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ABSTRACT. We show that the explicit ALE Ricci-flat Kähler metrics constructed
by Eguchi-Hanson, Gibbons-Hawking, Hitchin and Kronheimer, and their free
quotients are metrics obtained by Tian-Yau techniques. The proof relies on a
construction of good compactifications of Q−Gorenstein deformations of quo-
tient surface singularities as log del Pezzo surfaces with only cyclic quotient
singularities at infinity.

1. INTRODUCTION

In his 1978 ICM plenary lecture [22], Yau raised several questions regarding
the existence of compactifications of complete Ricci-flat Kähler manifolds. One of
the questions asks about the existence of compactifications in the complex analytic
sense, and another if the anticanonical line bundle of this compactification has
“good properties”. The identification of the required properties became clear later,
when in their joint work [16, 17], Tian and Yau provided sufficient conditions such
that complete Ricci-flat Kähler metrics exist on the complement of a divisor. In
this paper, we address these questions for surfaces equipped with asymptotically
locally Euclidean (ALE) metrics.

The classification of ALE Ricci-flat Kähler surfaces was accomplished by Kron-
heimer [11, 12] in the simply-connected case, and completed by the second author
[15] in the non-simply connected case (see also [21]). More precisely, we have the
following:

Theorem 1.1 ([11, 12, 15]). Let (M,J, g, ωg) be a smooth ALE Ricci-flat Kähler
surface asymptotic to C2/G, where G is a finite subgroup of U(2) acting freely
on C2 \ {0}. Then, the complex manifold (M,J) can be obtained as the minimal
resolution of a fiber of a one-parameter Q−Gorenstein deformation of the quotient
singularity C2/G. Given the Kähler class Ω = [ωg] ∈ H2(M,R), then g is the
unique ALE Ricci-flat Kähler metric in the class.

Moreover, any complex surface (M,J) obtained by the above construction ad-
mits a unique ALE Ricci-flat Kähler metric in any Kähler class Ω.

The underlying complex surfaces in the above classification are in direct corre-
spondence [15] with the list of quotient singularities which admit Q−Gorenstein
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smoothings, which is due to Kollár and Shepherd-Barron [9]. Following their ter-
minology, we call such singularities of class T . The possible singularities are ei-
ther rational double points, i.e. singularities of type Ak, Dk, E6, E7 and E8, or

finite cyclic singularities of the type
1

dn2
(1, dnm− 1). The rational double points

correspond to the case when the surfaces M are simply connected, and then the
metrics are hyperkähler. They are associated to Gorenstein smoothings and have
trivial canonical line bundle. In the second case, the surfaces M have finite cyclic
fundamental group and the metrics are non-hyperkähler. They are Q−Gorenstein
smoothings, and have torsion canonical line bundle.

The ALE Ricci-flat Kähler metrics on open complex surfaces were explicitly
constructed by Eguchi-Hanson, Gibbons-Hawking, Hitchin and Kronheimer [3, 5,
6, 11] in the simply connected case. In [15], the second author completes the list
in the non-simply connected case by adding the free quotients of certain A−type
manifolds. The above classification is based on the theory of twistor spaces [11,
12, 15].

Another method of constructing complete Ricci-flat Kähler metrics on non-
compact manifolds is by solving the complex Monge-Ampère equations. The tech-
niques are due to Tian-Yau [16, 17], Bando-Kobayashi [1], and Joyce [7]. In par-
ticular, Tian, Yau and Bando, Kobayashi prove the existence of Ricci-flat Kähler
metrics on the complement of a divisor in a complex orbifold under certain con-
ditions. In general, these metrics are not ALE, and if one insists that the ambient
space is a smooth surface, the examples are scarce as it can be seen from Lemma
4.1 (see also [16]). As we are only interested in manifolds with ALE Ricci-flat
Kähler metrics, the relevant results are in the context of the complement of a di-
visor in an orbifold surface, and are due to Tian and Yau [17]. A more detailed
description of their results is included in section 3. The metrics constructed by
Tian and Yau are obtained by analytical methods, and the existence of the met-
ric is given implicitly. We analyze the ALE Kähler Ricci flat surfaces from their
perspective, and we answer Yau’s questions [22]:

Theorem A. Let (M,J, g) be an ALE Ricci-flat Kähler surface. Then there exists
a complex compactification (M, J̄,D), where M is an orbifold surface and D =
M \M is the divisor at infinity, such thatD is an admissible, almost ample, admits
a Kähler-Einstein metric and −KM = β[D], β > 1. In particular, any ALE Ricci-
flat Kähler metric g can be obtained as a Tian-Yau metric.

As an immediate consequence of Theorem A, we obtain the following result:

Corollary 1.2. The Tian-Yau method rediscovers the metrics constructed by Eguchi-
Hanson, Gibbons-Hawking, Hitchin, Kronheimer, and their finite free quotients.

These results are an immediate continuation of the second author’s work [15]
and fill in a gap in the understanding of the ALE Ricci-flat Kähler surfaces.

For ALE hyperkähler surfaces, Kronheimer shows that the canonical model of
the surface is an affine hypersurface [11]. This is essential in showing that complex
analytic compactifications exist, and such examples appear in [14] (for some choice
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of a complex structure on A,D,E cases) and [20] (for A−type surfaces). In this
paper, we prove that there is a compactification for any ALE Ricci-flat Kähler sur-
face. We consider compactifications of a fiber of a Q−Gorenstein deformation as
a hypersurface in a weighted projective space. The properties of the compactifica-
tions are summarized in the following theorem, and for a more detailed description
see Propositions 2.6, 2.10, and 2.11:

Theorem B. Let M be a fiber of a Q−Gorenstein deformation of a singularity of
class T. Then M embeds into a log del Pezzo surface, M, as the complement of
a smooth, rational curve, which is a rational multiple of the anticanonical divisor.
The singularities along the divisor at infinity are all isolated finite cyclic quotients.
Moreover, if M is associated to a finite cyclic quotient singularity, then there are
infinitely many minimal compactifications with the above properties.

We say that a compactification is minimal if there is no rational component of the
divisor at infinity of self-intersection (−1) and passing only through smooth points
of M. We recall [8] that a normal complex surface M with at worst log terminal
singularities, i.e. quotient singularities, is called a log del Pezzo surface if its anti-
canonical divisor−KM is ample. We should point out that our constructions verify
stronger conditions: if we denote by D the curve at infinity, then the Q−Cartier
divisors D and −(KM +D) are both ample.

Proposition 2.6 describes an infinity of compactifications in the case of finite

cyclic groups of
1

dn2
(1, dnm − 1)−type, in particular A−type when n = 1.

Among these, for n = 1 or n = 2 there exists a unique one which can be used
in conjunction with the Tian-Yau metric construction. For all other cases, the key
condition that the divisor at infinity admits a Kähler-Einstein metric is not satisfied.

We provide a second construction for compactifications of
1

dn2
(1, dnm−1)−type

surfaces in Section 2.2, as hypersurfaces in quotients of weighted projective spaces.
Again we obtain infinitely many compactifications in the complex analytic sense,
among which there exists only one which can be used to prove Theorem A.

Given a singularity of type T, and a Q−Gorenstein smoothing, the underlying
smooth manifold of a generic fiber is the Milnor fiber of the singularity. An arbi-
trary fiber of a deformation might admit singularities, which are all rational double
points. Hence, if we consider the associated minimal resolution we obtain a man-
ifold diffeomorphic to the Milnor fiber. The general construction of considering a
deformation followed by the minimal resolution of the rational double points, ex-
hibits a family of complex structures on the Milnor fiber. In the special case, when
the deformation is singular, the compactificationM is not log del Pezzo, but never-
theless satisfies the required conditions of the Tian-Yau construction. Throughout
this paper we emphasize which particular complex structure we consider.

In general, the compactifications of ALE Kähler Ricci-flat surfaces are rarely
smooth. We discuss the cases when they are smooth in the last section of the
article.

Notations and conventions.



4 R. RĂSDEACONU, I. ŞUVAINA

(1) By anm− dimensional quotient singularity we mean a germ of an analytic
space (X, 0), with X = Cm/G, where the group G ⊆ GL(m,C), and
0 ∈ X is the representative of the G−orbit of {0} ∈ Cm. If G is the
multiplicative group of the nth−roots of unity, after a linear base change,
we can assume that the action is diagonal.

(2) Let n be a positive integer, µn the multiplicative group of the nth−roots

of unity, and ε ∈ µn a generator. We denote by the symbol
1

n
(a1, . . . , am)

the action of the group µn on Cm defined by

ε(z1, . . . , zm) = (εa1z1, . . . , ε
amzm),

where (a1, . . . , am) ∈ Zm.We refer to the corresponding quotient space as

a singularity of the type
1

n
(a1, . . . , am). Whenever necessary, we include

the coordinates

Cmz /
1

n
(a1, . . . , am),

where z = (z1, . . . , zm) ∈ Cm, to denote the cyclic quotient singularity.
If ρ is a different choice of the generator of the group µn, there exists an

integer k, gcd(k, n) = 1, such that ε = ρk, and we obtain an equivalent

notation of the singularity of the form
1

n
(b1, . . . , bm), where bi = kai

mod n for i = 1, . . . ,m.
Let f ∈ C[z1, . . . , zm]. If (f = 0) ⊆ Cm is invariant under the above

action of µn, we will denote by (f = 0)/µn the induced quotient. If
necessary, we explicitly include in the notation the action of µn, as above.

(3) Let (w0, w1, . . . , wm) be an (m + 1)−tuple of positive integers. The
weighted projective space P(w0, . . . , wm) is defined as the quotient of
Cm+1 \ {0} by the C∗−action given by

λ(z0, z1, . . . , zm) = (λw0z0, λ
w1z1, . . . , λ

wmzm).

Following [4], we say that the weighted projective space P(w0, . . . , wm) is
well-formed if gcd(w0, . . . , ŵi, . . . , wm) = 1, for each i = 0, . . . ,m.

The weighted projective space is covered by the standard charts Uzi =
(zi 6= 0) ' CmZi

/ 1
wi

(w0, . . . , ŵi, . . . , wm) centered at Pi = [0 : . . . : 1 :

. . . : 0], i = 0, . . . ,m. The affine coordinates Zi = (Z0i, . . . , Ẑii, . . . , Zmi)
satisfy

Zwi
ji =

zwi
j

z
wj

i

, j = 0, . . . , î, . . . ,m,

and are well-defined up to the corresponding action of µwi . Whenever the
coordinates are relevant in the descriptions of the spaces involved, we in-
dicate them as

P[z0:···:zn](w0, . . . , wn).

However, to simplify the notations we omit them when it is clear from the
context.
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(4) All of the varieties discussed in this paper have only mild singularities. In
particular, they are all Q− factorial [8]. We will not distinguish between
their Q−Cartier divisors and Weil divisors with rational coefficients.

2. A COMPACTIFICATION OF AN ARBITRARY FIBER OF A DEFORMATION

We begin by recalling the terminology and some general results contained in
[9, 13].

Definition 2.1. A normal variety X is Q−Gorenstein if it is Cohen-Macaulay and
a multiple of the canonical divisor is Cartier.

Definition 2.2. A flat map π : X → ∆ ⊆ C is called a one-parameter Q−Gorenstein
smoothing of a normal singularity (X,x) if π−1(0) = X and there exists U ⊆ ∆
an open neighborhood of 0 such that the following conditions are satisfied.

i) X is Q−Gorenstein,
ii) The induced map X → U is surjective,

iii) Xt = π−1(t) is smooth for every t ∈ U \ {0}.

The following result of Kollár and Shepherd-Barron [9] gives a complete de-
scription of the singularities admitting a one-parameter Q−Gorenstein smoothing:

Proposition 2.3 (Kollár, Shepherd-Barron [9]). The quotient singularities admit-
ting a one-parameter Q−Gorenstein smoothing are the following:

1) Rational double points;

2) Cyclic singularities of the type
1

dn2
(1, dnm − 1), for d > 0, n ≥ 1, and

(m,n) = 1.

For convenience, we recall that the rational double points are isolated quotients
of C2 by finite subgroups of SU(2). They are classified by their types A,D or
E. The singularities of type Ak−1 are cyclic quotient singularities of the type
1

k
(1,−1), while the other rational double points are quotients of C2 under the

action of the non-cyclic binary polyhedral groups. They also admit a description
as hypersurface singularities

(f(x, y, z) = 0) ⊆ C3,

where

f(x, y, z) =



xy + zk, for singularities of type Ak−1, k ≥ 2,

x2y + yk−1 + z2, for singularities of the type Dk, k ≥ 4,

x4 + y3 + z2, for singularities of the type E6,

x3y + y3 + z2, for singularities of the type E7,

x5 + y3 + z2, for singularities of the type E8.
(2.1)
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Definition 2.4. A normal surface singularity is called of class T if it is a rational

double point or a cyclic quotient singularity the type
1

dn2
(1, dnm − 1), for d >

0, n ≥ 1, and (m,n) = 1.

Using the natural sequence of abelian groups:

1→ µdn → µdn2 → µn → 1,

the second type of singularities can be described as the double quotient(
C2/ 1

dn(1,−1)
) /
µn ,

i.e. it is a quotient of an Adn−1− singularity.
If n = 1 in case (2) of the Proposition 2.3, the cyclic singularity is a rational

double point of type Ad−1. We treat the A−type singularities and their quotients
concomitantly.

We consider the hypersurface Y = (xy − zdn = Q(zn)) ⊆ C3 × Cd, where

Q(z) =
d−1∑
k=0

ekz
k. It is convenient to introduce the polynomial

P (z) = zd +Q(z) =
l∏

j=1

(z − aj)kj ,

where a1, . . . , al ∈ C are distinct, and the positive integers kj , j = 1, . . . , l, satisfy
l∑

j=1

kj = d.

We denote by (x, y, z) and e = (e0, . . . , ed−1) the linear coordinates on C3 and
Cd, respectively. We define the action of the group µn on Y by:

ρ(x, y, z, e0, . . . , ed−1) := (ρx, ρ−1y, ρmz, e0, . . . , ed−1), (2.2)

where ρ is a generator of µn. Let X = Y/µn and φ : X → Cd the quotient of the
projection Y → Cd. Let X0 be the fiber φ−1(0). Then (X0, 0) is a singularity of

the type
1

dn2
(1, dnm− 1) and we have:

Proposition 2.5. [13, 9] The map φ : X → Cd is a Q−Gorenstein deforma-

tion of the cyclic singularity (X0, 0) of type
1

dn2
(1, dnm − 1). Moreover, every

Q−Gorenstein deformationX → C of a singularity (X0, 0) of type
1

dn2
(1, dnm−

1) is isomorphic to the pullback of φ for some germ of holomorphic map (C, 0)→
(Cd, 0).

As in [13], given e ∈ Cd \ {0}, we want the group µn, n ≥ 2, to act freely on
the fiber Ye ⊆ C3 of the deformation Y → Cd. This condition is equivalent to the
fact that {0} ∈ C3 lies only on the central fiber Y0, and it translates into

aj 6= 0, for every j = 1, . . . , l. (2.3)
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In the case n = 1, any fiber of the form Ye = (xy = P (z)) is biholomorphic to a
fiber of a deformation satisfying the above condition after a change of coordinates.
We impose the condition (2.3) throughout this paper for any n.

The variety Xe = φ−1(e) is the Milnor fiber of the Q−Gorenstein deformation
if it is smooth. This translates into l = d, and kj = 1, j = 1, . . . , d.

2.1. Cyclic quotient singularities of class T . In this section we construct a fam-
ily of singular compactifications of a fiber of a Q−Gorenstein deformation of a

singularity of the type
1

dn2
(1, dnm − 1). The compactifications are presented as

hypersurfaces in appropriate weighted projective spaces.
Let

P (z) =

l∏
j=1

(z − aj)kj , (2.4)

where a1, . . . , al ∈ C∗ are distinct, and kj , j = 1, . . . , l, are positive integers with
l∑

j=1

kj = d. The variety

M = (xy = P (zn)) /µn ⊆ C3/
1

n
(1,−1,m)

is a fiber of a Q−Gorenstein deformation of a
1

dn2
(1, dnm− 1)−singularity.

We define

M =

xy = wdkP

(
zn

wk

)
=

l∏
j=1

(zn − ajwk)kj

 ⊆ P(a, b, c, e),

where we denoted by [x : y : z : w] the homogeneous coordinates in the weighted
projective space P(a, b, c, e), and k is a positive integer. The weights should satisfy
the homogeneity conditions:

a+ b = dnc = dke. (2.5)

We identify next sufficient conditions on the weights such that M embeds into
M as M ∩ Uw.

The standard affine coordinate chart Uw = (w 6= 0) ⊆ P(a, b, c, e) is isomor-
phic to C3

(X,Y,Z)/
1
e (a, b, c).We require the action of µe to be equivalent to an action

of the type 1
n(1,−1,m). This forces e = n, and from the homogeneity condition

we see that k = c. Furthermore, there should exist ρ ∈ µn primitive root such that

(1) ρ = ξa;

(2) ρ−1 = ξb;

(3) ρm = ξc. (2.6)

From the homogeneity condition we see that a + b = 0 mod n, and so the
conditions (1) and (2) are equivalent. Therefore, for any given c ≥ 0, the conditions
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(1)− (3) are simultaneously satisfied if and only if

am = c mod n. (2.7)

Let u ∈ {1, . . . , n− 1} be the unique integer such that mu = 1 mod n. Then
(2.7) is equivalent to

a = cu mod n.

Finally, a condition we require is that the weighted projective space P(a, b, c, n)
is well-formed. From (2.5) and (2.7), we can see that this is equivalent to re-
quiring that gcd(n, c) = 1, which implies that gcd(a, n) = gcd(b, n) = 1. If
gcd(a, c) = p 6= 1, then gcd(b, c) = p, and we write a = pa′, b = pb′, and c = pc′,
where gcd(a′, c′) = gcd(b′, c′) = 1. Notice that (2.5) yields a′ + b′ = dnc′,
while from (2.7) we see that a′ = c′u mod n. Moreover, we have an isomor-
phism P(a, b, c, n) ' P(a′, b′, c′, n) [4]. By replacing (a, b, c) by (a′, b′, c′), we
can therefore assume that gcd(a, c) = 1. Then the singularities of P(a, b, c, n) are
in codimension at least 2. This simplifies the discussions regarding the singularities
of the compactifications.

We summarize these requirements as

gcd(c, n) = 1 and gcd(a, c) = 1. (2.8)

Proposition 2.6. Let a, b and c satisfying the conditions (2.5), (2.7) and (2.8), and
let

M =

xy =
l∏

j=1

(zn − ajwc)kj

 ⊆ P(a, b, c, n).

We have
1) The variety M embeds as a Zariski open subset in M.
2) The singular points of M are at most rational double points, of type Akj−1

for j = 1, . . . , l, kj ≥ 2.

3) The singular points of M lying on M \M are singularities of the types
1
a(c, n) and 1

b (c, n) at the points R1 = [1 : 0 : 0 : 0] and R2 = [0 : 1 : 0 :
0], respectively.

4) The curve at infinity C = M \M is a smooth submanifold and a rational
curve. Moreover, C is an ample Q−Cartier divisor ofM.With the induced
complex structure C has two singular points, R1, R2, of type 1

a(c), 1b (c),
respectively.

5) The anti-canonical divisor of M is ample, and as Q−Cartier divisors, we
have

−KM =
c+ n

n
C. (2.9)

In particular, M is a log del Pezzo surface.
6) The topological space M is simply connected and its second homology

group has rank d.

Proof. 1) Notice that the condition (2.8) implies that the weighted projective space
is well-formed. The conditions (2.5) and (2.7) were imposed to ensure that M
embeds into M as M ∩ Uw.
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2) As discussed, the chart Uw = (w 6= 0) ⊆ P(a, b, c, n) is isomorphic to
C3
(X,Y,Z)/

1
n(a, b, c). In these coordinates

M ∩ Uw ' (XY = P (Zn)) /
1

n
(a, b, c).

From (2.8) we find that the fixed point (0, 0, 0) /∈ M ∩ Uw is the only point of
non-trivial isotropy.

The singular points of the hypersurface (XY = P (Zn)) ⊆ C3 occur when the

polynomial P has multiple roots. We find that Sj = [0 : 0 : a
1
n
j : 1] ∈ M are

singular points of type Akj−1 of M ∩ Uw, for any j = 1, . . . , l, such that kj ≥ 2.

3) We compute the singularities of M at infinity in the standard charts covering
the weighted projective space P(a, b, c, n).

Let Ux = (x 6= 0) ⊆ P(a, b, c, n). Then Ux ' C3
(Y,Z,W )/

1
a(b, c, n). In these

coordinates

M ∩ Ux '

Y =

l∏
j=1

(Zn − ajW c)kj

/ 1
a(b, c, n) .

Since a is relatively prime to c and n, the only point of non-trivial isotropy is the
fixed point of the action of µa on C3, (0, 0, 0) ∈ M ∩ Ux. As the hypersurfaceY =

j∏
j=1

(Zn − ajW c)kj

 ⊆ C3 is smooth, the only singular point of M ∩ Ux

is R1 = [1 : 0 : 0 : 0]. Notice that the coordinates (Z,W ) parametrize M ∩ Ux,
and so the point R1 ∈M is a cyclic quotient singularity of the type 1

a(c, n).

An analogous computation exhibits one more singular point of M in the chart
Uy = (y 6= 0) ⊆ P(a, b, c, n). This point is R2 = [0 : 1 : 0 : 0], a cyclic
quotient singularity of the type 1

b (c, n). Moreover, in the chart Uz = (z 6= 0) ⊆
P(a, b, c, n), as in the proof of part 1), we find no singular points on M \M, and

we recover the above singular points Sj = [0 : 0 : a
1
n
j : 1] ∈M ∩ Uz, kj ≥ 2.

4) The curve at infinity C = M \ M is the hyperplane section (w = 0), of
weight n. As a Q-Cartier divisor

OM (C) = OM (n),

where by OM (1) we denote the restriction of the tautological sheaf OP(a,b,c,n)(1)

to M. In particular C is an ample Q−Cartier divisor.
In the local charts M ∩ Ux ' C2

(Z,W )/
1
a(c, n) and M ∩ Uy ' C2

(Z,W )/
1
b (c, n),

the curve at infinity C is given by the (W = 0). Hence C ∩M ∩ Ux ' C/ 1
a(c),

and C ∩M ∩Uy ' C/1b (c), and C is smooth submanifold of M. Moreover, since
in the local chart M ∩ Ux the curve C corresponds to the Z−axis, and C is a one
point compactification of C ∩M ∩ Ux, then it must be rational.
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5) Since the weighted projective space P(a, b, c, n) is well-formed and the hy-
persurface M does not contain its singular lines (if any), then the adjunction for-
mula holds. The canonical divisor of M is

KM = (KP(a,b,c,n) +M)|M = OM (dnc− a− b− c− n).

Using the homogeneity condition (2.5) we obtain

KM = OM (−c− n) = −c+ n

n
C.

In particular, we see that M is a log del Pezzo surface.
6) To study the topological properties of M, we have to consider two cases. In

the first case, when n = 1 the manifoldM is a smooth deformation of a singularity
of type Ad−1. As a consequence, it is simply connected and the rank of its second
homology is d − 1. The compactification is obtained by adding a rational curve
at infinity, hence by Van Kampen’s theorem, the topological space M is simply
connected. Moreover, with respect to the decomposition M = M ∪ Nbhd(C),
the intersection M ∩ Nbhd(C) is homotopic to the lens space Ld(1,−1) whose
first Betti number is b1 (Ld (1,−1)) = 0. Thus, by the Mayer-Vietoris sequence
the second Betti number is b2(M) = d.

In the second case, when n ≥ 2, the manifold M is obtained by taking the
quotient of a deformation of the Adn−1 singularity by a free µn−action. Hence the
fundamental group of M is π1(M) = Z/nZ. Moreover, the fundamental group
of a neighborhood of infinity is π1(Ldn2(1, dnm − 1)) = Z/dn2Z, and there is a
natural surjection π1((Ldn2(1, dnm − 1)) = Z/dn2Z → π1(M) = Z/nZ. The
Euler characteristic of M is

χ(M) =
1

n
χ(Adn−1) =

1

n
dn = d,

hence the second Betti number of M equals d − 1. Van Kampen’s theorem and
the Mayer-Vietoris sequence for M = M ∪ Nbhd(C) imply that the space M is
simply connected, and its second Betti number is d. �

Remark 2.7. For a given integer c ≥ 0, with gcd(c, n) = 1, it is easy to see
that the conditions (2.6) will be satisfied by at least one pair (a, b) of non-negative
integers. As a consequence, when taking different values of c, the manifold M can
be embedded in infinitely many log del Pezzo surfaces.

Examples 2.8. The embeddings of M in log del Pezzo surfaces in Theorem B are
indexed by the set of weights (a, b, c). We list below some interesting cases:

1) an immediate choice of weights induced by the action µn are for c = m
and hence:

(a, b, c) = (1 + knm, (d− k)nm− 1,m), k ∈ {0, . . . , d− 1}.

2) another normalization can be obtained for c = 1, and hence

(a, b, c) = (u+ kn, (d− k)n− u, 1), k ∈ {0, . . . , d− 1}.

The case d = 1, k = 0 also appears in [10].
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Remark 2.9. When n = 1, we compactify the singularity Ad−1 and its deforma-
tions in P(a, dc−a, c, 1). A special case, when c = 1, d even and a = b appears in
Saito [14]. We generalize Saito’s compactification to infinitely many sets of weights
and to arbitrary complex structures. The A−case also appears in [20].

2.2. A second compactification of a deformation of a 1
dn2 (1, dnm − 1) singu-

larity, for n > 1. Let

M = (xy = P (zn)) /µn ⊆ C3/
1

n
(1,−1,m),

where P (z) =

l∏
j=1

(z − aj)
kj , with a1, . . . , al ∈ C∗ distinct, kj , j = 1, . . . , l,

positive integers with
l∑

j=1

kj = d be the generic fiber of a deformation as in (2.4).

Let N = (xy = P (zn)) ⊆ C3 and N =
(
xy = wdncP

((
z
wc

)n)) be its compacti-
fication in P(a, b, c, 1) with gcd(a, b, c) = 1.

We construct a second compactification of M as a µn−quotient of N. On Uw =
(w 6= 0) ' C3 ⊆ P(a, b, c, 1) the action must be of the form 1

n(1,−1,m). We
consider its extension to P(a, b, c, 1) defined as

ρ[x : y : z : w] = [ρx : ρ−1y : ρmz : w], ρ ∈ µn (2.10)

Let M̃ be the quotient N/µn, and π : N → M̃ the holomorphic quotient map.

Proposition 2.10. Let M̃ be as above, and C = M̃ \M the divisor at infinity.
Then we have:

1) The variety M embeds as a Zariski open subset in M̃, and the singular
points of M are at most rational double points of type Akj−1 for j =
1, . . . , l, kj ≥ 2.

2) Let k = gcd(n, am − c). When k = 1 the action of µn on N is semi-free
and has only two fixed points R1 = [1 : 0 : 0 : 0] and R2 = [0 : 1 : 0 : 0].

Otherwise, the map π : N → M̃ is a branched covering of order k, with
branch locus Cw = (w = 0).

3) If k = 1 the singular points of M̃ lying on C are singularities of the types
1
an(c− am, 1) and 1

bn(c+ bm, 1) at the points π(R1) and π(R2), respec-
tively. If k > 1, then the singular points of M̃ lying on C are singularities
of the types 1

an
k

( c−amk , 1) and 1
bn
k

( c+bmk , 1) at the points π(R1) and π(R2),

respectively.
4) The curve at infinity is a smooth suborbifold, rational, ample Q−Cartier

divisor of M̃. With the induced complex structure, C has two singular
points, π(R1), π(R2), of order an

k ,
bn
k , respectively.

5) The anti-canonical divisor of M̃ is ample, and as Q−Cartier divisors, we
have

−K
M̃

=
k + c

k
C. (2.11)
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In particular, M̃ is a log del Pezzo surface.
6) The topological space M̃ is simply connected and its second homology

group has rank d.

Proof. 1) The action of µn on N = N ∩Uw is just the restriction of the free action
1
n(1,−1,m) on C3 \ {0}. Hence N → M = N/µn is the universal covering, and
the rest is immediate.

2) and 3) We need to describe the action µn in a neighborhood of the curve at
infinity. On N ∩ Ux ⊂ Ux ' C3

(Y,Z,W )/
1
a(b, c, 1) the manifold is given by:Y =

l∏
j=1

(Zn − ajW c)kj

/ 1
a(b, c, 1)

and it is locally parametrized by C2
(Z,W )/

1
a(c, 1). In the chart Ux the action µn is

of the form

ρ(Y,Z,W ) = (ρ−1−
b
aY, ρm−

c
aZ, ρ−

1
aW ) = (ζa+bY, ζc−amZ, ζW ) (2.12)

for some ζ = ρ−
1
a . By a fractional power we assume an arbitrary and consistent

choice of ζ. This is well defined since we work on C3/ 1
a(b, c, 1). The local chart

of (N ∩ Ux)/µn is of the form
(
C2
(Z,W )/

1
a(c, 1)

)
/ 1
n(m − c

a ,−
1
a) which is iso-

morphic to C2
(Z,W )/

1
an(c − am, 1). Note that gcd(a, c − am) = 1, as we choose

a, b, c such that gcd(a, b, c) = 1 and a + b = dnc. The quotient C2
(Z,W )/

1
an(c −

am, 1) is a branched cover if gcd(n, c − am) = k 6= 1. In this case we have
new complex coordinates (Z,U) = (Z,W k) and the new local chart is given by
C2
(Z,U)/

1
an
k

( c−amk , 1). This gives us the type of the singularity at π(R1).

The computation in the chart Uy ' C3(X,Z,W )/1b (a, c, 1) is similar, and we
omit it. We obtain an induced complex chart on M̃ of the form(

C2
(Z,W )/

1
b (c, 1)

)/
1
n(m+ c

b ,
1
b )
' C2

(Z,W )/
1

bn
(c+ bm, 1).

As a + b = dnc, we have that gcd(n, c − am) = gcd(n, c + bm), and we regain
the result regarding the branched covering. The type of the singularity at π(R2)
follows from this.

4) The curve at infinity is a quotient of the curve Cw = (w = 0) ⊂ N ⊂
P(a, b, c, 1), and is given in local coordinates by W = 0, or U = 0. Hence C is a
smooth, ample Q−divisor, and an orbifold rational curve with two singularities of
order ank , and bnk , at π(R1), π(R2), respectively.

6) The topological space M̃ is simply connected as it is the compactification of
M by an orbifold rational curve, and the same argument from Proposition 2.6 (part
6)) applies here.

5) For k as above, we must have that a and k are relatively prime, otherwise we
obtain that the gcd(a, b, c) is divisible by gcd(a, k) 6= 1. Hence, there are integers
r, s such that ar + ks = 1. Then the action of µk = 〈α〉 as a subgroup of µn on
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P(a, b, c, 1) is of the form

α[x : y : z : w] = [αx : α−1y : αmz : w]

= [(α−r)aαx : (α−r)bα−1y : (α−r)cαmz : (α−r)w]

= [α−ar+1x : α−1−rby : αm−rcz : α−rw]

= [αksx : α−1+ar−dncry : αm−rcz : α−rw]

= [x : α−ks−kd(
n
k
)cry : αm−rcz : α−rw]

= [x : y : αm−rcz : α−rw]

= [x : y : z : α−rw].

To justify the last equality, we must show that αm−rc = 1. As α is a k−root
of unity and gcd(a, k) = 1, it is enough to prove that (αm−rc)a = 1. A quick
computation yields (αm−rc)a = αam−cra = αam−c+c(1−ar) = 1.

Hence P(a, b, c, 1)/µk is isomorphic to P(a, b, c, k), by [x : y : z : w] 7→ [x :
y : z : u], u = wk. If we denote by n′ = n

k , then

P(a, b, c, 1)/µn ' P(a, b, c, k)/µn′ ,

where the µn′ is the induced action on P(a, b, c, k). On our hypersurface the ac-
tion µn′ is semi-free with two fixed points corresponding to R1 and R2. The map
π : P(a, b, c, 1) → P(a, b, c, 1)/µn can be written as the composition of two pro-
jections:

P(a, b, c, 1)
π1−→ P(a, b, c, k)

π2−→ P(a, b, c, 1)/µn.

Let N ′ = π1(N), and Cu = π1(Cw) = (u = 0) ⊂ P(a, b, c, k). Then, −K
N

′ =
k+c
k Cu as in Proposition 2.6. The manifold M̃ is the µn′−quotient of N ′ by a

semi-free action, hence

π∗2(−K
M̃

) = −K
N

′ =
k + c

k
Cu =

k + c

k
π∗2(C).

Since M̃ is simply connected, there are no torsion line bundles and this implies
−K

M̃
= k+c

k C, as Q−Cartier divisors. �

2.3. Non-cyclic quotient singularities of class T . In this section we discuss a
family of singular compactifications of a fiber of the universal deformation of sin-
gularities of the types Dk, E6, E7 and E8. These are also hypersurface singulari-
ties, and this allows us to exhibit the compactifications as hypersurfaces in appro-
priate weighted projective spaces. The construction appears in Saito’s paper [14],
although his results are focused on the Coxeter transformation associated to the
groups. We extend it to an arbitrary fiber of the universal deformation space of a
rational double point.

Let f be one of the polynomials for the D−, E−type singularities (2.1), and let
gi ∈ C[x, y, z], i = 1 . . . , k be monomials yielding a basis of

C[x, y, z]/〈f, ∂f/∂x, ∂f/∂y, ∂f/∂z〉.
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The fiber of the universal deformation of such a rational double point singularity
is the affine variety

M =

(
f =

k∑
i=1

aigi

)
⊆ C3,

where ai ∈ C are fixed [18]. Notice that for a′is general enough, the surface
M is smooth. In general, it is known that M has at most rational double points
singularities. If ai = 0, i = 1, . . . , k, we recover the central fiber which is a
singularity of the type C2/G, where G ⊆ SU(2). For convenience, let h = f −
k∑
i=1

aigi ∈ C[x, y, z].

As before we would like to embedM in a weighted projective space P(a, b, c, 1)
asM ∩Uw, where Uw is the standard chart (w 6= 0) andM is a hypersurface given
by a suitable quasi-homogenization of the polynomial h :

M =
(
wNh

( x

wa
,
y

wb
,
z

wc

)
= 0
)
⊆ P(a, b, c, 1),

for some positive integers a, b, c, and N. A brief inspection of the polynomials
(2.1) yields weights defined uniquely up to a common factor. The ambiguity is
eliminated by the divisibility condition gcd(a, b, c) = 1, which ensures that the
ambient weighted projective space is well-formed. We find

(a, b, c) =


(k − 2, 2, k − 1), for singularities of the type Dk

(3, 4, 6), for singularities of the type E6

(4, 6, 9), for singularities of the type E7

(6, 10, 15), for singularities of the type E8.

(2.13)

For the rest of this section, we consider h a quasi-homogeneous polynomial as
above, and (a, b, c) the corresponding weights. With these choices, the weighted
degree of M in P(a, b, c, 1) is N = a+ b+ c− 1.

Proposition 2.11. Let

M =
(
wNh

( x

wa
,
y

wb
,
z

wc

)
= 0
)
⊆ P(a, b, c, 1),

where (a, b, c) as in (2.13). Then
1) M embeds as a Zariski open subset in M.
2) The singular points of M lying in M \M are as follows:

i) Case Dk: two singularities of type 1
2(1, 1), and one of type 1

k−2(1, 1).

ii) CaseE6: two singularities of type 1
3(1, 1), and one of the type 1

2(1, 1).

iii) Case E7: three singularities of type 1
2(1, 1), 1

3(1, 1), and 1
4(1, 1),

respectively.
iv) Case E8: three singularities of type 1

2(1, 1), 1
3(1, 1), and 1

5(1, 1),
respectively.

3) The complement C = M \ M is a smooth, rational, ample Q−Cartier
divisor of M. Moreover, with the induced complex structure it has three
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singular points of orders (2, 2, k − 2), (2, 3, 3), (2, 3, 4), (2, 3, 5) for the
Dk, E6,7,8−cases, respectively.

4) The anti-canonical divisor of M is

−KM = 2C. (2.14)

In particular, M is a log del Pezzo surface.
5) The variety M is simply connected and its second homology group has

rank k+ 1 for a singularity of type Dk, and n+ 1 for a singularity of type
En, n = 6, 7, 8.

Proof. The proofs of 1), 2), and 3) for h = f − 1 can be found in [14]. One can
easily check that the singularities at infinity remain the same for any deformation
h. The canonical class of M follows again from the adjunction formula:

KM = (KP(a,b,c,1) +M)|M = OM (N − a− b− c− 1) = OM (−2) = −2C.

The proof of 5) is as in Proposition 2.6.6. �

Notice that in particular we obtained a compactification of a rational double
point singularity with the properties stated in Proposition 2.11.

2.4. Conclusions. If M is a fiber of a Q−Gorenstein deformation of a singular-
ity of class T, Propositions 2.6, 2.10 and 2.11 provide compactifications with the
properties summarized in Theorem B.

In general, M might admit rational double points as singularities. In this case,
we consider the minimal resolution N of M, and this gives us a special complex
structure on the Milnor fiber of the singularity. We have the following:

Corollary 2.12. The minimal resolution N of a fiber M of a Q−Gorenstein defor-
mation of a singularity of class T embeds into a variety N as the complement of
a smooth rational curve, which is a rational multiple of the anticanonical divisor.
The singularities along the divisor at infinity are all isolated finite cyclic quotients.
Moreover, if M is associated to a finite cyclic quotient singularity then there are
infinitely many minimal compactifications with the above properties.

Proof. Let p : N → M be the minimal resolution of M. Correspondingly, let
p : N →M denote its extension to the compactification. Since the singular points
of M are at most rational double points

KN = p∗KM = −βC, (2.15)

for some β > 1. The singularities of N are only along the divisor at infinity as
described in Propositions 2.6 and 2.11. �

Notice that if M is singular, then N is no longer a log del Pezzo surface, as it
contains the (−2)−curves introduced when resolving the singularities. Moreover,
the divisor at infinity C is only almost ample (see Definition 3.1 below).

Remark 2.13. Let M0 = C2/
1

dn2
(1, dnm − 1), n 6= 1, and N its minimal reso-

lution. Then N has non-trivial, even non-torsion as π1(N) = 0, canonical divisor,
and this implies that N does not admit Ricci-flat Kähler metrics.
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3. THE RELATION WITH TIAN-YAU’S RICCI-FLAT KÄHLER METRICS

In this section we recall the relevant results of Tian-Yau [17] and Bando-Kasue-
Nakajima [2]. Both Tian-Yau [17] and Bando-Kasue-Nakajima [2] proved more
general results, but we restrict the presentation to the ALE Ricci-flat case in com-
plex dimension two which suffices for our purpose. We conclude by proving The-
orem A, and its corollary.

Tian and Yau construct [17] complete Ricci-flat Kähler metrics on the comple-
ment of a divisor on compact Kähler orbifolds satisfying certain conditions.

Definition 3.1. Let D be a divisor in the Kähler orbifold M of complex dimension
2. Then

(i) D is almost ample if there exists an integer m > 0 such that a basis of
H0(M,O(mD)) gives a morphism from M into some projective space
PN which is a biholomorphism in a neighborhood of D.

(ii) D is admissible if Sing(M) ⊆ D, D is smooth in M \ Sing(M), and if
πx : Ũx → Ux is the local uniformization at x ∈ Sing(M) with Ũx ⊆ C2,

then π−1x (D) is smooth in Ũx.

For surfaces, Tian-Yau proved:

Theorem 3.2 ([17]). Let M be a compact Kähler orbifold of complex dimension
2. Let D be an almost ample, admissible divisor in M, such that

−KM = βD, for some β > 1. (3.1)

Suppose that D with the induced complex structure admits a positive Kähler-
Einstein metric, then M = M \ D admits a complete Ricci-flat Kähler metric
g in every Kähler class in H2

c (M,R).
Moreover, if we denote by R(g) the curvature tensor of g and by r the distance

function on M from some fixed point with respect to g, then R(g) decays at the
order of at least r−3 with respect to the g−norm whenever D is biholomorphic to
P1 and

OD(D) =
2

β − 1
OP1(1). (3.2)

Furthermore the metric g has euclidean volume growth.

The Tian-Yau Theorem also requires that the divisor D is neat (Definition 1.1(i)
[17]). Tian and Yau remark that this condition is probably superfluous in general.
In complex dimension two this condition is automatically implied by the almost
ampleness.

In their paper, Tian-Yau do not emphasize the cohomology class of the Kähler
metric, but upon a close inspection of [17], the metrics can be constructed in an
arbitrary compactly supported Kähler class. This issue is discussed in Joyce [7]
and Van Coevering [20].

The metrics constructed using the Tian-Yau result are not a priori ALE, where
by an ALE 4−manifold we understand:
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Definition 3.3. Let G be a finite subgroup of SO(4) acting freely on R4 \{0}, and
let h0 be the Euclidean metric on R4/G. We say that the manifold (M4, g) is an
ALE manifold asymptotic to R4/G if there exist a compact subset K ⊆ M and a
map π : M \K → R4/G that is a diffeomorphism between M \K and the subset
{z ∈ R4/G | r(z) > R} for some fixed R > 0, such that

∇k(π∗(g)− h0) = O(r−4−k) for all k ≥ 0. (3.3)

If the metric is Kähler, then the group G is a subgroup of U(2), and the dif-
feomorphism π identifies M \K with a subset C2/G. This identification is not a
biholomorphism in general.

A remarkable result of Bando-Kasue-Nakajima proves that there exists a good
asymptotic coordinate system under curvature decay conditions:

Theorem 3.4 ([2]). Let (M, g) be a Ricci-flat Kähler surface with

1) VolB(p; r) ≥ Cr4 for some p ∈M,C > 0,

2)
∫
M
|R(g)|2dVg <∞.

Then (M, g) is ALE.

Here B(p; r) ⊆ M denotes the ball or radius r in (M, g) centered at the point
p ∈M.

Proof of Theorem A. In Corollary 2.12, we proved that the complex surface (M,J)
admits a compactification to a variety (M,J) with at most three finite cyclic quo-
tient singular points along the divisor at infinity C, and no other singular points.
We showed that C is an almost ample, admissible, smooth rational curve. More-
over, the numerical conditions (3.1), (3.2) of the Tian-Yau construction are also
satisfied, as it can be seen from (2.15) and the adjunction formula. The complex
structure of the divisor at infinity was studied in Proposition 2.6.(4), Proposition
2.10.(4), and Proposition 2.11.(3).

The important condition in the Tian-Yau result is that the divisorD admits a pos-
itive Kähler-Einstein metric with respect to the complex orbifold structure induced
by M. In the case of S2 with three orbifold points, the orders of the singulari-
ties are (2, 2, k − 2) in the Dk case, (2, 3, 3), (2, 3, 4), (2, 3, 5) in the E6,7,8 cases,
which are exactly the orbifolds which are global quotients of S2 by the dihedral
and polyhedral groups. In particular, they all admit positive Einstein metrics. The
metrics are Kähler-Einstein as we are in oriented surfaces and real dimension 2.

In the case of S2 with two orbifold points a well known result of Troyanov
[19] tells us that the Einstein metric exists if and only if the two orbifold points
have equal order, and in this case we have the quotient of the sphere with the
canonical metric. The order of the singularities in the compactifications obtained
in Proposition 2.6.(4) are a and b. This implies a = b. As a + b = dnc and
gcd(a, b, c) = 1 this implies that c = 1 when dn is even, and c = 2 when dn is
odd. Moreover, when the conditions (2.6) are satisfied, we must have ρ = ±1,
so n = 1 or 2. In particular, the first construction yields compactifications for
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singularities of type: Ad−1 in P(d, d, 2, 1) when d is odd, or in P(d2 ,
d
2 , 1, 1) when

d is even, and for singularities of type 1
4d(1, 2d− 1), when d odd, in P(d, d, 1, 2).

For all the other cyclic singularities we use the second construction from Section
2.2. In general, we obtain that the deformation of a singularity of type 1

dn2 (1, dnm−
1) compactifies as in Proposition 2.10 in P(dn, dn, 2, 1)/µn when dn is odd, or in
P(dn2 ,

dn
2 , 1, 1)/µn when dn is even. Notice that for n = 2 the two constructions

give in fact the same compactification.
Therefore, in all possible cases, there exists a unique construction among our

compactifications which satisfies the hypothesis of the Tian-Yau Theorem. Hence,
the complement of the divisor at infinity,M\C, admits a complete Ricci-flat Kähler
metric in any Kähler class. This metric must be ALE by Theorem 3.4. Hence, by
the uniqueness part of Theorem 1.1, the Tian-Yau method rediscovers the unique
metric g in the Kähler class [ωg]. �

4. SMOOTH COMPACTIFICATIONS

In this section we discuss the smoothness of our compactifications, and prove
Proposition 4.2.

Lemma 4.1. Let (M, [D]) be a pair consisting of smooth complex surface equipped
with a smooth ample divisor [D] homeomorphic to S2. If there exists β > 1 such
that −KM = β[D] then (M,D) is one of the following:

1) (P1 × P1, [Diagonal]),
2) (P2, [Line]),
3) (P2, [Conic]).

Proof. The condition−KM = β[D] with β > 1 and [D] ample implies that−KM

is ample, that is M is a del Pezzo surface. In particular, from the classification of
del Pezzo surfaces we know that K2

M
∈ {1, 2, . . . , 9}. On the other hand, from the

adjunction formula for the smooth divisor [D] and using again that −KM = β[D],
we infer that

K2
M

=
2β2

β − 1
.

This is possible only when K2
M

= 8, in which case β = 2, or K2
M

= 9, in which
case either β = 3 or β = 3/2. Using again the classification of del Pezzo surfaces,
in the first case (M, [D]) must be (P1×P1, [Diagonal]), while in the second case
M is CP2 and [D] is either a line or a smooth conic. �

Proposition 4.2. The only cases in our constructions when the compactification
M is a smooth surface is when M is C2, an A1−type manifold, or the Z2 quo-
tient of an A1, and in these cases the compactifications are (P2, [Line]) (P1 ×
P1, [Diagonal]), or (P2, [Conic]) respectively.

Proof. The singular locus of the compactifications discussed is studied in Proposi-
tions 2.6, 2.10 and 2.11.

Proposition 2.6 is used to compactify deformations of A−type singularities, in
which case n = 1. They are smooth if and only if a = b = 1. When n = 1, then
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the condition (2.5) forces either d = 1 and c = 2 or d = 2 and c = 1. In the case
when d = 2 and c = 1 we deform a A1−singularity, and the compactification we
found is

M =
(
xy = w2P

( z
w

))
⊂ P(1, 1, 1, 1)

In this case, M is a smooth quadric, and hence isomorphic to P1 × P1, and the
divisor at infinity is the diagonal.

In the case when d = 1 and c = 2, we have in fact M ' C2. Our compactifica-
tion in this case is

M =
(
xy = w2P

( z

w2

))
⊂ P(1, 1, 2, 1)

Projecting M from the point [0 : 0 : 1 : 0] /∈ M onto P[x:y:w](1, 1, 1) is an
isomorphism under which the divisor at infinity is the line (w = 0).

The compactifications described in Proposition 2.10 are smooth if and only if
ank = bnk = 1. This is possible only when a = b = n

k = 1. Moreover, only the
case n > 1 is relevant here, otherwise the compactifications in Propositions 2.10
and 2.6 coincide.

Using again the homogeneity condition (2.5), we see that dnc = 2. Therefore
we obtain n = 2, which yields k = 2, and d = c = 1. In this case, we compactify
the deformation of a 1

4(1, 1)−singularity, and the compactification is

M = N/µ2 ⊂ P(1, 1, 1, 1)/µ2,

where N = (xy = w2P ( z
2

w2 )). In this case N is a smooth quadric, and hence
isomorphic to P1 × P1, and the curve at infinity is the diagonal.The quotient map
N → N/µ2 ' M is ramified along the diagonal. Therefore M is the projective
plane P2 and the curve at infinity is a smooth conic.

The compactifications described in Proposition 2.11 are never smooth. �
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