Instructions: Work on any 5 problems. Circle the problems you want to be graded:

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Problem 1 (20 points). Suppose K is a compact Hausdorff space and $\left\{f_{n}\right\}_{n}$ is a sequence of continuous complex-valued functions on K such that f_{n} converges pointwise to a continuous function f. Does it follow that f_{n} converges to f uniformly. Prove or give a counterexample.
Solution. It does not follow. Suppose $K=[0,1]$, and $f_{n}:[0,1] \rightarrow[0,1]$ is given by

$$
f_{n}(t)=\left\{\begin{array}{cc}
2^{n+1} t & \text { if } 0 \leq t \leq 2^{-n-1} \\
-2^{n+1} t+2 & \text { if } 2^{-n-1} \leq t \leq 2^{-n} \\
0 & \text { if } 2^{-n} \leq t \leq 1
\end{array}\right.
$$

Here are the graphs of f_{1}, f_{2} and f_{3} in green, red, and blue respectively:

We have $f_{n}(t) \rightarrow 0$ pointwise, however $\left\|f_{n}\right\|_{\infty}=1$ for each n and so $f_{n} \nrightarrow 0$ uniformly.

Problem 2 (20 points). Let (X, \mathcal{M}, μ) be a finite measure space and suppose $f \in L^{\infty}(X, \mu)$. Set $a_{n}=$ $\int|f|^{n} d \mu$. Show that $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\|f\|_{\infty}$.

Solution. There is a very slick proof of this fact using the Cauchy-Schwarz inequality. Although we have not covered this yet and so we give a direct proof instead.

First note that if $\|f\|_{\infty} \neq 0$ then $\frac{a_{n+1}}{a_{n}}=\|f\|_{\infty}\left(\int\left(\frac{f}{\|f\|_{\infty}}\right)^{n+1} d \mu\right) /\left(\int\left(\frac{f}{\|f\|_{\infty}}\right)^{n} d \mu\right)$, and so by replacing f with $f /\|f\|_{\infty}$ it is enough to consider the case when $\|f\|_{\infty}=1$. Also, by replacing μ with the measure $\nu(E)=\mu(E) / \mu(X)$, we may assume that $\mu(X)=1$.

Suppose therefore that $\|f\|_{\infty}=1$. Then $|f(x)|^{n+1} \leq|f(x)|^{n}$ and so we see that $\lim \sup _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} \leq 1$. It then suffices to show that $\liminf _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} \geq 1$. For this we fix $\varepsilon>0$ and set $E=\{x \in X| | f(x) \mid \geq 1-\varepsilon\}$. Take $\delta>0$ so that if $F=\{x \in X| | f(x) \mid \geq 1-\varepsilon-\delta\}$ then $\mu(F \backslash E)<\varepsilon \mu(E)$.

Then for large enough n we have $\left(\frac{(1-\varepsilon-\delta)}{1-\varepsilon}\right)^{n} \leq \varepsilon \mu(E)$, so that $(1-\varepsilon-\delta)^{n} \leq \varepsilon(1-\varepsilon)^{n} \mu(E)$. Then we have

$$
\begin{aligned}
\frac{a_{n+1}}{a_{n}} & \geq\left(\int_{E}|f(x)|^{n+1} d \mu\right) /\left(\int_{F}|f(x)|^{n} d \mu+\int_{F^{c}}|f(x)|^{n} d \mu\right) \\
& \geq(1-\varepsilon)\left(\int_{E}|f(x)|^{n} d \mu\right) /\left(\int_{F}|f(x)|^{n} d \mu+\varepsilon \mu(E)(1-\varepsilon)^{n}\right) \\
& \geq(1-\varepsilon)\left(\int_{E}|f(x)|^{n} d \mu\right) /\left(\int_{E}|f(x)|^{n} d \mu+2 \varepsilon \mu(E)(1-\varepsilon)^{n}\right)
\end{aligned}
$$

If $c>0$, then the function $f(t)=\frac{t}{t+c}$ is increasing for $t>0$. Also, if $b_{n}=\int_{E}|f(x)|^{n} d \mu$ then $b_{n} \geq(1-\varepsilon)^{n} \mu(E)$. Hence $b_{n} /\left(b_{n}+2 \varepsilon(1-\varepsilon)^{n} \mu(E)\right) \geq 1 /(1+2 \varepsilon)$. Therefore, we have shown that for large enough n we have $\frac{a_{n+1}}{a_{n}} \geq \frac{1-\varepsilon}{1+2 \varepsilon}$. As $\varepsilon>0$ was arbitrary it then follows that $\lim \inf _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} \geq 1$.

Problem 3 (20 points). Let μ be a finite, positive, Borel measure on \mathbb{R}^{2}, and let \mathcal{G} be the family of finite unions of squares of the form

$$
S=\left\{(x, y) \mid j 2^{-n} \leq x \leq(j+1) 2^{-n} ; k 2^{-n} \leq y \leq(k+1) 2^{-n}\right\},
$$

where j, k, and n are integers. Prove that the set of linear combinations of characteristic functions of elements from \mathcal{G} is dense in $L^{1}\left(\mathbb{R}^{2}, \mu\right)$.

Solution. First note that for any point $(a, b) \in \mathbb{R}^{2}$, and any open neighborhood U of (a, b), there exists $E \in \mathcal{G}$ which is a neighborhood on (a, b) and such that $E \subset U$. Now suppose that $K \subset O \subset \mathbb{R}^{2}$ is such that K is compact and O is open. Then for each point $(a, b) \in K$ we take such a set $E_{(a, b)}$. This then gives a cover of K by neighborhoods and by compactness we then have a finite subcover. Hence there exists an element $E \in \mathcal{G}$ so that $K \subset E \subset O$.
μ is a finite Borel measure and hence for any Borel set $A \subset \mathbb{R}^{2}$ and any $\varepsilon>0$ there exists a compact set K and an open set O so that $K \subset A \subset O$ and $\mu(O \backslash K)<\varepsilon$. If we take $E \in \mathcal{G}$ as above so that $K \subset E \subset O$ then we have that $\left\|1_{E}-1_{A}\right\|_{1}=\mu(A \Delta E)<\mu(O \backslash K)<\varepsilon$. Thus, the closure of the linear combinations of characteristic functions from elements in \mathcal{G} contains arbitrary characteristic functions of Borel sets, and hence must contain all of $L^{1}\left(\mathbb{R}^{2}, \mu\right)$ since the span of characteristic functions of all Borel sets is dense in $L^{1}\left(\mathbb{R}^{2}, \mu\right)$.

Problem 4 (20 points). Let $f:[0,1] \rightarrow \mathbb{C}$ be Borel. Assume $f g \in L^{1}([0,1], \lambda)$ whenever $g \in L^{1}([0,1], \lambda)$, where λ is Lebesgue measure on $[0,1]$. Prove that $f \in L^{\infty}([0,1], \lambda)$.

Solution. Suppose $f \notin L^{\infty}([0,1], \lambda)$. Then for each $n \in \mathbb{N}$ there exists $E_{n} \subset[0,1]$ a Borel set of positive measure such that $|f(x)| \geq n$ for all $x \in E_{n}$. Therefore if $g_{n}=\frac{1}{\mu\left(E_{n}\right)} 1_{E_{n}}$ then we have $\left\|g_{n}\right\|_{1}=1, g_{n} \geq 0$, and $\int|f| g_{n} d \mu \geq n$.

We set $h(x)=f(x) /|f(x)|$ if $f(x) \neq 0$ and $h(x)=0$ if $f(x)=0$. We also set $g=\sum_{k=1}^{\infty} 2^{-k} g_{k 2^{k}}$, so that $\|h g\|_{1} \leq\|g\|_{1}=1$. For each $l>0$ we have

$$
\int f h g d \mu=\sum_{k=1}^{\infty} \int|f| 2^{-k} g_{k 2^{k}} d \mu \geq \int|f| 2^{-k} g_{l 2^{l}} d \mu \geq l .
$$

Thus, $f h g \notin L^{1}([0,1], \lambda)$ and the result then follows by contraposition.

Problem 5 (20 points). Is the Banach space $\ell^{\infty}(\mathbb{N})$ separable? Prove your answer is correct.
Solution. This space is not separable. The proof is similar to Cantor's proof that the reals are not countable. Specifically, suppose $f_{n} \in \ell^{\infty}(\mathbb{N})$ gives a countable subset. For each $n \in \mathbb{N}$ take $a_{n} \in[-1,1]$ so that $\left|a_{n}-f_{n}(n)\right| \geq 1$. Then $a=\left(a_{1}, a_{2}, \ldots\right)$ defines a sequence in $\ell^{\infty}(\mathbb{N})$ and for each n we have that $\left\|a-f_{n}\right\|_{\infty} \geq$ $\left|a_{n}-f_{n}(n)\right| \geq 1$. Therefore, $\left\{f_{n}\right\}_{n=1}^{\infty}$ is not dense in $\ell^{\infty}(\mathbb{N})$.

Problem 6 (20 points). Suppose $E \subset \mathbb{R}$ is a Borel set which has positive Lebesgue measure. Show that the set $E-E:=\{x-y \mid x, y \in E\}$ contains an open interval $(-\varepsilon, \varepsilon)$ for some $\varepsilon>0$. Hint: Suppose $\lambda(E)<\infty$ and consider the function $f(y)=\int_{\mathbb{R}} 1_{E}(x) 1_{E}(y+x) d \lambda(x)$.

Solution. Restricting to a finite positive measure subset we may assume that $\lambda(E)<\infty$. If we consider the function f defined above then $f(0)=\mu(E)>0$ and $f(y)=\lambda(E \cap(E+y))$ is continuous. (This was a homework problem assigned this semester, recall that the key step in the proof of this fact was to approximate E by a finite union of intervals). Thus, for some $\varepsilon>0$ we have $\lambda(E \cap(E+y))=f(y)>0$ whenever $|y|<\varepsilon$. In particular, it then follows that for $|y|<\varepsilon$ we have $E \cap(E+y) \neq \emptyset$ and hence $y \in E-E$.

Problem 7 (20 points). Let (X, \mathcal{M}, μ) be a σ-finite measure space and suppose $\mathcal{F} \subset L^{\infty}(X, \mu)$ is a family such that for each $g \in L^{1}(X, \mu)$ we have $\sup _{f \in \mathcal{F}}\left|\int f g d \mu\right|<\infty$, prove that $\sup _{f \in \mathcal{F}}\|f\|_{\infty}<\infty$. Hint: First show that for some n the set $X_{n}=\left\{g \in L^{1}(X, \mu)\left|\sup _{f \in \mathcal{F}}\right| \int f g d \mu \mid \leq n\right\}$, contains an L^{1}-open ball $B\left(g_{0}, \varepsilon\right)$. Then, writing $g=\frac{1}{\varepsilon}\left(\varepsilon g+g_{0}-g_{0}\right)$, use this to show that $\sup _{f \in \mathcal{F}}\|f\|_{\infty} \leq 2 n / \varepsilon$.

Solution. This is really the Uniform Boundedness Principal in disguise. We will cover this next semester.
First note that the sets X_{n} defined above are closed and by hypothesis we have that $\cup_{n} X_{n}=L^{1}(X, \mu)$. Since $L^{1}(X, \mu)$ has the Baire property there then exists some n so that X_{n} has non-empty interior, i.e., there exists $g_{0} \in L^{1}(X, \mu)$ and $\varepsilon>0$ so that X_{n} contains the open ball $B\left(g_{0}, \varepsilon\right)$.

If $g \in L^{1}(X, \mu)$ with $\|g\|_{1} \leq 1$ then $\varepsilon g+g_{0}, g_{0} \in B\left(g_{0}, \varepsilon\right) \subset X_{n}$ and hence

$$
\left|\int f g d \mu\right| \leq \frac{1}{\varepsilon}\left(\left|\int f\left(\varepsilon g+g_{0}\right) d \mu\right|+\left|\int f g_{0} d \mu\right|\right) \leq 2 n / \varepsilon
$$

Therefore,

$$
\|f\|_{\infty}=\sup _{g \in L^{1}(X, \mu),\|g\|_{1} \leq 1}\left|\int f g d \mu\right| \leq 2 n / \varepsilon<\infty
$$

