QUALITATIVE ASPECTS OF COUNTING REAL RATIONAL CURVES
ON REAL K3 SURFACES

VIATCHESLAV KHARLAMOV AND RARES RASDEACONU

ABSTRACT. We study qualitative aspects of the Welschinger-like Z-valued count
of real rational curves on primitively polarized real K3 surfaces. In particular,
we prove that with respect to the degree of the polarization, at logarithmic scale,
the rate of growth of the number of such real rational curves is, up to a constant
factor, the rate of growth of the number of complex rational curves. We indicate
a few instances when the lower bound for the number of real rational curves pro-
vided by our count is sharp. In addition, we exhibit various congruences between
real and complex counts.
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INTRODUCTION

The discovery by J.-Y. Welschinger [23] of a deformation invariant Z-valued
count of real rational curves interpolating real collections of points on a real ra-
tional surface has allowed to respond in an affirmative way to the long standing
problem of existence of real solutions in this enumerative problem. Moreover, the
lower bound on the number of real solutions provided by the Welschinger invari-
ants has happened be so powerful that it allowed [11] to disclose a remarkable new
phenomenon of abundance: in the logarithmic scale, when the degree of curves
is growing, the number of real solutions happens to be of about the same growth
rate as the number of complex ones. Later on, similar abundance phenomena were
observed in a few other, even more classical, enumerative problems, like enumer-
ating linear subspaces on projective hypersurfaces (see [7] and references therein).
All this originates further natural questions, which are essential for applications:
what are the asymptotic and arithmetical properties of the lower bounds provided
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by such an invariant Z-valued count;, how non trivial and sharp are these lower
bounds?

A response to these questions requires a comparison with the behavior of the
numbers of solutions over the complex field, which in the above mentioned prob-
lems are given by some Gromov-Witten and Schubert numbers, respectively. Up
to our knowledge, the corresponding aspects of the complex enumerative algebraic
geometry are rarely treated in the literature: for related information we refer the
interested reader to [8], [9], and [13]. The sharpness of Welschinger lower bounds
is also little studied; here, we can cite only [24].

In our previous paper [15], we considered the problem of counting real ratio-
nal curves on primitively polarized real K3 surfaces, introduced an appropriate
invariant Z-valued count and expressed the answer in a closed form, which can
be viewed as a real version of the Yau-Zaslow formula (see Sect. 1 below). Our
aim here is to show that thus obtained invariant lower bounds have similar peculiar
asymptotic and arithmetic properties as those that were observed in the previously
studied real enumerative problems, and to indicate some instances where the lower
bounds are sharp.

The note is organized as follows. First of all we recall the precise statement of
the real version of the Yau-Zaslow formula. Then, we start the qualitative analy-
sis by relating our formula with the Dedekind eta-function and use one of Jacobi
identities to establish some positivity property of the Welchinger invariants. In
the next subsection we apply Hardy-Ramanujan-Uspensky results [10, 21] on the
asymptotic behavior of the number of partitions to determine the asymptotic behav-
ior of the Welschinger invariants in the logarithmic scale and to exhibit an abun-
dance phenomenon. The third subsection is devoted to the comparison modulo
2,3,4, and 8 of our Welschinger-type invariants, with the corresponding reduced
Gromov-Witten invariants in the complex case, computed by the Yau-Zaslow for-
mula. Finally, in the last subsection we apply Kulikov’s type I and II degenerations
[17] to establish the sharpness of our lower bounds for certain real deformation
types of real K3 surfaces. A closing section contains a couple of concluding re-
marks. Some numerical data collected to illustrate the results obtained is shown in
the table in the appendix.

1. REAL VERSION OF THE YAU-ZASLOW FORMULA

Let X be a generic real K3 surface admitting a complete real g-dimensional
linear system of curves of genus g. If ¢ > 2, assume, in addition, that X is of
Picard rank 1 and the curves in the linear system belong to a primitive divisor
class. Let ¢, denote the number of complex rational curves in this linear system,
and wy = ny — n_ the number of real rational curves in the same linear system
counted with Welschinger sign; that is with the sign +, if the number of real solitary
points is even, and with the sign —, otherwise (recall that by Chen’s theorem [3,
Theorem 1.1] the genericity assumption ensures that all the rational curves in our
linear system are nodal).
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The numbers ¢, depend only on g and not on a specific choice of the surface X,
and obey the Yau-Zaslow formula [25]

1
chqunma (1.1)

g>0 s>1
where ec = 24 is the Euler characteristic of X. As we proved in [15], w, depends
only on the Euler characteristic eg of the real part Xk of X, and for ey fixed the
generating function for wy is as follows:

1 1
wyq? = —, (1.2)
Zo H (L) H (1—g2) ="

Note that ep is always even and its values vary between —18 and 20 (for refer-
ences and more details on the topology of real K3 surfaces, see [5]).

2. ANALYSIS OF THE REAL VERSION

2.1. Positivity.

Theorem 2.1. For each fixed er < 0, all wy are positive and form a strictly in-
creasing sequence |er| = w1 < wy < w3 < .... For eg = 0, all wy with
odd g are zero, while those with even g are positive and form a strictly increas-
ing sequence 12 = wy < wy < .... For each fixed eg > 0, all the terms
of the sequence (—1)%w, are positive and form a strictly increasing sequence
erR = —wp < w2 < —wz < ....

Proof. To prove these statements in the case eg < 0 it is sufficient to notice that
the second product power series in (1.2) has nonzero coefficients only in even de-
grees and each of these coefficients is positive, while the first product power series
has all coefficients positive as soon as eg < 0. The strict monotonicity claim fol-
lows immediately by noticing that multiplying positive power series with increas-
ing sequence of coefficients yields a positive series with increasing sequence of
coefficients.

Assume now that eg > 0. First, we rewrite our formula (1.2) in terms of the
Dedekind eta-function

— emz/l? H 27rmz _ qi H(l _ qn)7
n>1 n>1
and of the modular discriminant

Az) =n*(z) =q ] (1 —¢")*

n>1

where z is in the upper half-plane, and ¢ = ¢>™%. In this notation, formula (1.2)
can be written as

e

>t = A ()

g>0
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For the above eta-quotient there is the following remarkable Gauss identity (see,
for example, [16, Corollary 1. 3])'

22 —1+2Z (2.2)

To finish the proof it is sufficient now to notice that the property to have nonpos-
itive coefficients in odd degrees and nonnegative coefficients in even degrees is
preserved under multiplication of power series (with such a property) and that the
power series

2.3)
/A 22 }:Il

has positive coefficients in each even degree and zero coefficients in each odd
degree. Another possible approach is to replace ¢ by —g, which makes all the
power series involved to have positive coefficients, and then to apply the same ar-
guments as above in the case eg < 0. This argument yields the strict monotonicity
claim. ]

2.2. Asymptopia.

Lemma 2.2. Let Y a,q" and Y b,q"™ be two power series with positive coeffi-
cients, and > ppq"™ = (O_ anq™) (> bnq™) the product power series. If, at a log-
arithmic scale, the coefficients a,, and b, have the asymptotic behavior log a,, ~
(an)® andlog by, ~ (bn)®, for some real constant 0 < « < 1, then log p,, ~ (cn)®

where ¢ = (aT-a + bﬁ)%
Proof. The result follows from

1 bt <1 <1 1 by
@%OMkkFOWm_%ngé%%nk

and
log agb (( 4 b%)l;“ny
max logarb,—r ~ ((aT-= —a) .
o<k g arOn—k
To derive the latter relation it is sufficient to bound, from above and from below, the

sequences ay,, b, by sequences of the type exp(k+ + (1 £ €)(an)®) and exp(k+ +
(1 £€)(bn)®), respectively, and then let e - go! to 0. The bounds needed here can be

found by using the fact that ( (al o+ bhTl-o a) " n)® is exactly the maximal value
of the function (at)® + (b(n — t))“ on the interval [0, n]. O

Theorem 2.3. The following asymptotic relations hold:
1) Ifer <0, then

4(ec — 3er) ec — 3er
logw, ~my| ————= -n~,/——logc,.
ec dec

ii) If eg > 0, then

1
log |wy| ~ 2mv/n ~ 3 log cp,.
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iii) Ifer = 0, then
1
log way, ~ 3 log cap,.

Proof. Hardy-Ramanujan and Uspensky results [10, 21] on the the asymptotic be-
havior of the coefficients in the power series expansions

[a+a) =] = = e and ] = =Y Pl

n>1 n>1 n>1 n>1 n>1

give us the following equivalence relations:

(2.4)

and

2n
eV 3

~ 4n\/§'
Thus, in the logarithmic scale, log P(n) ~ log Q(2n) and logQ(n) ~ m/n/3.

Then Lemma 2.2 implies that log ¢, ~ m4/ec - %" = 4m\/n.

If eg < 0, then the coefficients w, in the power expansion ) u,q" of the first
product in the formula (1.2) are positive, and, according to Lemma 2.2 and formula

P(n) (2.5)

(2.4), they grow in the log-scale as 74/ —5*". The coefficients v, in the power

expansion Y v,q" of the second product are vanishing in odd degree and they are
positive in even degree. Lemma 2.2 and formula (2.5) imply that the coefficients

v2s grow in the log-scale as 7y / <5 - 25 It follows that

ec —3er 2n
2 3
Wherefrom, by monotonicity of the sequence wy,,

o \/e(c—?)eR n \/e@—?)eR o
w. ~ T —_— = Y —_— Cy .
& tn 2 3 dec  BCm

If eg > 0, then the proof is similar. This time we start from formula (2.1).
Notice that according to formula (2.3) and Lemma 2.2, the coefficients of the first
factor in the odd degrees are zero, while the coefficients in degree 2n grow in the

log wo,, ~

log-scale as 7m4/12 - %” ~ %log con. Thus, there remains to notice that, due to
formula (2.2), the coefficients of the second factor have polynomial growth, and,
then, if eg > 0, to apply the monotonicity. ([

Corollary 2.4. The number r4(X) of real rational curves in the divisor class of
the primitive polarization of X satisfies the following bounds:

#(g) = |wg| < Tg(X) <S¢y = Y(9),
where

log¥(g) = 4m\/g + o(,/9),
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and, for a fixed er # 0,
log ¢(g) = 4mp\/g + 0o(\/9)
with p = % ifer >0and p = 1/% if er < 0, while for er = 0 it holds
log ¢(2g) = 2m+/29 + o(\/9)

Similar abundance of real solutions phenomena are observed in several other
real enumerative problems, see [11], [12], [2], [6], [7]. There, like for eg > 0 in
the above Corollary, a magic factor 1/2 occurs in quite a few cases.

2.3. Congruences. The modularity of the generating series for the real and com-
plex counting described in (1.1) and (1.2) allows us to exhibit noteworthy congru-
ences that go much further than wy, = ¢, (mod 2), straightforward from defini-
tions.

Theorem 2.5. The following congruences hold:
i) We have wy = ¢4 (mod 2) forany g > 1, and wy = ¢, = 0 (mod 2) for

every g with g Z 0 (mod 8).

ii) If eg = 0 (mod 4) then wy = ¢4 (mod 4) for any g > 1, and if in
addition g # 0 (mod 4) then wy = ¢y =0 (mod 4).

iii) If eg = 0 (mod 8) then wy = ¢4 (mod 8) for any g > 1, and if in
addition g # 0 (mod 2) then wy = ¢y = 0 (mod 8).

iv) Ifer =0 (mod 3) and g # 0 (mod 3) then wy = ¢y = 0 (mod 3).

Proof. As a consequence of (2.2) and (2.3) we get
1 1
9>0 n>1 n>1

In particular, it implies that w, is even for every g with g # 0 (mod 8).
Likewise,

chqg = H (1—1q")2 = H e ngq (mod 2). (2.7)
g>0 n>1 n>1 g>0

Making an additional assumption that eg = 0 (mod 4), we get in a similar way

ngqu <1+€R< ))H 1—q2” (mod 4)
920 >

1 >
11 = (mod 4)

n>1

= chqg (mod 4).

920

We conclude that wy and ¢, are congruent modulo 4 for any g, and that they are
divisible by 4 for each g > 1 with g Z 0 (mod 4), as it follows from

(1 _ q2n)12 = (1 + 2q4n +an)S (mod 4)'
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Assuming now that eg = 0 (mod 8), the same proof as in the previous case

yields
1
g wyq? = | | (DL = g cgq’ (mod 8),

920 n=1 g>0
and so we conclude that w, = ¢, (mod 8) for any g > 1. Moreover, since

(1 _ q2n)12 = (1 _|_4q2n + 6q4n +4q6n + q8n)3 (mod 8),
we notice that wy = ¢y = 0 (mod 8) forany g = 1 (mod 2).
If eg =0 (mod 3), we get in a similar way
R

n=1

920

1
H m (mod 3)

n>1
and .
chqg = H m (mOd 3)
g>0 n>1
We conclude that wy = ¢4, = 0 (mod 3) foreach g > 1 with g # 0 (mod 3). O

2.4. Sharpness. In [15, Sect 5.2] we observed that the lower bound for the count
of real rational curves on primitively polarized K 3 surfaces given by the absolute
value of wy is sharp for any g as soon as the surface has no real points. The
reasoning is simple: there is no real nodal rational curve in the corresponding linear
system when g is odd, since such a curve would have at least one real point among
its singular points, which is impossible; while when g is even, the singular points
of such a curve split into pairs of conjugate ones, and therefore the curve counts
with positive Welschinger sign. Here we prove that the lower bound is optimal in
a few more cases.

Theorem 2.6. For any g, the lower bound on the number of real solutions by the
absolute value of wy is sharp for surfaces whose real locus is a torus or a pair of
tori.

Proof. First, we treat the case of a pair of tori and g odd. Let 7 : Y — P! x P!
be the double covering ramified along a real nonsingular curve of bi-degree (4, 4)
without real points (cf., [22, 20]), where P! x P! is considered with the standard
product real structure (i.e., the hyperboloid). Such a double covering carries two
real structures that differ by the automorphism of the covering, and we pick the
one for which the real locus is formed by two tori. We denote by F; and F5 the
generators of P! x PL. The linear system |Fy + nF| embeds P! x P! into P27+,
while its pull-back |7*(F} +nF»)| provides a representation of Y as a hyperelliptic
K3 surface in P?"*+! . In such a representation the pull-back of hyperplane sections
form a complete 2n + 1 dimensional linear system of curves of genus g = 2n + 1.
Finally, we take as X an embedding into P?"*! of a real K3 surface obtained by
a small generic real perturbation of Y (its existence follows from the period space
description, see for example [20]). Notice now that Y consists of a pair of disjoint
tori which are non-contractible in IP)%K"H since the real locus of the starting ruled
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surface is non-contractible in IP’%{LH. This implies that X consists of a pair of
disjoint, non-contractible tori as well. Hence, every real hyperplane section of X
has at least 2 components, and thus can not be rational. This proves the sharpness
claim, since according to formula (1.2) we have w, = 0 for odd values of g, as
soon as ep is zero.

To treat the case of a pair of tori and g even, we consider a degeneration of
a K3 to a double covering of the blown up projective plane. Namely, we start
from P2(1), the projective plane blown up at a real point, and consider a double
covering w : Y — P?(1) ramified along the proper transform of a one-nodal sextic
with a real solitary point at the center of the blow-up and two ovals surrounding this
solitary point. The standard real structure on P?(1) lifts to two real structures on Y,
and we pick the one for which the real locus consists of two tori. We embed now
P2(1) into P?" by the linear system |E + nF'|, where E is the exceptional divisor
and F stands for the straight lines through the center of the blow-up. As above,
we take X C P2 to be a generic small real perturbation of Y. The K3 surface
Y carries a natural real elliptic fibration given by the pull-back of the pencil of
lines through the center of the blow-up. Since the starting sextic admits no real
tangents passing through the node, all the singular fibers of this elliptic fibration
are imaginary. This implies that every real rational hyperplane section of X, which
as is known (cf., [1, Proposition 4.1]) is a perturbation of the section, w‘l(E),
and a collection of, possibly multiple, singular fibers, has no real singular points.
Therefore, all the inputs into w, in such a construction are positive, wherefrom the
sharpness for this other particular case: X is a pair of tori and g is even, g = 2n.
Notice that in this case wy, > 0 and it grows fast, as discussed in Theorems 2.1 and
2.3, respectively.

In the case of one torus and g even, we start again from P?(1), the projective
plane blown up at a real point, and consider a double covering @ : Y — P?(1)
ramified in a proper transform of a one-nodal sextic with a real solitary point at the
center of the blow-up and, this time, no other real points. As a real structure on Y,
we select that lift of the standard real structure on P?(1) for which the real locus
of Y is a torus. We embed P2(1) into P2 by the linear system |E + nF|, where
FE is the exceptional divisor and F’ stands for the linear system of lines through
the center of the blow-up. As above, we can assume that all the singular fibers
of the associated elliptic fibration are imaginary. For that it is sufficient to make
our sextic generic, since a generic nodal sextic has no double tangents passing
through the node. Hence, we can argue as in the previous case, that is to use
the pull-back |w*(E + nF’)| to represent the double covering under consideration
by a hyperelliptic K3 surface in P?", and then to take as X a generic small real
perturbation of Y. Once more all the inputs in such a construction are positive.
Wherefrom the sharpness for this other particular case: Xp is a torus and g is even,
g = 2n. Notice again that in this case again w, > 0 and it grows fast.

To construct sharp examples for the remaining case, a K3 surface in P?"+!
with a torus as the real locus, we start from a suitable type II degeneration of such
a K3 surface [17]. Namely, we start, as in the case of a pair of tori, from the
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same real rational ruled surface P! x P! = Y5 C P?"*+! and consider an elliptic
normal curve E without real points that is cut on this ruled surface by a real rational
ruled surface > having empty real locus and intersecting ¥ transversally along
E with E2 = —2 on this 5. To construct an explicit example, cf, [4, Lemma
1, page 643], one can start from the elliptic curve C?/(Z + iZ) equipped with
the real structure z — z + %, embed it into P?"*! by means of the linear system
n(A+B)+ (3 +A) +E+B) ~ (n+1)(A+ B) taking A = 0,B = £,
and choose as a scroll ¥y = P! x P! containing F, the scroll corresponding to
the hyperelliptic involution defined by the divisor A + C, C = % Under such
choices the scroll ¥ becomes real and has a torus as its real part, while the scroll
corresponding to the divisor A + B gives us a real Y2 with an empty real part, as
required. After that, there remains to pick as X a small generic real perturbation of
>0 U Xo. The existence of a smooth such surface X is guaranteed by [4, Theorem
1, page 644]. The generic such surface X is primitively polarized [4, Theorem
2, page 646], and, as always due to the surjectivity of the period map, it can be
deformed further to a surface generic in the sense of Chen’s theorem [3], which
guarantees that the rational curves in the primitive polarization are all nodal.
Under such a choice, X does not have any real rational hyperplane section. In-
deed, if such a section exists, then by the compactness of Kontsevich’s space of
stable curves, there would exist a real projective connected nodal curve Z of arith-
metic genus 0 and a real regular map f : Z — 3y U X5 that realizes a hyperplane
section of Yo U Xg. On the other hand, the hyperplane sections of >y form the
linear system |F} + nFs|, where F}, I are generators of P! x P! = %, while
the hyperplane sections of X9 form the linear system |F| + (n + 1)F}|, where F]
stands for the (—2)-section and F} for the generator of 3. The standard generators
F1, F5 and the (—2)-section are complex conjugation invariant. Hence, every real
rational map f : Z — ¥y U X, as above, which represents a hyperplane section
of ¥¢ U X9, should have in its source, Z, an irreducible real component of type
F) + aF; and an irreducible real component of type Fy + aF}. Since Z is ratio-
nal and connected, each two real components should be connected by a chain of
real components. This is impossible for real components belonging one to Yy and
another to X9, since any two such components intersect only at pairs of complex
conjugated points. Such a contradiction ends the proof. ([

3. CONCLUDING REMARKS

3.1. On asymptotics. Hardy and Ramanujan have obtained not only an asymp-
totic approximation for coefficients P(n), Q(n) (see formulas (2.4), (2.5)), but also
a full asymptotic expansion, which later was even improved by Rademacher up to
a convergent series expression. These can be applied to get similar expansions for
wy. We have restricted ourselves here to asymptotic approximations, since for our
aim, to demonstrate the abundance phenomenon, it is not necessary to go further.
Moreover, it would only obscure the presentation by a much heavier and lengthy
analysis.
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3.2. On congruences modulo 2. Table 3.4 below that gives the values of w, and
cq for g < 20 shows that these values are odd if g = 8 and 16. Thus, it may give
the impression that they should be odd for all g = 0 (mod 8) (¢f,, Section 2.3). In
fact, the situation is much different.

Let {7y },>0 be the parity sequence given by i,, = ws,, = cg,, (mod 2), n > 0.

Proposition 3.1. The sequence {i,, }n>0 contains infinitely many 0’s and infinitely
many 1’s.

Proof. As noticed in (2.6), the following identity holds
. 1
Zznqsn = ngqg = H m (mod 2).
n>0 g>0 n>1 q

Moreover, we have

1 B (1 — ¢'om)2
M= I g o
Since
2
711;11(1_(1]16”)351;[ A= = nzgoznq (mod 2),
we obtain

o 16n
S g =] 2 q S ing'® | (mod 2). (3.1)

n>0 n>1 n>0

Furthermore, from the Jacobi identity [16, Corollary 1.4]

o0
H w = H(l _ q8n)3 = Zq4n(n+l) (mod 2)
(1—¢%) -
n>1 n>1 n=0

we notice that the power series development of the term Hn>1 (H IZ:; in (3.1)
contains infinitely many odd and infinitely many even coefficients and the gaps
between odd coefficients are growing quadratically.

Suppose now that the sequence {i, },>0 contains finitely many 1’s. That would
imply (in arithmetics over Z/2) the equality between a non-zero polynomial and a
product of an infinite series with a polynomial, which is impossible. Furthermore,
if we suppose now that the sequence {i,, },>0 contains finitely many 0’s, to get a
contradiction, it is sufficient to write >, - i,q°" as a sum of a polynomial with
Yoo ¢®", and to observe that the coefficients of Y >0 inq®™ in powers 4(4k +
1)(4k + 2) and 4(4k + 2)(4k + 3) have opposite parities for all k sufficiently large
with respect to C, which is impossible. ([
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3.3. Other congruences. In Section 2.3, we discussed congruences between the
real and complex invariants, modulo primes and their powers that divide 24, i.e.,
congruences modulo 2, 3,4, and 8. In fact, when the powers of 2 and 3 do not
divide 24, interesting congruences are still expected to occur. We discuss below
some congruences modulo 9 and 16.

Proposition 3.2. The following congruences hold:
i) Ifer =0 (mod 9) then wy = ¢y =0 (mod 9) forall g =4 (mod 6).
ii) Ifeg =0 (mod 16) then wy = ¢y =0 (mod 16) for all odd g > 1.
Proof. We assume first that e is divisible by 9 (it happens with eg = —18, 0, and

18), and discuss the congruence of the two invariants modulo 9.
As Guo-Niu Han kindly pointed to us, the Jacobi identity [16, Corollary 1.4]

shows that
[T =¢*)° = A(¢*) +3¢B(¢%),
n>1
where A, B € Z][[q]], A(0) = 1, which implies that for any integer k,
IT (1= a")* = Ak(a®) + 3¢Bi(¢®) + 9¢°Ci(d?), (3.2)

n>1

for some power series Ay, By, Ci € Z[[q]], Ax(0) = 1. In particular, when k& =
—8, it makes evident the congruence ¢, = 0 (mod 9) forall g = 2 (mod 3).
To prove the claim for the real invariant, observe first that
9

1423 (-1)"¢" | =E(¢’) (mod9),

n>1
where E € Z[[q]], E(0) = 1. This implies that
9¢
1423 (-1)"" | =E(¢®) (mod9),
n>1

for any ¢ € Z, where Ey € Z|[q]], E¢(0) = 1. Thus, using (2.2), (2.3), and (3.2),
we find that
Z wyq? = Eem/lg(qg) (A—4(¢®) +3¢*B_4(d°) + 9q4C'_4(q6)) (mod 9).
920
The multiplication of A_4(¢®) +3¢>B_4(¢°) by E., /15(¢®) does not produce any
term of exponent 6k + 4. Therefore, wy, = 0 (mod 9), for all g such that g = 4
(mod 6), and claim i) is proved.

Congruences modulo 16 for the complex invariants c, can be detected by using
Klein’s modular function j(z) and the classical formula

: RS (1424037, o3(n)q")’
ig) =—+ ) aln)q" = = ;
0=+ 2 O = g

where o3(n) =3, d3. As (1424032 03(n)g")3 =1 (mod 16), we have
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> cq® =qj(g) (mod 16). (3.3)
g=0
On the other hand, according to Lehner [18], one has a(2k) = 0 (mod 2'1), for
all £ > 0. Hence, ¢, is divisible by 16 for all g > 1 with g = 1 (mod 2).
If eg = 0 (mod 16) (it happens with eg = 0, 16, and —16), then the same
arguments as in the proof of congruences modulo 4 and 8 show that

1
wy = nl:[l =g (mod 16).
This implies wg = 0 (mod 16) for any odd g > 1, and claim ii) is proved.
Remark 3.3. The congruence (3.3) holds modulo 9 as well, and a(3k)

(mod 3°) for all k > 0 according to [18]. Hence ¢, = 0 (mod 9) if g
and g =1 (mod 3).

]
0
1

YAl

3.4. On sharpness. A couple of other instances of real K3 surfaces where the
lower bound for the number of real rational curves given by |wy| is optimal were
already pointed in our previous paper [15]. One such example was the case of
Harnack surfaces of degree 4 in P2,

On the other hand, for real nonsingular K3 surfaces of degree 4 in P3 having
the real locus consisting of 6 spheres and a sphere with 5 handles the lower bound
given by |w,|, which is equal to 48 in this special case, is not sharp.

Proposition 3.4. The number of real rational hyperplane sections of a generic real
K3 surface degree 4 in P2 is at least 272 if the real locus of the surface consists of
6 spheres and a sphere with 5 handles.

Proof. The Euler characteristic er of the real part of such a surface is 4, and thus
for such surfaces wy, = —48 (here ¢ = 3). But, in fact, there are always at least
272 real rational hyperplane sections on such a surface. Indeed, each real line and
each real plane intersect the component of genus 5, as such a component is not
homotopy trivial in RPP? (see [14, Theorem II]). By Bézout theorem, it implies that
each of the 6 spheres is convex (that is bound convex balls) and each 2 of them are
contained in a convex set disjoint from other spheres. By genus argument, a real
hyperplane through 3 of the 6 spheres does not intersect the 3 others, and thus these
3 spheres, as any 3 disjoint convex spheres in a real affine 3-space such that each
2 of them are contained in a convex set disjoint from the third, have 8 common
supporting planes. Each of the supporting planes gives us a real rational curve
with 3 solitary points, hence of Welschinger weight —1. Since the total number of
supporting planes obtained in such a way is equal to 8 x (3) = 160 and w, = —48,
the total number of real rational curves is at least 160 + (160 — 48) = 272. O

The same argument can be applied to other deformation classes of real nonsin-
gular K3 surfaces of degree 4 in P> whose real locus contains a non contractible
component and m > 3 components contractible in RP? (for a full deformation
classification of real nonsingular K 3 surfaces of degree 4 in P one can look at the
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survey [5] or at the original Nikulin’s paper [19]; some of them have eg = 0 and
are different from tori). More precisely, as above by Bézout theorem each of the
contractible components is an affine convex sphere and each 2 of them are con-
tained in a convex set disjoint of the third, while, as it is easy to show, any 3 affine
convex spheres with such a property are contained in a common affine space. Thus,
as above each 3 contractible components provide 8 tritangent planes and give an
input —8 into wy. In particular, for these kind of K3 surfaces, if eg = 0 we get
8 % (g‘) as an improved lower bound.

APPENDIX

The table below is based on formulas (1.2) and (1.1). It provides the number
of real rational curves counted with the Welschinger sign on primitively polarized
K 3 surfaces of degrees up to twenty, in the cases when eg = 0, —18, and 20. The
last column gives, for comparison, the corresponding number of complex curves.

Real Case Complex Case

g er =0 er = —18 er = 20
0 1 1 1 1
1 0 18 -20 24
2 12 192 192 324
3 0 1536 -1200 3200
4 90 10152 5630 25650
5 0 58284 -21744 176256
6 520 299776 73600 1073720
7 0 1410048 -226688 5930496
8 2535 6155079 648195 30178575
9 0 25207736 -1742320 143184000
10 10908 97675200 4446912 639249300
11 0 360471552 -10863840 2705114880
12 42614 1273876088 25553402 10914317934
13 0 4329852624 -58129280 42189811200
14 | 153960 14207361792 128365440 156883829400
15 0 45144664064 | -276044032 563116739584
16 | 521235 | 139288329729 579574795 1956790259235
17 0| 418257062220 | -1190636016 6599620022400
18 | 1669720 | 1224808431104 | 2397710720 | 21651325216200
19 0 | 3503958594048 | -4740978480 | 69228721526400
20 | 5098938 | 9808358121720 | 9217285614 | 216108718571250

TABLE A. Numbers of real rational curves vs. complex curves on
K3 surfaces
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