Given a unital subalgebra B of a II_{1} factor M, define the groupoid normalizers $\mathcal{G \mathcal { N }}(B)$ of B in M to be all partial isometries $v \in M$ with $v B v^{*}$, $v^{*} B v \subseteq B$. We show that when $B_{i}^{\prime} \cap M_{i}=\mathcal{Z}\left(B_{i}\right), i=1,2$, then

$$
\mathcal{G N}\left(B_{1}\right)^{\prime \prime} \bar{\otimes} \mathcal{G N}\left(B_{2}\right)^{\prime \prime}=\mathcal{G N}\left(B_{1} \bar{\otimes} B_{2}\right)^{\prime \prime}
$$

This is joint work with Roger Smith, Stuart White, and Junsheng Fang.

