put v = m, (2.3) gives

lan—l‘ = | Z alcn~1| $ Z Iakl < |an—1|;
k>p kzm
(£, N, 5=1
a contradiction. Thus a, =0,n=0,1,..., and so f=0.

When g = 5 a result analogous to Theorem 2.1 is the following.

TueOREM 2.2. If f(x) = Y 2,4, Ti(x), Y20 lA | <0 and I, ,f=0,n=1,2,...,
then f= 0.

Theorem 2.2 was proved by Eterman [6]. A proof similar to that of Theorem 2.1
also establishes Theorem 2.2 by using (1.18) instead of (1.20) and choosing N, to be
the product of the first v odd primes.

We turn next to the case f = & for which the corresponding result is somewhat
more elaborate. We require the following result.

LeMMA 2.3. Suppose that m=1,2,... and s =2k—1,k=1,2,.... Then

{(— DED (s,m) = 1,

ols,m)i= § u(d)(= e = {0 oo 1.

d|(s, m)

Proof. If (s,m)=1 the result is obvious. Suppose that (s,m)>1 and
q=p, ... p, is the product of the distinct primes dividing (s, m). Then

o= ud) (- 1)%(d+(em))’
dlq

since u(d) = 0 for all the other divisors of (s,m). Fix a prime divisor p of ¢, and put
r=s/p. Then if d|q/p we obtain u(dp) = —u(d) and

(= DI P=D = (e = (— ])iee-D
since the numbers p, d and r/d are odd. Hence

o= Z {u(d) (— 1)§(d+(rp/d)) + u(dp) (— ])%(dp+(rp/dp))}

al(e/p)

= Z {u(d) (— l)guw/d» (— l)é(rm)(p—l) —pu(d) (— 1)%(d+(v/a>) (- 1)%d(p—1)} =0,

al(qg/p)

since every summand is zero.

Now we are ready to prove the following.

THeEOREM 2.4.  Iff(x) = ) 2.0 B, U(X), Y20 |Byl < 0, and I, . f=0,n=1,2,...,
then f= 0.

Proof. Equation (1.25) yields

In.¢f= P Z (- 1)1_13(21—1)1:—1 =0, nz=l1. 2.9)

J=1
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Let p,,p,, ... be the odd primes in increasing order and put N, = p,-... p,. Then

T (= DD @) 2, = T (~ DD () T (~1 B,

a|N, d|N, m=1
modd

2B X wd) (— 1) (= [)iterd=n

§=1 dls
sodd a|N,
hd 1
= Z (_1)5(6_1) Bm—l’ (25)
=1
sodd
(8, N)=1

where Lemma 2.3 was used in the last equality. From (2.4) and (2.5) we obtain
e o]
B, ,=- Z (=1* B(2k+l)n-1’
(2k+’f,-1{r,)-1
which, in view of the convergence of ) =, |B,|, implies that B, =0,n=0,1,2,..., as
in the proof of Theorem 2.1.

3. Analyticity and the asymptotic behaviour of divided differences

If B = w and f(z) has an absolutely convergent power series on D,, we show first
that the sequence 7, ,f, n = 1,2, ..., defines the radius of convergence of fin precisely
the same way as the sequence of Taylor coefficients of f does. This result is then used
to provide information about the zeros of the sequence of interpolating polynomials
to f on .

THEOREM 3.1. If f(2) = ). 2, a, 2" with ) 2, la,| < oo, then

limsup |a,|'* = limsup I, ,f"".

k—c0 n—o0

Proof. (i) Suppose that
lim sup |g,|'* = l p>1.
k—o0 P
Then given ¢ > 0 we have a, = O((p—¢)™") as n — o, and (1.20) implies that
I, of — @y = O((p—€)">") asn— oo.
limsup |1, ,fI'"" =

n—o

Therefore

o[-

i1) Suppose that
(i) Supp limsup |a,|'* = 1,

but ke |
limsup|f,  fI*" = -, p>1
Ao p
(p cannot be less than 1 since {I,, ,f}7 is a bounded sequence). Choose ¢ such that
1/p < ¢ < 1.Then|l, ,f| < ¢q" for n > n,. Next choose j > n, so that ¢’ < 1 —+/q and
la,l > ¢’ and choose m such that

Y lad < (1= va)g'.

k=m
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Then from (2.2) with v =m and n—1 = j we obtain

a = Z JZCHY N Z Axj+1)-15

aIN, k>,
(k,N_)=1
and so "
0 © qj+1
+1)d
la,| < leq" Mt Y layl S'I_T‘F(I—X/Q)qj <q;
- k=m

a contradiction which establishes the theorem.

Theorem 3.1 has the obvious implication that the radius of convergence of the
power-series expansion of f'is given by

1/limsup|I, ,fI'"

(f being entire if the denominator is zero). Moreover, because of the definition of
I, .f as the leading coefficient of Z,_,(f, z), the interpolating polynomial of degree
n—1 to f at the nth roots of unity, Theorem 3.1 can also be used in examining the
behaviour of the zeros of %, _,(f, z). For example, we have the following.
THEOREM 3.2. Iff(2) = Y. 2,0a, 2", Y2, la,l < o0, and
limsup |a '* = 1,

k—o0

then there is a subsequence A = N such that the zeros of &,_,(f), neA, converge
weak-star to the uniform distribution on the unit circle.

Proof. Theorem 3.1 implies the existence of A = N such that
I, 1" =1 asn—o,neA.

Then for the sequence of monic polynomials

P )

neA (and n large enough so that I, ,f # 0), we have

limsup || p,, /15" < 1,

n—+co

in view of [|.Z,_, (NIl o, <1 Sl p,- The theorem now follows from [2, Theorem 2.1] of
Blatt, Saff and Simkani.

We remark that the preceding two theorems improve results of Simkani [12]. The
analogues of Theorem 3.1 for Chebyshev nodes are the following.
THEOREM 3.3. If f(x) = Y. 20 A, Ti(X), Y. 20lA,| < 00, then
limsup |4,['* = limsup|I, f|'".
k—o0 n—o0
THEOREM 3.4. If f(x) = Y2, B U(x), Y. 20|Bl < 0, then

limsup |B,|"* = limsup |1, ,f1"".

k-0 -+ 00

The proofs of Theorems 3.3 and 3.4 follow the proof of Theorem 3.1.
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If we know that

. 1 . 1
limsup |7, . fI"'" =; or limsup|l, f|'" = > p>1,
then fis analytic in an ellipse with foci at + 1 and semiminor axis equal to (p —(1/p)).
When f is not analytic on / we have
limsup |4,|Y* = limsup |B,|"* = 1

n—ow n—o0

and, just as before, an application of [2, Theorem 2.1] yields the following.

THEOREM 3.5. If f(x) = Y. 20 A, Tu(x), Y2014, < 00 and
limsup |4, |'* =1,
k-

then there is a subsequence A = N such that the zeros of the polynomials interpolating
f at the extrema of T, ne A, converge weak-star to the arcsine distribution on I.

THEOREM 3.6. If f(x) = ). 20 B, U(x), Y. 020|B,| < 0 and
limsup |B,V* =1,
k-0

then there is a subsequence A = N such that the zeros of the polynomials interpolating
S at the zeros of T,(x), ne A, converge weak-star to the arcsine distribution on I.

4. Basic polynomials for a sequence of divided differences

The basic polynomials P, ;€ %, (where the second subscript is the underlying
infinite triangular array) were described in the introduction. In particular we recall

©0.2): Lo B =38, k=012, @.1)
As we now show, for f = w, 5 and ¢, the basic polynomials can be obtained explicitly
from the formulae (1.20), (1.18), and (1.25), respectively; or their finite inverses,
namely (2.2),

@

Z u(d) 21_nd1mz+1,,, = Z Ar-1yns 4.2)
doda k-1, =1

and (2.5), respectively.
We turn first to the case of the roots of unity, f# = w. Let
P.(2)=ay,+...+a, 2" +z"
Then (2.2) with v =m and f = P, reads
an—l = Z ﬂ(d)lnd,wpm'

d|N,
If we require that equation (4.1) holds for f = o, then a, can be non-zero only if
(n+1)d=m+1 in which case a, = u(d). Thus (cf. [4]) we have obtained the
following. :

THEOREM 4.1. If
P, ()= Y u(d)zemrome-t

al(m+1)

LitoPaw="0,m mm=0,12,...

n+l,o " mo

then
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Secondly, let us consider the case of the extrema of the Chebyshev polynomials,
B=n. Let P, (x)= Z,_OA, T(x) satisfy (4.1). Note that P, , = l trivially. Suppose
that m > 1. If 1 < j < m then according to (4.2), with n =, f and N taken to
be the product of the first m odd primes,

Af = Z /l(d) 21_1d11d+1 n Pm i
a|N
and A, # 0 only if jd = m for some odd d, in which case 4, = u(d)2'"™. Hence
P ()= A +2'" Y p(d) T, ()

dlm
dodd

To determine 4, we observe that, form > 1,0=1I, P, , = P, (0), and obtain the
following.

mq’

THEOREM 4.2. R, (x) =1, and for m=1,2,...
P, (x)=2""" 3 p(d)(T, ,d(X) T..,4(0))

d|lm
dodd

are the basic polynomials with respect to n.

Finally, we turn to the case of the zeros of the Chebyshev polynomial, g = &.
Let P, , = Y.iey B, U(x) satisfy (4.1). Note that P, , = 1. Suppose that m > 1. If
2 <k <m+1, then according to (2.5), withv=m, n=k, and f= P, ,,

= ¥ (=)0 u(d) 2"y (P
eiN,,
and B,_, #0 only if kd=m+1 for some odd integer 4, in which case
B,_, = (—1)¥*D y(d)2 ™. Hence

Pm,:(x) = Bo+2_m Z (- 1)%“_1) u(d) U((m+1)/d)—l(x)‘

djm+1
d<m+l
dodd

But form>1,0=1, P, .= P, (0) determines B, and we obtain the following.

THEOREM 4.3. R, (x) =1 and, form=1,2,..,
Pm,g(x) =2 Z (- l)%(d_l)ﬂ(d)(U((m+1)/d>-1(x)_ U((m+1)/d)—1(0))

d|m+1
dodd

are the basic polynomials with respect to &.

Theorems 4.1, 4.2 and 4.3 easily give the following estimates for the basic
polynomials involved. If we recall that d(k) denotes the number of positive divisors
of k, |T.|, =1 and ||(1—x2)% U, ()|, =1, we obtain

1Py ollo, < .Z (@) < d(m), (4.3)
2|, A, < 2d(m), (4.4)

and
2" (1= X% B, _, ()], < 2d(m). 4.5)

We are now in a position to present some sufficient conditions for the absolute
convergence of biorthogonal expansions when f = w, # and &.

1 JLM 42
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THEOREM 4.4. Let f(z) = Y 204, 2%, Y 5,la,l < oo and suppose that

5 Ly of1dem) < co. “6)

Then
f@ =) U P12, zeD,

m=1
the convergence being uniform and absolute in D,.

Proof. In view of (4.3), inequality (4.6) implies that

§D):= 3 (Unof) Prs.of2)

m=1

is analytic in |z| < 1 and continuous in D,. Write

0
g2) =Y ¢, 2"
k=0
In order to prove the theorem it suffices to show that ¢,_, = a,_,, keN. Fix k and
e>0. Let v be chosen so that Y'®_ la,.|<e and Y2, I, . fldm)<e Put
N = [],<,p, where p is prime, and

kv kN
82):= Yo Pus o@D+ X U of) Pacr,of2)
m=1 m;llgcvsl
kEN-1
=3 ¢z
j=0
Then from (4.3) we get
kv
"g_gv"Dl < “g_ Z (Im.mf)P -1, @ + Z (Im,mnP ~1,0 <2%
me=1 D, me=kv+1 D,
m|kN
and so
~ 1 ke
=l 55 | 1600 2+l < 2. &)
|2]=1
Since, according to Theorem 4.1,
Py o(2) = ) u(d)z™ D,
we obtain “n
G = Z wd) L, of+ Z wd) 1, of = Z wd) Ly of = Z Aype—1s
a<v a>v a|N =1
aIN N (4, N)=1
in view of (2.2). Hence
1€y — Al = Z Ay, | <& (4.8)
G

Now (4.7) and (4.8) imply that |a,_, —c,_,| < 3¢ and hence, since ¢ > 0 is arbitrary,
G, =C, k=12,....
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COROLLARY 4.5. Iff(z) = Y. 2,a,2", and a, = O(k™%), § > 0, as k — oo, then

f@ =3 Upof)Pora@,  z€D,

m=1

the convergence being absolute in D,.

Proof. Equation (1.20) yields I,, ,.f = O(m™~%), m — oo and therefore (4.6) holds
in view of the bound on d(m) mentioned in the introduction.

THEOREM 4.6. Let f(x) = ). 2.0 A T(%), Y. 20lA,l < 00, and

¥ 2, JSd(m) < . (4.9)
Then m=0
(x) Z ( m+1, r] ‘q(x)’ XEI:

the convergence being uniform and absolute in I.

Proof. Set
g(x):= Z (L1, 0f) ().

m=0
Because of (4.9) and (4.4) the series for g is absolutely and uniformly convergent in
I, and ge C(J). Let

2t dx
Ck:=;f g(X)I;C(X)-(——_—z)%, k=1,2,

We claim that C, = 4,. Fix k and ¢> 0. Choose v so that Y.®_, |4,| <& and
Yoy 2 "y o f1d(m) < &. Put N:=[],,<,p, Where p is prime, and

gv(X): Z ( m+1, q-f)P (x)+ Z ( m+1, ,,f) Pm(x) = 2 C~j ];(x)
m=0 me=kv+1l J=0
m|kN

Then ||g—g,ll; < 2¢, which implies that

C— Gl < fwu um( e (4.10)

But, according to Theorem 4.2, for m > 1

By yx) =27 Y u(d)(T,,4(x) = T,,,4(0)),

d|im

and so doad

Ck = Z u(d) zl_dk(ldk+l,qf) = Z A(2j-l)k9

a|N Jj=1
(2j-1,N)=1

because of (4.2). Hence

IC,—A4,| = ’ Z Agyne Z |4,] <eé, 4.11)

(2j- 1 N)- m=kv

2j~1>v

112
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since the only odd number less than v and relatively prime to N is 1. Note that
(4.10) and (4.11) imply that C, = 4,, keN. When m = 0, g(0) = I, , /= f(0) and so
A,—Cy=/(0)—g(0)=0and f=g.

COROLLARY 4.7. If f(x) = }.® A, T(x), A, = O(k™), ¢ > 0, as k — oo, then

J0) = 3 Uy SIPA),  xeL

k=0
the convergence being absolute and uniform in I.

Proof. Equation (1.18) yields 2™/, ,, .f= O(} 2, (2j— 1) m™'™) = O(m™'~)
as m —» 00, which together with d(m) = O(m**) as m — oo shows that (4.9) is satisfied.
The corollary now follows from Theorem 4.6.

THEOREM 4.8. Let f(x) = Y2 B, U(x), Y. 20|B,| < o0, and

S 21, fld(m) < co. (4.12)

Then
fX) =Y €, Py %), xe(=1,1),

m=1
the convergence being absolute and uniform on any compact subset of (—1,1).

Proof. Set
g(x):= Z (Im,gf) Pm—l,c(x)s

m=1

6= g (1= = 3 (U of ) (Pas o) (1= x9)

m=1

and

Fx):= f0) (1= 32 = ¥ B(U,(x) (1 = x2)).

k=0

The series for F and G converge absolutely in /, the latter being the case because of
(4.5) and (4.12). Next we note that G(0) = I, .f = f(0) = F(0) and by an argument
similar to that given in the proof of Theorem 4.6 we obtain

f (F(x)—G(x)) U(x)dx =0, keN.

-1

Thus F=G and f=g.

COROLLARY 4.9. If f(x) = Z,‘f_o B, U/x), B, = 0(k™), >0, as k — 0, then
f(x) = Z (Im,cf) Pm-l,g(x)-
m=1

Both representations of f converge absolutely and uniformly on any compact subset of

(=1,1).
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5. Counterexamples

The main results in Sections 2 and 3 hold for functions represented as absolutely
convergent series. This condition cannot be replaced by the assumption that f is
continuous, nor even by the uniform convergence of those series, as we shall show.

The first example of a non-zero function f, analytic in |z| < 1, with uniformly
convergent Taylor series in D,, that satisfies

"ff(e(k/n))=0, n=1,2,.., (5.1)

k=0

seems to be due to Ching (see [1]). The function is

o Hm) .
1‘1(2):= mZ.lTZ .
Observe that I, (F(2)/z)=0, k=1,2,..., because of (1.10) and the fact that
E(1) = 0. Now Corollary 1.7 implies that 7, .f, =0, k = 1,2,..., where

2 wm
A= ¥ A 7 ),

m=1 m
A rediscovery of this consequence of the Ching example is due to Newman and Rivlin
[10].

The uniform convergence of the series for £ on C, (and hence of the series for

f, on I) follows by Abel summation from the following remarkable estimate of
Davenport [S, Theorem 1]:

i u(n) e(nf) = O(m(log m)=—), m— o0, (5.2)

n=1

uniformly for #€[0, 1], where o is any fixed positive number. As for the proof of (5.1)

for f= F, we have
L) - B o)=L

k=0 m=1 ™M koo \M =

= i M=#(’l) i "Q=0,

j=1 j=1
(n,H=1 (n,H)=1

since (see [S, Lemma 12])

> Do peN (53)
= J
(n,5)=1
(a generalization of the prime-number theorem).
Next we note that if we put f,(x): = f,(—x) and recall that 7,,(—x) = (- 1)" T,,(x)
and 7P = -5, ,, k=1,..,j+1;j2 1 (#n® = 0), then I .f;=0,k=1,2,.., where

CED WE Ly A8

me=1

is uniformly convergent in /. Additionally the divided differences of i(f, +/,) and
3(f,—1,) at the Chebyshev extrema are all zero.
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Finally, we turn to the array of zeros of the Chebyshev polynomials. Put

E@:= %, (ot

m=1
modd

From (5.2) with 6 = ¢+ and 6 = ¢ +3 we get

i (=D p(n) e(ng) = ( Y uln)e(n(p+2)) - g p(n) e(n(¢+ 3)))

= O(m(logm)™), ~ m— oo,

and hence the series for F, is uniformly convergent on C,.

Therefore,
2n . 2%k —1 B Ym-1 #(m) (2k—1)m
ECa(e(5))= £ ot (B30
_ Y-t ﬂ(m) _m\§ (km+n)
- £ ot -5) E (5

f} (—1)? ﬂin((zz:—_—ll))) i(—1)*2n

CAfHED ) B0

s=1 j=1
(7.2m)=1
in view of (5.3). Now Proposition 1.8 implies that
— 1 iarccos z Ym— 1)#(’")
h(x): a )ImF(e ) = Z (—1) Up-y(x) (54)
- m=1
modd

satisfies I, ,h =0, neN.

The function 4 is continuous in (— 1, 1). We do not know whether he C(J) or even
whether 4 is bounded. But, of course, the series for 4 converges uniformly on every
compact subset of (—1,1). The accompanying Figures 1 and 2 are computer
generated graphs of the first 200 terms in series representations of f,(x) and h(x).
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