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ABSTRACT

For the infinite triangular arrays of points whose rows consist of (i) the nth roots of unity, (ii) the
extrema of Chebyshev polynomials Tn(x) on [—1,1], and (iii) the zeros of Tn(x), we consider the
corresponding sequences of divided difference functionals {In}f in the successive rows of these arrays. We
investigate the totality of such functionals as well as the convergence of the generalized Taylor series
Li°(A»/)^n-i(z) f°r a function/, where the Pk are basic polynomials satisfying lH1Pk = Sjlc. Explicit
formulae are given for the basic polynomials involving the Mobius function (of number theory), and
examples of non-trivial functions/for which / „ / = 0, n = 1,2,..., are constructed.

Introduction

Let / b e a function defined on the distinct complex points zv ...,zk. Recall that if
m1,...,mk are positive integers with Xf-im< = w> there exists a unique pe&n-i {&k

denotes the set of polynomials of degree at most k), p{z) = ao + a1z+... +an_1z
n~1,

satisfying

p«\Zj) =f\Zj), i = 0,\,...,mj-l;j = \,...,k. (0.1)

(An assumption that / has the required derivatives at zj when mj > 1 is implicit in
(0.1).) The leading coefficient of/?, that is, an_x, is called the divided difference off with
respect to zv...,zn (where each zj appears m} times in this sequence). In a more
familiar notation we have an_1 =f(z1} ...,zn), and it is clear that an_x is a symmetric
function of zx, ...,zn. We shall also use the notation

hf'- = "n-v

It is obvious that In is a linear functional which satisfies Inq = 0 if qe&mi m <n-\;
and lnz

n~x = 1. Note that if z, = ... = zn = 0, then Inf = fn-1}(0)/(n- 1)!
Let ft denote an infinite triangular array of complex numbers whose y'th row,

j = 0,1,2,... , is 0U) = (fi[j),...,/%) and suppose that / i s a function defined on all the
entries in ft. It is easy to see that, in view of the elementary properties of the divided
difference functionals Inf=f(J}[n~1}, ...,$l

n~1)), which we have just mentioned, there
exist unique basic polynomials, Pk€^k, k = 0,1,2,.. . , that are monic and satisfy

rj+1Pk = Sjk, j,k = 0,\,2,.... (0.2)
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Thus {Pk(z), / fc+1}*_0 is a normalized biorthogonal system, and, given fi, each/defined
on it has the biorthogonal expansion

L(V)^-iOO (0.3)

associated to it. In particular, if all entries in fi are zero, (0.3) becomes the Taylor
series of / and so we call (0.3) the generalized Taylor series of/with respect to fi. A
study of generalized Taylor series with respect to certain arrays is one of our themes
in this work.

Another prominent theme in what follows is the question of the totality of the
sequence of divided differences Ije, j = 1,2,... (where the notation indicates the
underlying triangular array of points) for some specified set of functions. That is, if
for eachfeX, I}f= 0,j = 1,2,..., implies t h a t / = 0, then {Z,}^ is called total for X.
The totality of {//i/r} for functions having convergent biorthogonal expansions, such
as generalized Taylor series, or series of orthogonal polynomials will be examined.
Background material about divided differences may be found in [3, 7].

Before sketching the contents of the five subsequent sections of this paper we
present some of the notation that will be used. We write Tn{x) and Un(x) for the
Chebyshev polynomials of degree n, of the first and second kinds, respectively. We set

Dp:={zeC:\z\^p}, Cp:= {zeC:\z\ = p), / : = [ - l , l ] , e(x):=e™x;

£ is the infinite triangular array of points of / with £,k
}~l) = cos((2k—\)(n/2j)),

k= \,...,j,j"^ 1 (zeros of T^x)); r\ is the infinite triangular array of points of/with
n(

k
j) = cos((k-l)n/j), k = 1, ...,j+ 1, j ^ 1 (extrema of T^x)), ^0 ) = 0; co is the

infinite triangular array of points of Cx with cok
j) = e((k—1)/0'+ 1)), k = 1, ...J+ 1,

j " ^ 0, (roots of unity); N denotes the positive integers. The Mobius function jx{n) is
defined for n e N by

(— 1)*, n is the product of k distinct primes,

0, all other n e N.

The function fi(n) is multiplicative, that is, n{nm) = /i(n)fi(m) if 1 is the greatest
common divisor of m and n (written (m,ri) =1) . The Mobius inversion formula says
that if neN

"nV\ ( °" 4 )

where d\ n means that d is a divisor of n. Finally, d(n): = £ d | n 1; that is, d(n) is the
number of positive integers that are divisors of n. If e > 0, then d(n) = O(nE), as
«-> oo, with a constant that depends on e. Proofs of these number-theoretic results
may be found in [8].

In Section 1 we exhibit the connection between the divided differences of a
function with respect to points on C1 and those of a related function with respect to
the projections of those points on /. Expressions for the divided differences, with
respect to £, q, <o, in terms of the coefficients of the expansion of the function in
Taylor series or Chebyshev series are also given.

Section 2 contains results about the totality of the {Ih^ (ft = €,tl,<o) for various
classes of functions, while connections between divided differences and analyticity of
the function are examined in Section 3. Section 4 is devoted to the explicit
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construction of the basic polynomials for £, i\ and o, bounds for these polynomials
and convergence of the corresponding biorthogonal expansions. Section 5 presents
some counterexamples which delimit the sharpness of the totality results of
Section 2.

1. Relationship between divided differences on I and on C1

If/is a complex-valued function defined on a subset of C, we define operators Ln

and Mn as follows:

Ln(J, 2): = zn-\z* - l)/(z), Mn(f, z): = zn~lf(z). (1.1)

For points x,e[-1,1] we write

xj = cos <f>p O^fy^n, z}:= e*K (1.2)

THEOREM 1.1. Suppose that

If{x,}n
oc:[-\,\),n>0,then

/>(xo,...,xJ = 2n-1Ln?(zo,z^...,zn,z;)5 (1.3)

where x} and z} are related as in (1.2).

Proof. Because of the linearity of the divided difference operator, it suffices to
prove (1.3) for p(x) = Tk(x). Thus q(z) = zk and Ln{q,z) = zh+n-\z2-1). If k = n = 0,
then both sides of (1.3) are equal to 1.

Suppose, then, that k + n^ 1. If p > 1, we denote by Cp the image of the circle Cp

under the Joukowski mapping

w = 0(z):= z + (z2-1% z = (fr\w) = Kw + wr1). (1.4)
Put

h(z):=f\(z-x}), H(w):=

Then
h&w + W1)) = (2M;)-"-1 H(W),

and, by the Hermite formula for divided differences (cf. [7]), we have

= 2n-1JLf
2ni)c

Theorem 1.1 allows us to relate the divided differences of two functions/and g,
defined on /and Cl5 respectively, whenever they can be simultaneously approximated
by corresponding polynomials p and q. For example, we have the following.
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COROLLARY 1.2. Suppose that {*,}?<= [-1,1] are n+\ distinct points. If
E?-ol4fcl<oo, then

f{x): = XXTk(x)GC(/), g(z): = £ Akz
ke

fc-0 fc-0

and
f(xo,...,xn) = 2n-1Lng(z0,z0\...,zn,z;), (1.5)

where x^ and zj are related as in (1.2).

Proof. The result follows by applying Theorem 1.1 to the polynomials

m TO

fc-0 fc-0

and then taking the limit as m -> oo. That the limiting process yields (1.5) is obvious
for the case of divided differences in distinct points. But, when x0 = 1 (or xn = — 1),
we have z0 = TQ = 1 (or zn = z~^ = — 1), and repeated nodes occur in the divided
difference on the right-hand side of (1.5). It is easy to check, however, that these
repeated nodes cause no difficulties because Lng is differentiate at 1 and —1
whenever g is continuous.

COROLLARY 1.3. Suppose that {x^ c [— 1,1] are n+1 distinct points and that

where the ak are real. Then (1.5) holds with

f(x):=Reg(ei&TCC0SX).

Proof. For each e > 0 there exists q e &m with real coefficients such that
\\g-q\\Dx < e. Writing q(z) = E E - o ^ * ^ w e P u t

p(x):=
fc-0

Then \\f— p\\j < e, and the corollary follows from Theorem 1.1 just as in the preceding
proof.

For the case when both 1 and — 1 are nodes in the divided difference we have the
following alternative relation which involves the operator Mn of (1.1).

THEOREM 1.4. Ifp(x) = ZT-oA Tk(x) and q{z) = E?-o4bZ*» then

p(^,x1,...,xn_1,-\) = 2n-lMnq(\,z1,z\,...,zn_x,z-^[,-\), (1.6)

where x} and z} are related as in (1.2).

Proof. Let h(z):= z—a,g(z) be any polynomial, and y&y1,...iyl be arbitrary
points of C. Then the Leibniz formula for divided differences (cf. [3]) yields



REPRESENTATION OF FUNCTIONS 313

Putting g(z) = (z+l)Mn(q;z), h{z) = z - 1 , and yt = 1 in (1.7) we obtain

Substituting g(z) = Mn(q,z), h(z) = z+ 1, and yt = — 1 in (1.7) gives

((z+\)Mn{q,z))(y0,...,yl_1,-\) = Mnq(y0,...,yl_1). (1.9)

Keeping in mind that a divided difference is a symmetric function of its nodes, we see
that (1.3), (1.8) and (1.9) imply (1.6).

We show next that for the special choice of nodes /? = £,17, the relation (1.3) can
be simplified further. Suppose that </>}=jn/n, j=0,...,n, so that x} = $"{,
j = 0,...,«. Then we have (cf. (1.2))

{Uzltrlt ...,*„_„Z^I, -1} = {e(0),e(\/2n), ...,e((2n-\)/(2n))},

which is the set of zeros of y/(z): = z2n — 1. Hence

M n _ ^_%'Mn

Mnq{i,z1,z1,...,zn_1,zn_1, i ; - 2 . y,

This identity, Theorem 1.4, and the representation of the divided difference

F(e(0),e(\/N),...,e((N- \)/N)) = i^F(e(/:/Ar))e(A:/iV) (1.10)
• ' " fc-0

now yield the following.

THEOREM 1.5. Let p(x) = Y,7-oAk T
k(

x)> 4(z) = E5T-o^*zfc> and

Then for the points n^ = cos((y— \)n/n), n ^ 1,

9n-2 2n-l

^ r , ...,17^) = — E (- Vkq

7
(1.12)

When *,_! = <^}n-1) = cos((2/- \)n/2n),j = 1,...,«, the zeros of Tn(x), we obtain
from Theorem 1.1 in an analogous way the following.

THEOREM 1.6. Let p(x) = Y^-QAIC Tk(x\ i(z) = LT-oAkZk- Then, for n ^ \ ,
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These results can be extended to functions defined on C1 and on / in the same way
as Theorem 1.1 yielded Corollaries 1.2 and 1.3. For example, Theorem 1.5 has the
following consequence.

COROLLARY 1.7. Suppose that g(z) = £"_0 ak z
k e C(D^), where the ak are real, and

f(x):=Reg(eiMCC0SX).
Then

9n-2 2n-l I l k

f(n{n) w ( n M - - T (—\)ke\ei —
Jvli ! - ) ' / s + i / - Z J V ' °\ \2ni

For future reference, we state the following result which is a straightforward
consequence of the properties of divided differences.

PROPOSITION 1.8. Suppose that g{z) = X X o ^ ^ C W X where the ak are real,
and set _ .

/(*):= Imgfe'™""), /(*): = /(*)/(! -x*)K

Then, for n> 1,

2n-l n

We further remind the reader of two elementary formulae (cf. [11]) that hold for
any complex-valued function / defined on tj or 4:

^ ( U 7 )

Now suppose that f{x) = Yjt-oAkTk{x), where the Chebyshev expansion is
uniformly convergent on /. Applying the respective divided difference functional
term-by-term to the Chebyshev expansion yields

/07(
x
n>, ....tfiT+i) = 2n"x f] A(2j_1)n, n^\ (1.18)

and

(cf. [11]). We also mention that the corresponding formula for the divided difference
in the «th roots of unity, derived from (1.10), is

f(e(0),e(\/n), ...,e((n-\)/n)) = £«,„_„ (1.20)

where/(z) = E£o a i z ' a nd the power series is uniformly convergent on Cv
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Theorem 1.6 and (1.19) can be somewhat simplified by considering representations
in terms of the Uk(x), the Chebyshev polynomials of the second kind, rather than the
Tk(x). Thus we have the following.

THEOREM 1.9. Ifp(x) = ££.o Bk Uk(x) and r{z) = z X^-o Bk z\ then

Proof. It is easy to verify that

7J(x) = !(£/ , (*)- t /^ t f ) ) , / = 0, l , . . . ( ^ = - 1 , ^ = 0) (1.21)

and, therefore, if
A m

we obtain
IB^A-A^, j = 0,...,m (Am+1 = Am+2 = 0). (1.22)

Put

Then in view of the identities

and Xi*-i(~ 0* = 0> w e deduce from Theorem 1.6 and (1.22) that

2k-
x le l— -— \ - e \ —

4n \ 4n

4n I \ 4n
In 2n

Notice that if

£ 1**1 < oo, (1-23)

then YJk°.0Blc Uk(x) is absolutely convergent on any compact subset of (— 1,1) since

Uk(cos <f>) = (sin (k+ 1) 0)/sin 0, 0 < <f> ^ 7i.
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If (1.23) holds and we set

/ ( * ) = X X ^ W > (1-24)
fc-0

then Theorem 1.9 and the identity

?r_n»e£*zib+nWM)'2"> '-»•-»)»-w-1.2,...,
1,1 U ^ 4n ^+ ' ) j -{ 0 > s*(2j-i)n-\

yield

/ [ f i ^ - . f f - " ) = 2-1£(-1) '" 1 *„,_„„_!, n > 1, (1.25)
i-i

since the series in (1.24) is uniformly convergent on [<^n~1),£(
1
n~1)].

The simpler representation (1.25) cannot be obtained directly from Theorem 1.6
via (1.19) and (1.22) since the condition/(x) = E?-o^* Tk(x)> E?-o \At\ < °°>is m u c h

stronger than conditions (1.24) and (1.23). The former condition implies that /GC(/)
while the latter allows / to tend to infinity at 1 or — 1.

2. Totality of divided differences

A sequence of linear functionals S£pj = 1,2,..., acting on a linear space Fis called
total if J ^ / = 0,7 = 1,2,..., implies tha t /= 0 for any/eF. In this section we show
that the divided differences {I]fi}, j= 1,2,... (where the notation indicates the
underlying triangular array of points), for fi = w,ij,^ are total, each for an
appropriately chosen function space.

Suppose that fip = e{{j-1)/(«+1 )),j= 1,...,«+1; « = 0,1,..., so that /?= w.
The following result is due to Katai [9], but we present an equally brief proof which
suggests the approach to the cases fi = tj,^ that will follow.

THEOREM2.1. Iff(z) = ££>fcz*, X£0|aJ < oo ,andl n j= 0,n= 1,2,..., then
/=0.

Proof. According to (1.20) we have

W = E « f - i = °. « = 1,2,.... (2.1)

Let px,p2,... denote the prime numbers in increasing order and let Nv: = plp2•... pv.
Then

YJ Kd)In
d\N,

d,af= L A<(
d\Nv

00

= Y,aki
k"\

d) £ aj(
j-i

»-i E i*
d\k

d\Nv

tn-1

00

' " ) = 2J ak\
fc-1

,-i E tid
d\{k,NJ

00

)= E
fc-l

(fc,Nv)-l

i, (2.2)

where we use (0.4) to obtain the last equality. In view of the hypothesis that
hj= 0 ,«= 1,2,..., (2.2) yields

an-i = - E akn-i> (2-3)
(k,NJ-l

since while (\,Nv)=l, (k,Nv) > 1 for 1 < k
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Suppose that the theorem is false and that fln_x # 0 for some n. Choose m so large
that £ » m \ak\ < |aw_J. Then, if we put v = m, (2.3) gives

K-il = l E a
kn-i\^ E Kl<k-il ;

a contradiction. Thus an = 0, n = 0,1,..., and s o / = 0.

When fi = tf a result analogous to Theorem 2.1 is the following.

THEOREM 2.2. ///(*) = ^ZoA Tk(x), £ » 0 |^J < oo and InJ= 0, « = 1,2,...,
= 0.

Theorem 2.2 was proved by Eterman [6]. A proof similar to that of Theorem 2.1
also establishes Theorem 2.2 by using (1.18) instead of (1.20) and choosing Nv to be
the product of the first v odd primes.

We turn next to the case fi = ^ for which the corresponding result is somewhat
more elaborate. We require the following result.

LEMMA 2.3. Suppose that m = 1,2,... and s = 2k— \, fc = 1,2,.... Then

a{s,m):= E r-v-,v -, , 0 (sm)>\

Proof If (.?, m) = 1 the result is obvious. Suppose that (s, m) > 1 and
q = p1-... pv is the product of the distinct primes dividing (s,m). Then

d\q

since fi(d) = 0 for all the other divisors of (s, m). Fix a prime divisor p of q, and put
r = s/p. Then if d\ q/p we obtain n{dp) = —n{d) and

( _ \\\(rld)(p-l) _ f J\i(p-1)

since the numbers p, d and r/d are odd. Hence

o1 = E

= E
d\(qlv)

since every summand is zero.

Now we are ready to prove the following.

THEOREM 2.4. Ifftx) = ZZ**t Uk(x)t ZtoW < « . ™dlnj= 0, n = 1,2,...,
thenf=0.

Proof. Equation (1.25) yields

W = 2-1 E (- l r 1 ^ . ! ) . . ! = 0, n > 1. (2.4)
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Let pltpt,... be the odd primes in increasing order and put Nv = px-... pv. Then

ro-1
modd

s-l d\s
sodd d\Nv

s - l
sodd

P-"*.-!. (2.5)

where Lemma 2.3 was used in the last equality. From (2.4) and (2.5) we obtain

which, in view of the convergence of £jj°_0 |5fc|, implies that Bn = 0, n = 0,1,2,..., as
in the proof of Theorem 2.1.

3. Analyticity and the asymptotic behaviour of divided differences

If fi = a) and f(z) has an absolutely convergent power series on Dv we show first
that the sequence Ino)f,n= 1,2,..., defines the radius of convergence of/in precisely
the same way as the sequence of Taylor coefficients of/does. This result is then used
to provide information about the zeros of the sequence of interpolating polynomials
to /on a).

THEOREM 3.1. Iff(z) = £"-oa*z* with £?-olflJ < oo, then

lim

Proof, (i) Suppose that

lim sup |<2fc|
1/fc = - , p > 1.

fc-oo P

Then given e > 0 we have an = O((p — e)~n) as n -> oo, and (1.20) implies that

I W - * . - i l = O((p-e)-*n) as « -> oo.
Therefore i

limsup|/nieo/r = - .
n-oo ^

(ii) Suppose that
limsup|aJ1/*=l,

but
l i m s u p | / n i O / r = i p > \

n-»oo r

(/? cannot be less than 1 since {In<(Of}™ is a bounded sequence). Choose q such that
\/p <q< 1. Then |/Bt0)/| < qn for « > «0. Next choosey > «0 so that q* < \-y/q and
|â | > qj and choose m such that
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Then from (2.2) with v = m and n— 1 =j we obtain

<*j= E Kd)I(J+1)ditJ- E
<*^m * > P m

(*.JVm)-
and so

E I«*I ^ r ^

a contradiction which establishes the theorem.

Theorem 3.1 has the obvious implication that the radius of convergence of the
power-series expansion of/is given by

l / l imsup | / n i 0 / r
n-»oo

( / being entire if the denominator is zero). Moreover, because of the definition of
Inmf as the leading coefficient of S£n_^f, z), the interpolating polynomial of degree
n—\ t o / a t the «th roots of unity, Theorem 3.1 can also be used in examining the
behaviour of the zeros of ^n_1{f, z). For example, we have the following.

THEOREM 3.2. Iff(z) = Y^f-o^z", £«_0\ak\ < oo, and

then there is a subsequence A c N such that the zeros of ^n_x(/), n e A, converge
weak-star to the uniform distribution on the unit circle.

Proof. Theorem 3.1 implies the existence o f A c N such that

Vn,<J\lln-* 1 as«-* oo,«eA.
Then for the sequence of monic polynomials

we A (and n large enough so that /BiCU/# 0), we have

in view of || J5fn_i(/) || D ^ n \\f\\ D . The theorem now follows from [2, Theorem 2.1] of
Blatt, Saff and Simkani.

We remark that the preceding two theorems improve results of Simkani [12]. The
analogues of Theorem 3.1 for Chebyshev nodes are the following.

THEOREM 3.3. ///(*) = £«.o Ak Tk(x), £ « 0 \Ak\ < oo, then

THEOREM 3.4. Iff(x) = E " - o ^ Uk(x), E^ol^ l < °o5 then

limsup|5fc|
1/fc = limsup|/n4/|1/n.

fc-»oo n-»oo

The proofs of Theorems 3.3 and 3.4 follow the proof of Theorem 3.1.
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If we know that

l i m s u p | / M / r = - or l i m s u p | / n i , / r = - , p>\,
n-»oo P n-»oo P

then/is analytic in an ellipse with foci at ± 1 and semiminor axis equal to K/> —(1 IP))-
When/is not analytic on / we have

limsupMJ1"1 = limsup|£J1/n = 1
n-»oo n-»oo

and, just as before, an application of [2, Theorem 2.1] yields the following.

THEOREM 3.5. / / / (* ) = £ « 0 A k Tk(x), ^to \At\ < oo and

then there is a subsequence A c N such that the zeros of the polynomials interpolating
f at the extrema ofTn,neA, converge weak-star to the arcsine distribution on I.

THEOREM 3.6. / / / (* ) = £» 0 B k U k (x ) , £ » 0 \ B k \ < oo and

then there is a subsequence A c N such that the zeros of the polynomials interpolating
f at the zeros ofTJx), we A, converge weak-star to the arcsine distribution on I.

4. Basic polynomials for a sequence of divided differences

The basic polynomials Pkifie^k (where the second subscript is the underlying
infinite triangular array) were described in the introduction. In particular we recall

Ii+iPk = Sjk, j , k = 0 , 1 , 2 , . . . . (4.1)

As we now show, for fi = o>, 17 and {;, the basic polynomials can be obtained explicitly
from the formulae (1.20), (1.18), and (1.25), respectively; or their finite inverses,
namely (2.2),

E Kd)2l-ndInd+1J= t -V-i>n, (4-2)
d|iV fc-1

dodd (2fc-l,JV)-l

and (2.5), respectively.
We turn first to the case of the roots of unity, fi — (a. Let

Then (2.2) with v = m a n d / = Pm reads

If we require that equation (4.1) holds for fi = co, then an can be non-zero only if
(n+\)d= m+\ in which case an = n{d). Thus (cf. [4]) we have obtained the
following.

THEOREM 4.1. If

/ l ( m + 1 )

n,m, «» ™ = 0, 1,2, ... .
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Secondly, let us consider the case of the extrema of the Chebyshev polynomials,
fi = i\. Let Pnifr) = YiT-oAiTi(x) s a t i s fy C4-1)- N o t e t h a t po,n = 1 trivially. Suppose
that m ^ 1. If 1 ^ 7 ^ m then according to (4.2), with n=j,f= P , and N taken to
be the product of the first m odd primes,

d\N

and Aj^O only if jd = m for some odd d, in which case A^ = n{d)2l~m. Hence

d\m
rfodd

To determine Ao we observe that, for m ^ 1,0 = ^ Pm n = -Pm,,(0), and obtain the
following.

THEOREM 4.2. POtfr) = 1, and for m= 1,2,...,

Pm,n(x) = 21-m I rid)(Tm/d(x)-Tm/d(0))
d\m
rfodtl

/c polynomials with respect to ij.

Finally, we turn to the case of the zeros of the Chebyshev polynomial, fi = £.
Let Pmi = ^£T-oBkUk(x) satisfy (4.1). Note that Po f = 1. Suppose that m^\. If
2 ^ k ̂  m+ 1, then according to (2.5), with v = m, n — k, a n d / = Pm v

and ^ . j 7̂  0 only if kd = m+l for some odd integer d, in which case
Bk_x = {-\fd-l)n{d)2-m. Hence

But for m ^ 1, 0 = / x . j / ^ ^ = ^,,=(0) determines Bo and we obtain the following.

THEOREM 4.3. POtfr) = 1 and, for m = 1,2,...,

d\m+l
dodd

are the basic polynomials with respect to £.

Theorems 4.1, 4.2 and 4.3 easily give the following estimates for the basic
polynomials involved. If we recall that d(k) denotes the number of positive divisors
of A:, IITJI, = 1 and | | (1-JC2)« £/*(*) ||7 = 1, we obtain

ll^-i.X, < !>(<0l ^ M , (4-3)
d\m

2m-l\\PmJI^2d(m), (4.4)
and

2-i||(i -xtP^xn, ^ 2d(m). (4.5)

We are now in a position to present some sufficient conditions for the absolute
convergence of biorthogonal expansions when 0 = <o, i\ and <*.

II JLM 42
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THEOREM 4.4. Let f{z) = E?-oflfczfc> E*°-o W\ < °° and suppose that

(4.6)

Then
m-l

the convergence being uniform and absolute in Dv

Proof. In view of (4.3), inequality (4.6) implies that

is analytic in \z\ < 1 and continuous in Dv Write

g(z)=lckz
k.

fc-0

In order to prove the theorem it suffices to show that ck_1 = ak_x, keN. Fix k and
e>0. Let v be chosen so that ££_f c>J<£ and t%-JL,J\d(m) < e. Put
N = flp^v^j where p is prime, and

m - l

fcJV-1

= E ^'-
Then from (4.3) we get

II m - l

m-fcv+l

)"m-l,a>
o,

E
m-fcv+l
m\kN

and so

Since, according to Theorem 4.1,

we obtain

\dz\ < 2e. (4.7)
1*1-1

c = y
uk-l Li

d\N

in view of (2.2). Hence

, J = E Krf) 4*.a/ = E fyt-i>
d>v
d\N

E <v. < «• (4.8)

Now (4.7) and (4.8) imply that \ak_1 — cfc_J < 3e and hence, since e > 0 is arbitrary,
tffc-i = cfc-i> ^ = 1 , 2 , . . . .
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COROLLARY 4.5. Iff{z) = Yjk-*akz\ ^nd <*k = Oik-1-6), 3 > 0, as k-> oo, then

m - 1

the convergence being absolute in Dv

Proof. Equation (1.20) yields Im<mf= Oim~l~5), m -> oo and therefore (4.6) holds
in view of the bound on dim) mentioned in the introduction.

THEOREM 4.6. Let fix) = E^-o^t^C*)' E"-ol^*l < °°> and

E r-^I^Jldim) < oo. (4.9)
Then

m-0

the convergence being uniform and absolute in I.

Proof Set

m-0

Because of (4.9) and (4.4) the series for g is absolutely and uniformly convergent in
/, and £eC(/) . Let

Q : = - f gix) Tkix)—^—L, k = 1,2,....
"" J -i (1 —x p

We claim that Ck = Ak. Fix k and e > 0. Choose v so that Em-kJ^ml < e and
) < e. Put N:= Ylaizp^vP' where p is prime, and

m-kv+1 }-0
m\kN

Then ||g—gv\\r < 2e, which implies that

I Q - CJ < - f |g(*)-*,(*)l_^ri < Ae. (4.10)
^J ( l x 2 >

But, according to Theorem 4.2, for m

d\m
. dodd

and so
C = ^
^k I

because of (4.2). Hence

\Ck-Ak\= t A(ij_1)k ^ f \Am\ < e, (4.11)
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since the only odd number less than v and relatively prime to N is 1. Note that
(4.10) and (4.11) imply that Ck = Ak, ke N. When m = 0, g(0) = Ix , / = /(0) and so

COROLLARY 4.7. Iff{x) = E?-o4fc Tk(x), Ak = O(k~l-% e>0,ask-^co, then

the convergence being absolute and uniform in I.

Proof Equation (1.18) yields 2 1 - "7 m + M / = 0 ( E £ i ( 2 / - l r^/w"1"8) =
as w ->oo, which together with d(m) = O(me'2) as m -> oo shows that (4.9) is satisfied.
The corollary now follows from Theorem 4.6.

THEOREM 4.8. Let f(x) = £ « 0 B k Uk(x), ^_0 \Bk\ < oo, and

t21-m\Im,if\d(rn)<oo. (4.12)
n » - l

Then

f(x)= t(Uif)Pm-i.fr)> ^^(-1,1),
m - l

//ie convergence being absolute and uniform on any compact subset of {— 1, 1).

Set

and

x y Jf ^ • J \p*j \ A -^ / "~~ / j JD iu^ Cy l;\-^'/ \ 1 "̂™ -^ / / •

The series for F and G converge absolutely in /, the latter being the case because of
(4.5) and (4.12). Next we note that G(0) = / l i { / = /(0) = F(0) and by an argument
similar to that given in the proof of Theorem 4.6 we obtain

(F(x) - G(x)) Uk(x) dx = 0, k(=N.

Thus F = G a n d / = g.

COROLLARY 4.9. Iff(x) = E?-o5fc Uk(x)> Bk - O(k~l~E), s > 0, as k-> oo, then

Ax) = E (A

Both representations of f converge absolutely and uniformly on any compact subset of

(-1,1).
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5. Counterexamples

The main results in Sections 2 and 3 hold for functions represented as absolutely
convergent series. This condition cannot be replaced by the assumption that / is
continuous, nor even by the uniform convergence of those series, as we shall show.

The first example of a non-zero function/, analytic in \z\ < 1, with uniformly
convergent Taylor series in Dlt that satisfies

nik/n)) = 0, « = 1 , 2 , . . , (5.1)
fc-0

seems to be due to Ching (see [1]). The function is

Observe that Ilcw(F1(z)/z) = 0, A: =1 ,2 , . . . , because of (1.10) and the fact that
= 0. Now Corollary 1.7 implies that Ik Jx = 0, k = 1,2,..., where

A rediscovery of this consequence of the Ching example is due to Newman and Rivlin
[10].

The uniform convergence of the series for Fx on Cx (and hence of the series for
/ i on / ) follows by Abel summation from the following remarkable estimate of
Davenport [5, Theorem 1]:

m

£ fi(n) e{nd) = 0{m (log m)-°), m -> oo, (5.2)
n - l

uniformly for 0e [0,1], where a is any fixed positive number. As for the proof of (5.1)
for f=Fx we have

^-i J }-i J
(nj)-l (nj)-l

since (see [5, Lemma 12])

)-i J
(nj)-l

(5.3)

(a generalization of the prime-number theorem).
Next we note that if we put/2(;c): = / 1 ( - x ) and recall that Tm(-x) = ( - l)m Tm(x)

and nf = -»/&_*, k = \,...,j+ 1 ; y > 1 (rj[0) = 0), then IkJt = 0, *: = 1,2,..., where

is uniformly convergent in /. Additionally the divided differences of f(/i +/2) and
M/1—/2) a t t n e Chebyshev extrema are all zero.
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200 u(m)
FIG. 1. Graph of the partial sum £ f^-J-TJx) off,

m-l m

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0
2°°

FIG. 2. Graph of the partial sum £ ( - ^ C/ 8 ( M ) ( JC) of h(x)
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Finally, we turn to the array of zeros of the Chebyshev polynomials. Put

m-1
modd

From (5.2) with 0 = 0+f and 9 = 0 + | we get

. i / ™
-\yn-1}lj(n)e(n<l>) = — E //(«M«(0+±))-

•^ \ n - l in-1
nodd

= O(m(\ogm)~a), m -*• oo,

and hence the series for F2 is uniformly convergent on Cv

Therefore,

in view of (5.3). Now Proposition 1.8 implies that

modd

satisfies 7ra i h = 0, « £ N.
The function h is continuous in (— 1,1). We do not know whether he C(7) or even

whether h is bounded. But, of course, the series for h converges uniformly on every
compact subset of (—1,1). The accompanying Figures 1 and 2 are computer
generated graphs of the first 200 terms in series representations of fx{x) and h(x).
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