MATH 6100 - HOMEWORK ASSIGNMENT 2

DUE FRIDAY, SEPTEMBER 9 BY 6:00PM

Exercise 0.1. There are two homeomorphic metric spaces (X_1, d_1) and (X_2, d_2) such that (X_1, d_1) is complete, while (X_2, d_2) is not.

A metric space (X, d) is **separable** if it contains a countable dense set.

Exercise 0.2. A compact metric space is separable.

We let $\ell^{\infty}(\mathbb{N})$ denote the set of uniformly bounded sequences from \mathbb{N} to \mathbb{C} . We consider this as a complete metric space whose metric is given by $d(f,g) = \|f - g\|_{\infty} = \sup_{n \in \mathbb{N}} |f(n) - g(n)|$.

Exercise 0.3 (Kuratowski). Every bounded seprable metric space is isometric to a subspace of $\ell^{\infty}(\mathbb{N})$.

In the following we consider vector spaces over a field \mathbb{K} , where $\mathbb{K} = \mathbb{R}$, or $\mathbb{K} = \mathbb{C}$.

Exercise 0.4. Let $(V, \|\cdot\|_V)$ and $(W, \|\cdot\|_W)$ be normed spaces, and $T: V \to W$ a linear operator. Then T is bounded if and only if T is continuous.

Exercise 0.5. Let V be a finite dimensional K-vector space, and suppose $\|\cdot\|_1$, and $\|\cdot\|_2$ are norms on V. Then the identity map from $(V, \|\cdot\|_1)$ to $(V, \|\cdot\|_2)$ is a homeomorphism.

Exercise 0.6. Let V be a finite dimensional normed space. Then the closed unit ball $\overline{B}(1,0)$ is compact, and V is a Banach space.

Exercise 0.7 (Riesz' lemma). Let $(V, \|\cdot\|)$ be a normed space, $W \subset V$ a proper closed subspace, and fix $0 < \alpha < 1$. Then there exists $x \notin W$ with $\|x\| = 1$ so that $\inf_{y \in W} \|x - y\| \ge \alpha$. (Hint: Start with $x_0 \notin W$, set $d = \inf_{y \in W} \|x_0 - y\|$, take $x_1 \in W$ so that $\|x_0 - x_1\| \ge d - \varepsilon$ for some suitably chosen $\varepsilon > 0$, and show that $x = \|x_0 - x_1\|^{-1}(x_0 - x_1)$ works.)

Exercise 0.8. Let V be a normed space such that the closed unit ball $\overline{B}(1,0)$ is compact. Then V is finite dimensional.

If $(V, \|\cdot\|)$ is a normed space, a series $\sum_{n=1}^{\infty} x_n$ is said to converge if the partial sums $\sum_{n=1}^{k} x_n$ converge as k tends to infinite. A series $\sum_{n=1}^{\infty} x_n$ is said to converge absolutely if $\sum_{n=1}^{\infty} \|x_n\| < \infty$.

Exercise 0.9. Let $(V, \|\cdot\|)$ be a normed space over K. Then V is a Banach space if and only if every absolutely convergent series converges.

Date: September 5, 2016.