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On normalized Ricci flow and smooth structures on four-manifolds
with b7 =1
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Abstract. We find an obstruction to the existence of non-singular solutions
to the normalized Ricci flow on four-manifolds with b = 1. By using this
obstruction, we study the relationship between the existence or non-existence
of non-singular solutions of the normalized Ricci low and exotic smooth struc-
tures on the topological 4-manifolds CP2#¢CP?, where 5 < £ < 8.
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1. Introduction. Let X be a closed oriented Riemannian manifold of dimension
n > 3. The normalized Ricci flow on X is the following evolution equation:

fogdﬂg> ;
fx dpg ’

where Ricg, s, are the Ricci curvature and the scalar curvature of the evolving
Riemannian metric g and dug is the volume measure with respect to g. Recall that
a one-parameter family of metrics {g(t)}, where ¢t € [0,T) for some 0 < T < o0, is
called a solution to the normalized Ricci flow if it satisfies the above equation at
all z € X and ¢t € [0,7). A solution {g(t)} on a time interval [0,T) is said to be
maximal if it cannot be extended past time T'. In this paper we are interested in
solutions which are particularly nice. The following definition was first introduced
and studied by Hamilton [11, 6]:

0 . 2
579 = —2Ricy + o <

Definition 1. A maximal solution {g(¢)}, ¢ € [0,T), to the normalized Ricci flow
on X is called non-singular if 7" = co and the Riemannian curvature tensor Rmg )
of g(t) satisfies sup y [9 o) [Riny(| < oo.
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Fang and his collaborators [9] pointed out that for a 4-manifold with nega-
tive Perelman invariant [23, 14], which is equivalent to the Yamabe invariant in
this situation [2], the existence of non-singular solutions forces a topological con-
straint on the 4-manifold. On the other hand, the first author proved [12] that, in
dimension four, the existence of non-singular solutions is fundamentally related
to the smooth structure considered. An important ingredient in his theorems was
the non-triviality of the Seiberg-Witten invariant. In the case when the underlying
manifold has bt > 2, this is a diffeomorphism invariant. However, when o™ = 1
the invariant depends on the choice of an orientation on H?(X,Z) and H*(X,R).
The obstructions in [12, 13] are for manifolds with b > 2. We extend these results
to the case b™ = 1 as follow:

Theorem A. Let X be a closed oriented smooth 4-manifold with b*(X) = 1 and
2x(X) + 37(X) > 0. Assume that X has a non-trivial Seiberg- Witten invariant.
Then, there do not exist non-singular solutions to the normalized Ricci flow on
X#KCP? if

1
k> 3 2x(X) +37(X)).
By using Theorem A, we study manifolds with small topology and emphasize
how the change of the smooth structure reflects on the existence or non-existence
of solutions of the normalized Ricci flow:

Theorem B. For 5 < ¢ < 8, the topological 4-manifold M := CP%#(CP? satisfies
the following properties:

1. M admits a smooth structure of positive Yamabe invariant on which there
exists a non-singular solution to the normalized Ricci flow.

2. M admits a smooth structure of negative Yamabe invariant on which there
exist non-singular solutions to the normalized Ricci flow.

3. M admits infinitely many distinct smooth structures all of which have neg-
ative Yamabe invariant and on which there are no non-singular solutions to
the normalized Ricci flow for any initial metric.

2. Polarized 4-manifolds and Seiberg-Witten invariants. Let X be a closed ori-
ented smooth 4-manifold. Any Riemannian metric g on X gives rise to a decom-
position H?(X,R) = H;‘ ®H, , where H;, H, consists of cohomology classes for
which the harmonic representative is g-self-dual or g-anti-self-dual, respectively.
Notice that b+ (X) := dimH, is a non-negative integer which is independent of the
metric g. In this article, we always assume that b+ (X) > 1 and mainly consider the
case when b (X) = 1. For a fixed b*(X)-dimensional subspace H C H%(M,R) on
which the intersection form is positively defined, we consider the set of all Riemann-
ian metrics g for which H; = H is satisfied. The Riemannian metric g satisfying
this property is called a H-adapted metric. Under the assumption that there is at
least one H-adapted metric, H is called a polarization of X and we call (X, H)
a polarized 4-manifold following [19]. For any given element o € H?(X,R) and a
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polarization H of X, we use at to denote the orthogonal projection of «, with
respect to the intersection form of X, on the polarization H. For any polarized
4-manifold (X, H), we can define a differential topological invariant [32, 19] of
(X, H), by using Seiberg-Witten monopole equations [32]. We briefly recall the
definition, referring to [32, 19] for more details. Let s be a spin® structure of the
polarized 4-manifold (X, H). Let ¢;(Ls) € H?(X,R) be the first Chern class of
the complex line bundle £ associated to s. Suppose that ds := (¢ (Ls) — 2x(X)—
37(X))/4 = 0, which forces the virtual dimension of the Seiberg-Witten mod-
uli space to be zero. Let g be a H-adapted metric and assume that cf (Ls) #0
with respect to H = H} is satisfied. Then [32, 19], the Seiberg-Witten invariant
SWx (s, H) is defined to be the number of solutions of a generic perturbation of the
Seiberg-Witten monopole equations, modulo gauge transformation and counted
with orientations. We can still define the Seiberg-Witten invariant of (X, H) for
any spin® structure s for which ¢ (Ls) # 0 and d, is even and positive. In this
case, SWx (s, H) is defined as the pairing < 77%5, [M;] >. Here n is the first Chern
class of the based moduli space as a S'-bundle over the Seiberg-Witten moduli
space M, and [M] is the fundamental homology class of M. Hence, the Seiberg-
Witten invariant SW (s, H) of a polarized 4-manifold (X, H) is well-defined for
any spin® structure s with ¢ (£s) # 0. Moreover, it is known [21] that SWx (s, H)
is independent of the choice of the polarization H if b7 (X) > 2, or b7 (X) = 1 and
2 (X) + 37(X) > 0.

One of the crucial properties of the Seiberg-Witten invariants above is that the
non-triviality of the value SWx (s, H) for a spin® structure s with ¢ (£,) # 0 forces
the existence of a non-trivial solution of the Seiberg-Witten monopole equations
for any H-adapted metric. Using this, LeBrun [17, 20, 19] proved

Theorem 1 ([17, 20]). Let (X, H) be a polarized smooth compact oriented 4-manifold
and let s be a spin® structure of X and let cf # 0 be the orthogonal projection to
H with respect to the intersection form of X. Assume that SWx (s, H) # 0. Then,
every H-adapted metric g satisfies the following bounds:

/sgdpg > 321%(cf)?,

X
1/<2|W+|2+83> dug > g(c+)2.
42 g 24 ) "9 = 31

X

84 15 the scalar curvature of g and W;‘ is the self-dual Weyl curvature of g.

On the other hand, let N be a closed oriented smooth 4-manifold with b (N) =
0 and k& = bo(N). By the celebrated result of Donaldson [8], there are classes
e1,¢e2, - ,ex € H?(N,Z) descending to a basis of H?(N,Z)/torsion with respect
to which the intersection form is diagonal and ¢? = —1 for all i. An element 3 €
H?(N,Z) is called characteristic if the intersection number 8-z = x -z (mod 2).
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If B is characteristic, then = wo(N) (mod 2) and moreover there is a spin®
structure t on N such that ¢;(£{) = . Then modulo torsion, 5 can be written

as Zle a;e;, where a; are integers. Let = := Zle x;¢;, where x; are integers.
Then we have -z = — Zle a;z; and x - x = — Zf:l x2. This tells us that 3
is characteristic if and only if the a; are odd integers, where i = 1,--- k. For

example, we can obtain characteristic elements by taking a; = £1. The following
result includes Lemma 1 of [19] as a special case.

Proposition 2. Let X be a closed oriented smooth 4-manifold with b™(X) > 1 and
2x(X) + 37(X) > 0. Moreover, suppose that the Seiberg- Witten invariant of X is
non-trivial. Let N be a closed oriented smooth 4-manifold with by(N) = bt (N) = 0.
Let H be any polarization of a connected sum M := X#N. Then there is a spin®
structure s on M such that SWx (s, H) # 0 and the self-dual part ¢ of the first
Chern class of the complex line bundle associated with s satisfies

(1) (c)? = 2x(X) + 37(X).

Proof. Notice that the Seiberg-Witten invariant of X is well-defined and inde-
pendent of the choice of the polarization under the assumption that % (X) > 2
or b¥(X) = 1 and 2x(X) + 37(X) > 0. Suppose that ¢ is the spin® structure
on X with non-trivial Seiberg-Witten invariant. Let o := ¢ (£.) € H%(X,Z) be
the first Chern class of the complex line bundle L. associated to ¢. Then, the
non-triviality of Seiberg-Witten invariant forces the dimension d. of the Seiberg-
Witten moduli space to be non-negative and we therefore have a? > 2x(X) +
37(X) > 0. Moreover, since for any given polarization of X, we have (a*)? > o?,
we obtain

(2) (a*)? = 2(X) + 37(X).

Let e1,¢2, -+ ,¢, € H?(N,Z) be cohomology classes descending to a basis of
H?(N,Z)/torsion with respect to which the intersection form is diagonal, where
n = by(N). Let H be a polarization of the connected sum M := X#N. Choose
new generators ¢; = +e; for H(N,Z) such that

(3) at (&)t >0

with respect to the polarization H. Then Z?zl ¢; is a characteristic class and there
is a spin® structure t on N such that ¢i(£) = > i, ¢;. Notice also that we have
(L) = (1L, 6)* = —n = —by(N).

Consider the spin® structure s := c¢#t on the connected sum M := X#N. The
first Chern class of the complex line bundle associated with s satisfies ¢1(Ls) =
a+ci (L) =a+ Y. ¢, where we are using the same notations, a, ¢1(Ly), €, to
denote the induced cohomology classes in H?(M,Z). The gluing construction for
the solutions of the Seiberg-Witten monopole equations on M := X#N, as in the
proof of Theorem 3.1 in [28] (see also the proof of Proposition 2 in [16] for bt > 2),
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tells us that SW, (s, H) # 0. On the other hand, we obtain the following bound on
the square (c])? of the orthogonal projection ¢ of ¢; (L) into the polarization H:

n 2 n n
(cf)? = <04+ + Z(@')+> =(a")?+2) (@ (@)") + ) _((&)7)
i=1 i=1 i=1
> (a")?
where we used (3). This bound and (2) implies the desired bound (1). O

3. Asymptotic behavior of the Ricci curvature of non-singular solutions. Let us
recall the following result on the trace free part of the Ricci curvature of a long
time solution of the normalized Ricci flow.

Lemma 3 ([9, 12]). Let X be a closed oriented Riemannian n-manifold and assume
that there is a long time solution {g(t)}, t € [0,00), to the normalized Ricci flow.
Assume moreover that the solution satisfies |sy)| < C and

4) Sg(0) i= 713%1)1(1 Sqt)(x) < —c <0,

where the constants C and ¢ are independent of both x € X and time t € [0,00).
Then, the trace-free part ;g(t) of the Ricci curvature satisfies

m—+1

(5) / / | Py Pdptgaydt — 0
X

m

when m — 0.

On the other hand, there is a natural diffeomorphism invariant arising from
a variational problem of the total scalar curvature of Riemannian metrics on
any given closed oriented Riemannian manifold X of dimension n > 3. As was
conjectured by Yamabe [33], and later proved by Trudinger, Aubin, and Schoen
[4, 26, 31], every conformal class on any smooth compact manifold contains a Rie-
mannian metric of constant scalar curvature. To be more precise, for any conformal
class [g] = {vg | v: X — R*}, we can consider an associated number Y}y, which
is called the Yamabe constant of the conformal class [g], and is defined by

Sp d,
Yig) = inf %v

helg] (fX d,uh) ™

where dyy, is the volume form with respect to the metric h. It is known [4, 26, 31]
that this number is realized as the constant scalar curvature of some metric in the
conformal class [g]. Then, Kobayashi [15] and Schoen [27] independently introduced
an invariant of X by considering Y (X) := supjgec Yg), where C is the set of all
conformal classes on X. This is now known as the Yamabe invariant of X. We
have the following bound:
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Lemma 4 ([12]). Let X be a closed oriented Riemannian manifold of dimension
n > 3 and assume that the Yamabe invariant of X is negative, i.e., Y(X) < 0.
If there is a solution {g(t)}, t € [0,T), to the normalized Ricci flow, then the
solution satisfies the bound (4). More precisely, the following is satisfied:

Y(X)
(VOlg(O))2/n

IN

‘§g(t) = ;Iél)l{l sg(t) (Z') < 0.

We recall now the following definition:

Definition 2 ([12]). A maximal solution {g(t)}, t € [0,T'), to the normalized Ricci
flow on X is called quasi-non-singular if 7' = oo and the scalar curvature sy of
g(t) satisfies supy . 0,00) [8g(1)| < 00

Notice that any non-singular solution is quasi-non-singular.

Proposition 5. Let X be a closed oriented smooth 4-manifold with b*(X) > 1 and
2x(X) 4+ 37(X) > 0. Assume that X has a non-trivial Seiberg-Witten invariant.
Let N be a closed oriented smooth 4-manifold with by(N) = b*T(N) = 0. If there is
a quasi-non-singular solution to the normalized Ricci flow on the connected sum
M = X+#N, then the trace-free part gg(t) of the Ricci curvature satisfies (5) when
m — —+00.

Proof. First of all, notice that the connected sum M has non-trivial Seiberg-Witten
invariant with respect to any polarization by Proposition 2. By Witten’s vanish-
ing theorem [32], this implies that M cannot admit any metric of positive scalar
curvature. On the other hand, it is known [18] that the Yamabe invariant of any
closed n-manifold Z which cannot admit metrics of positive scalar curvature is
given by

2/n

) V@) = | inf [l |
zZ

gERz

where R z is the set of all Riemannian metrics on Z. Combining the first inequality
in Theorem 1 with the inequality in Proposition 2 we get the following bound:

(7) / sadpg > 321% (2¢(X) + 37(X)) .
M

Note that this bound holds for any H-adapted metric on M, where H is any
polarization of M. In particular, it holds for any metric g. Therefore, (6) and (7)
imply V(M) < —4m/2(2x(X) + 37(X)) < 0. This bound and Lemma 4 tell us
that any solution to the normalized Ricci flow on M satisfies

o< g 20 3000 o
g(t) VOlg(o)
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This inequality combined with Lemma 3 shows that any quasi-non-singular solu-
tion to the normalized Ricci flow on M must satisfy (5) when m — +o0. 0

4. Proof of Theorem A. We are now in the position to prove Theorem A, which
is a special case of the following result:

Theorem 6. Let X be a closed oriented smooth 4-manifold with b+ (X) > 1 and
2x(X)+37(X) > 0. Assume that X has a non-trivial Seiberg- Witten invariant. Let
N be a closed oriented smooth f-manifold with by(N) = bT(N) = 0. Then, there
do not exist quasi-non-singular solutions to the normalized Ricci flow on X#N if
3ba(N) > 2x(X) +37(X) holds. In particular, there is no non-singular solution to
the normalized Ricci flow.

Proof. Suppose that there would be a quasi-non-singular solution {g(t)} to the
normalized Ricci flow on the connected sum M := X#N. Then the second
inequality in Theorem 1 tells us that, for any time ¢, g(t) must satisfy

1 2
471_2/< |W (f)|2 )dlufq(t) > g(CT)Q

X

for any spin® structure s with SWy, (s, H) # 0, where H := H;r( B However, Propo-
sition 2 now asserts that the connected sum M := X#N has a spin® structure
with (¢)? > 2x(X) + 37(X). We therefore conclude that

1 g(t 2
(8) 4ﬂ/<wwm2 “)wm>3@nm+wm»
M
On the other hand, we have the following Gauss-Bonnet like formula:

2 o 2
_ 1 2 Sty | 7o) |
M

In particular, we obtain
m+41

(M) +3r(M) — / (2x(M) + 3r(M)) dt

m+1 ‘ o |2
Tyt
47r2 //<2| g(t)'2 )_ 9(2) )dug(t)dt'

Since Proposition 5 tells us that a quasi-non-singular solution {g(¢)} must satisfy
(5), by taking m — oo in the above inequality, we obtain

m—41

t
<m2ﬂm+wwwwmkhy//ewmﬁ ivad
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Moreover, by the inequality (8)7 we get

m+1 mil
m M "
= g(Zx(X)-i-?)T(X))'

This bound and (9) tell us that the following holds:
3(2x(M) +37(M)) = 2(2x(X) + 37(X)).

Since we have 2x(M)+37(M) = 2x(X)+37(X)—b2(N), we get 3(2x(X)+37(X)—
ba(N)) > 2(2x(X) + 37(X)), which is equivalent to 3ba(N) < 2x(X) + 37(X).
By contraposition, we obtain the desired result. (|

5. Proof of Theorem B. Part of the proof of Theorem B is based on the existence
results for simply connected manifolds with b© = 1 and ample canonical line
bundle. Such examples have only been recently found, and we state the results we
need for convenience:

Theorem 7 (|7, 25, 22]). There exist simply connected complex surfaces of general
type, with b+ =1, ¢2 =1,2,3 or 4 and ample canonical bundle.

Proof of Theorem B. If we want to construct a smooth structure on the manifold
X which has positive Yamabe invariant and admits non-singular solutions for the
normalized Ricci flow, then we can just consider the canonical smooth and complex
structures of the complex projective plane blown-up at ! points, where 3 <1 < 8.
The existence of an Einstein metric is given by a famous result of Tian [30]. Hence,
on these Del Pezzo surfaces, there are non-singular solutions (fixed points) of the
normalized Ricci flow by taking the Kéahler-Einstein metrics with positive scalar
curvature as initial metrics. Since the scalar curvature of these metrics is positive,
Lemma 1.5 in [15] tells us that the Yamabe invariants of these manifolds must be
also positive.

In the second case of the theorem, we are going to consider the smooth struc-
tures associated to the complex structures of general type found in Theorem 7.
On these manifolds, a nice result of Cao [5, 6] tells us that non-singular solutions
to the normalized Ricci flow exist if we start with a Kahler metric whose Kéhler
form is in the cohomology class of the canonical line bundle. Moreover, for surfaces
of general type the Yamabe invariant is strictly negative [18].

For the proof of the third part of the theorem, we use the exotic structures on
manifolds with small topology constructed by Akhmedov and Park [1]. In Section 6
of [1], they exhibit infinitely many smooth structures, X;, on the topological space
CP?#2CP2. The smooth structures are distinguished by their Seiberg-Witten
invariants. On M := CP?#/(CP2,5 < { < 8, we consider the smooth structures
M; == X;#(¢ — 2)CP2,i € N. Each M; is homeomorphic to CP?#(CP? as each
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X; is homeomorphic to CP2#2CP2. Moreover, we know that the Seiberg-Witten
invariants of the manifolds X; are non-trivial and distinct. We can use the gluing
formula for the connected sum with copies of CP?2 to conclude that infinitely many
Seiberg-Witten invariants of M; remain distinct. Hence on M, we have constructed
infinitely many distinct smooth structures. As ¢3(M;) = 9 — [ > 0, the Yamabe
invariant of each smooth structure is negative [18]. The manifolds X; have ¢?(X;) =
7, non-trivial Seiberg-Witten invariant by construction and of course 3(¢ — 2) >
c3(X;) = 7,as 5 < £ < 8. Hence, Theorem A tells us that there are no non-singular

solutions to the normalized Ricci flow on any M; for any initial metric. (I
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